Hochschule Bochum
WS 2025/2026

Bauinformatik
mit Python

) Dipl.-Ing. Martin Vogel

Pythonbrug Amsterdam, Alain Rouiller, CC BY-SA 2.0

Version vom 23. Januar 2026
Auf martinvogel.de/python erhalten Sie stets die aktuellste Ausgabe. @

https://martinvogel.de/python
http://klixan.de/?dce

Inhaltsverzeichnis

1 Einleitung 10
1.1 Bedeutung der Bauinformatikccccoiviuiiniininninniniicencannann 12
1.2 Ermutigung ...cccoeieiieiiniiniicinieiiiiiiniiiesicicscsscsssassassssssssssssssnes 13
1.3 LerntipPs .vocccieiiiiiiieiieiiniinninniesisiececescensassassassassasssssssssssnsanss 14
1.4 Suchmaschinentippscccoccviiiiiiiniiniiiiiiiiciiiiiciiininsienee 16
1.5 GrofSe Sprachmodelleccccceiuiieiiiiiiiniiiiiiiiiininiine. 18

2 PC-Grundkenntnisse 19
LA R I 151 7 1 11 1 N 20
2.2 BetriebsSSyStemccccvviviiniiniiniiiiiniiiiiiiiiiiiiiiian, 25
2.3 Dateien und VerzeichniSseccocveiniieniiniinciniiniceciniiecinn 26

2.3.1 VerzeichnisSbaumeccooouiiiiiiiiiiiiiiiiee e 27
2.3.2 Dateinamenerweiterungenc.ccvveviiiiinininiinineieeieeeeeeeneneans 28
Versteckte Erweiterungen unter Microsoft Windows............. 32
Verbotene Zeichen und Dateinamen unter Windows............. 34

2.3.3 Desktop, Ordner und Verzeichnissecccceevviviiiiiiiinninnannnnn. 35
2.3.4 Archivdateien (Containerdateien)ccoeevviuviiiiiniinenniennnnn. 38
2.4 Zwischenablagecccccoiviiniiniiniiniiiiiiiniie 41
2.5 BildSchirmKopiencccccciiieiiceiiceniieniceniecenicesiocesscessecanses 43
2.6 Sonderzeichenccoivviiuiiiiiiniiiiiiniiiiiiiiiiiiiiii, 46
LA) M<T0 110 (=Y 1 48
2.8 Textverarbeitungenccccoviiviiiiiiiiniiniiiciiiniiniisiiciiesisisnees 51
2.8.1 FOormatvorlagencoevuiiiiiiiiieie et e e 53
2.8.2 SChIIftartenc..oiiiiiiiii e 54
2.8.3 Zeichenformatierungccccoeeviiiiiiiiiiiee e 55
2.8.4 PDF-DAteiencc.ieuiiniiiiiiiiiiiiiiiie e 57
2.8.5 GrafiKenooniiiiii e 58
2.8.6 VErzeiChniSSecvuniiiiiiiiiiiiie e 59
2.8.7 Erzwungene Neue SEItecoeviviiiiiiiiiiiiiiiiiieiei e 59

Martin Vogel: Bauinformatik mit Python, WS 2025/26

2.8.8 Kopf- und Fulszeilencooiiiiiiii e 59

2.9 Tabellenkalkulationenccccceeeiuiiiniincinniiiinncinieiiiecein 60
S IR o) 14 =Y o PP 61
2.9.2 Variablennamenccooouiiiiiiiiiinii e 62
2.9.3 Relative und absolute Zellbezugec.ccoevvviiiiiiiiiiiininnannen. 62
2.9.4 FUDNKEIONEN .couiiiiiiiiiie et 63
2.9.5 ZellDereiChecc.vviiiiiiiii e 64
2.9.6 Fallunterscheidungen mit WENNcccooiiiiiiiiiiiiinien, 64
2.9.7 VERWEIS, SVERWEIS und WVERWEIScccooviiiiniineinnns 68
2.9.8 Zielwertsuche und SoOIverccoiiiiiiiiiiiiiii e 69
2.9.9 Matrixformeln ..o 72
2.9.10 DiagramINeccoeuiiiiniiieiiieeiee et e e e et e e e e ee e eaaenaaenaas 73
2.9.11 CSV-Dateien und Tabellenkalkulationenc..cceciiiinni. 74
2.9.12 ANWeNndUNgSOTENZEINcvuivniiniiniieieeieieieeaeeieeteeteeneeteenaennenns 77

3 Hypertext 78

T I 5 Y 1 I - T . 79

3.2 Hierarchische Ordnungccocieviiuiiiniiencinnciniiecinncienees 80

6 06 - ot 1 1 111 1= S 82

3.4 GrafiKenccooivviiniinininiiniiiniiiiiiieiiniiiiiiassesimiersrasssssasssnssans 83

3.5 HTML-ENGtAtencccceviiuiiniieiiniinnieicencinniaccecencsaccscsscsnssancans 84

T T 0 1 TR 85

4 Algorithmen und ihre Darstellung 86

4.1 FlusSdiagrammcccoivviiinniinnicininrnicnnisinnsrsssrsscssnsssssssnssssnss 87

4.2 STruktogramicccceeeiiuiineininiciniirnisinssrssisssrsssssssssssssnssssnsss 88
4.2.1 Reihenfolge der Arbeitsschritteccooeiiiiiiiiiiiiin 88
4.2.2 Fallunterscheidungcooveviiiiiiiiiiiiee e 89
4.2.3 Mehrfachauswahlc.ooiiiiiiiii e 90
4.2.4 Abweisende Schleifecoooeiiiiiiiiiiii 90
4.2.5 Nichtabweisende Schleifec...coooiiiiiiiiiiiiiii 91

Martin Vogel: Bauinformatik mit Python, WS 2025/26

4.2.6 ENAIOSSCRICITE ..nneeeiieeeee e, 91

Ausbruch aus der Endlosschleife...........cc.oooeiviiiiiiiiini. 92

4.2.7 Beispiel fur ein vollstandiges Struktogramm 93
4.2.8 Struktogramm-Editorcouiiiiiiiiiiii e, 94

5 Python 95
5.1 Download und Installationccccceiiuiiiniiniiniiecinicinninicnnnn, 97
5.1.1 Module fur wissenschaftliches Arbeitenccc.ccoeeiiiinnio. 101
5.1.2 Virtuelle Umgebungenccocooviiiiiiiiiiiiieeeeeeee, 103
5.2 Erste Schritte in der IDLE-Shellccccccoiuiiiiiiiinniniinninnnnnes 104
5.3 Fehlermeldungenccccceeiuiiiniinniniiiiinnciiiinees 107
5.4 KoNnStantenccccvevviiiiniiniiniiniiiiiciiciiiisiasiasicisicresssssscassassase 109
5.5 Variablenccccceiiuiiiniiiniiiniiniiiiiiiiiiiiiiiiiisiiisssenes 111
5.5.1 Variablennamencooooviiiiiiiiiniiiiice e 114
5.6 Rechenoperationencccccoiiiniiiiniinniniiceiieiiniciccenceniessens 117
5.7 Funktionen und Moduleccccceeiiuiiniininniiniiniinnciniecienees 119
5.7.1 Funktionsweiser Importccoeviiiiiiiiiiieeeeeeee e, 121
5.7.2 Modulweiser Importccooevviiiiiiiiiieeceeeeeeee e 122
5.7.3 Das Mathematik-Modul: mathccoocoiiiiiiiiiin, 123
5.7.4 FunktionSZUWeiSUNGENc.cevuiiniiniieiieieeeeeeeeee e e e eans 125
5.8 Eingabe mit input(...) ..ccooiviiiiiiiiiniiiniiniiiiiiinii. 126
5.8.1 Lesen aus Textdateienc...cooeeeuiiiiiiiiiiiiiiiiiiiieeeeeeeeeee, 126
5.9 Ausgabe mit print(...) ..ccccoiiiiiiiiniiiiiiiiiiiiiiiiiiiiii. 128
5.9.1 Ausgabe in Textdateienccoocviiiiiiiiiiiiiiiiee e 129
WarnUNG! ... 129

5.9.2 Alternatives Trennzeichen: S€pcccooviviiiiiiiiiiiiiiieeeeeene, 130
5.9.3 Alternatives Zeilenende: endccoevviiiiiiiiiiiiiiiniieee, 131
5.10 Typumwandlungccoceviniiieniniinninciiceicenienisicescessessassesses 132
5.10.1 Evaluation von AusdrucCKenc..ccceeeviiiiiiiiniiienneinnennnen. 133
5.11 Das erste richtige Programmcccceeiuiincincincincincincencennn 136

Martin Vogel: Bauinformatik mit Python, WS 2025/26

5.11.1 Python und der Windows-EXplorerccccovvveiiiiiiiiininnnnns 137

5.12 Quelltextformatierungccccocivviniinieiinniniiniiniciecieiiiecens 138
5.12.1 KommentarZeilencoeviiiiiiiiiniiiiieieee e 138
5.12.2 Zeilenlangecooiiiiiiiiiii e 139
5.12.3 Grof3- und Kleinschreibungcccccoviiiiiiiiiiiini, 141
5.12.4 Shebang und Zeichenkodierungcc.cccvevviiiiiiinininnnnnnn. 142

5.13 VErZWeIigUNJEI ...cuctuiiuiiiniiniiniiciiianinsinsssssssssnssessssssassasseoee 143
5.13.1 Fallunterscheidungen: if ... elif ... elseccceeiiiiinnin. 143
5.13.2 Mehrfachunterscheidungen match ... casec..o...... 147
5.13.3 Fehlerbehandlungccccoouviiiiiiiiiiiii e 148

5.14 Programmschleifencccoccviiiiniiiiiniiiniiniiii. 151
5.14.1 Bedingte Schleifen mit ,while”cc.ocoiiiiiiiiiiin, 151

Aussprung mit break...........cooiiiiiiiiiiiii 153
Unstrukturierte Programmierung...........ccccceeveeinniiiininennen.n. 155
5.14.2 Verkurzte Arithmetiknotationccooeeeiiiiiiiiiniiiineennee. 155
5.14.3 Iterationsschleifen mit ,for”cccoiiiiiiiiinii, 156
5.14.4 Die Funktion rangeccccoviiiiiiiiiiiieiee e 156
5.14.5 GENEratoreNcc.iiuiiniiiiiiiiiie e e 158
Generatorausdrucke und Comprehensions.......................... 159
5.14.6 Else und die Schleifencccoooiviiiiiiiiiiiniiiiiie e, 160
5.14.7 Verschachtelte Schleifencc..coooiiiiiiiiiiii, 162

5.15 SEQUENZENcciviuiuieiiiiiininieieiiiietecacesetssicecacesssssscscasassssnsess 164

5.15.1 LISEI e 164

Listen aus LiStemn......ccooiuiiiiiiiiiiii e 165
5.15. 2 TUPEL «eroiiiie e 166
5.15.3 Mengen (SeLS) cuueuiuiiniiiiiiie e 166
5.15.4 DICLIONATYS .ivuiniriiiiiiiiie et e e e e e eeaanas 167
5.15.5 INAIZES ceuniiiniiiieie e 168
5.15.6 Schleifen uber Sequenzencccoeeviiiniiiiiiiiiiiiiieeeans 169
5.15.7 Sequenzabschnitte (SLCES)covviviiniiiiiiiiieen 170

Martin Vogel: Bauinformatik mit Python, WS 2025/26

5.15.8 Kopieren einer SEQUENZccoeueininiiiiiiiiiiieieieieeeeeeeeenenens 171

Kopien verschachtelter Sequenzen................ccoeeviiiiinnnn... 173

5.15.9 Umwandlung eines Generator-Objektes in eine Liste 174
5.15.10 Sequenzen SPreNgEeIc.evuiueiniiiiniieeeieieieeeieeeaeeeneeneaaenns 174
5.15.11 Das enumerate-Objektcooviiiiiiiiiiii e, 175
5.15.12 Reilsverschlussverfahren: das Zip-Objekt 176
5.15.13 Funktionen fur SeqUENzencccceevveviiiiiiiiiiiieieienanes 179
5.15.14 Loschen von SEQUENZENcevvvviiiiiniiniieiieiieieeieeieeieeeanes 179
5.15.15 Methoden von LiStenccoeeuviiiiiiiiiniiiniiiieicee e, 180
5.15.16 Eine fur alle: das map-Objektccccovviiiiiiiiiiiiiienn, 183
5.16 Anwendung von Listen: Vektorenc.ccooeeviiuiiinininiiencinnes 185
5.16.1 Vektoradditioncc.eeeeiiiiiiiiiiiiiiiieci e 185
5.16.2 Skalarproduktcooiriiiiii 186
5.16.3 Formatierte Ausgabe eines VeKtorsccoveviiiiiiiniiininnss 187
5.17 Eigene Funktionen definierenccccccceeeniiniincennincencencenees 188
5.17.1 Eingangswerte (Argumente)ccccoeeviiiiiiiiiiiiieiiiiinieeinennes 189
5.17.2 Vorbelegte Eingangswertec.coovveviiiiiiiiiniiieiiecieeieeinee, 190
5.17.3 Beliebig viele Argumentecccccevviiiiiiiiiiiiiiiieeee e, 190
5.17.4 Reihenfolge von Funktionsargumentencccccceeunenn. 191
5.18 Sichtbarkeit von Variablenccccocvirvuiiiniiiiniiiniininicinnn. 193
5.19 Klassen und Objekteccccoiuviieiiniiniiiniiniiiceiienicencaninseees 194
5.19.1 Attribute von Objektenccooiiiiiiiiiiiiiiie e 195
5.19.2 Methoden von ObjeKtencccoviiiiiiiiiiiiiiiiiee e 197
5.19.3 Die Methode init ccoiiiiiiiii 199
5.19.4 VErerDUNG ...ovniviniiiiie e 199
Wir bauen uns eine Durchreiche...........cc.ccoooeviiiiiiiniininnnn.. 200

5.20 Eigene Modulecccceceiiniiniiniinninninninnienieiiaiieieesssscses 202
5.20.1 Modulpfadec.oenininiie e 204
5.20.2 Funktionsuberschreibungencccooviiiiiiiiiiinnnn, 205
5.21 Zeichenkettencccccvviriniiiiiiiiniiiniiiiiiiniiiiiiie, 208

Martin Vogel: Bauinformatik mit Python, WS 2025/26

5.21.1 Anfuhrungszeichen in Zeichenkettencc.coceiiiinni. 208

5.21.2 Der Ruckwartsschragstrichccoooiiiiiiiiiiiin 209
5.21.3 Mehrzeilige Ausgabecccooiiiiiiiiiiii e, 209
5.21.4 Zeichenketten-Methodencccccoiiiiiiiiiiiii i, 211
.count(Suchtext).....coeiiiiiiiii 211
.encode(Kodierung, Fehlerbehandlung)...............cc.cccoeeninee. 211
.endswith(Suchtext).......coooiiiiiiiii e 212
JANA(SUCHEEXE) i 212
ASAINUINI() e 213
ASAIPNA() i 213
Y= 1] o3 L TR 213

1Yo =T el N a0 =1 () F P 214
Join(iterierbares Objekt).....cccoviniiiiiiiiiiie, 214
LOWERT () e e 214
replace(alt, NeU) ..o, 215
Split(TrennzeiChen)... ..o 215
StartsSwith(SUChEEXt) ..o, 216
strip(abzustreifende Zeichen)...........cooevviiiiiiiiiiiiinnnn.. 216
1010 01=) ol P 216

5.21.5 Formatierung mit Platzhalternccooiiiiiiiiin. 217
5.21.6 F-StTINgS ouuiniiiiiiiiiie e e 218
5.21.7 Die Methode .format() ...oveviviiiiiieiiieeeee s 220
5.21.8 Die Formatierungs-Mini-Spracheccccooviiiiiiiiiiininnnnn.n. 220
Einige Beispi€le.....ccuoiuiiiiiiii e 221

5.21.9 Die alte printf-kompatible Formatierungc..ccceeunnin 225
Vergleich mit C.....cooininiii e, 225
Vergleich mit Java.......ccoeiiiiiiiiiiii e, 226
UDETSICRE....vvviiiceiee e 226
5.21.10 Kodierung und Dekodierungccccoeveeiiiiiiininnenninneninnannns 227
5.21.11 Komprimierung und Verschlusselungcccceeeniennenne. 229
Simple Verschlusselung.........cccoeviiiiiiiniiiiiiiiiceeeeea, 231

Martin Vogel: Bauinformatik mit Python, WS 2025/26

BSOS IS e 231

LB o o 1 TP 232

RS NG S o 233

B St InIg S e 233

5.22 Dateien lesen und schreibenccccccoervuiiiniiiiniiiniinnnnnnn. 234
5.22.1 Textdateien leSenccvviuiiiiiiiiiiiiiiiii e, 234
5.22.2 Textdateien schreibencoooiiiiiiiiiiiiiii 237
5.22.3 Textdateien fortsetzencooovviiiiiiiiiniiiiiiiii 237
5.22.4 BINardatelencoceuuiiiiiiiiiiiiiiie e 238
5.22.5 PICKIE .eiiiiiiiiii e 238
5.22.6 Das aktuelle Arbeitsverzeichnisc...ccooiiiiiiiiiiiiin. 240
5.23 Diagramme mit Matplotlibccccccviiiiniiiiiiiininininnien. 243
5.23.1 Ein schnelles x-y-Diagrammccceeeuiiiieiniinieinneiniinenneennes 243
5.23.2 Ein schones x-y-Diagrammc.cooeviiiiiiiiiiiiiiiiiiieieeineanes 246
5.23.3 Streudiagrammecc.oeuiiniiiiiiiiiiieiieie e 250
D.23.4 TEXL e e 252
5.23.5 gefullte Flachen ..o 253
5.23.6 Zeichenreihenfolgeccccoiiiiiiiiiiii e, 254
5.23.7 3D-DiagramIneccooiuiuiiniiiiiiiiiieeieiieie et eeae e eaeeeaaanas 256
5.24 Grafik mit TKinterccccccvviiuiiiniiiniiiniiiiiiiiiii, 259
5.24.1 Das Hauptfenster ... 260
5.24.2 untergeordnete Fenstercc.cooviiiiiiiiiiiiiiieceeeeeeeae 262
5.24.3 Canvas - die Leinwandccceeeiviiiiiiiiiniiiniiieee e 264
5.24.4 Koordinaten der Canvasccceeeveveiiiiiiiiniiiniie e eanens 266
5.24.5 Koordinatentransformationencc.ccoovviiiiiiiiiininnnn.. 267
5.24.6 Linien und Linienzugeccccoiiiiiiiiiiiiiiiiiecceeeeeeeeie e 268
Die Canvas-ID.......cccoiiiiiiiiiiiii e 269

5.24.7 PIeilSPItzZenc.ooniiniii e 270
5.24.8 Gestrichelte Linienccoeveiiiiiiiiiiiiiiiee e, 270

Martin Vogel: Bauinformatik mit Python, WS 2025/26

5.24.9 Splines (Kurvenlinien)ccccooviiiiiiiiiiiiieieceeeeeeeeene 271

5.24.10 Geschlossene Polygonec..ccooeiuiiiiiiiiiiiiiiiiececieeeeeens 272
5.24.11 Rechtecke und EIlLPSeNcccoeviviiiiiiiiiiiiiceeeeeeeeee, 273
5.24.12 KIBISE .ueuriiiiiiiiiiiiee ettt e e e ees 274
5.24. 13 TOXE e 274
Schriftart, Auszeichnung und Schriftgrof3e............c............. 275

5.25 GUI - Grafische Benutzungsoberflachenccccccceeneennaee 277
5.25.1 EVA und die Eventsccccoouiiiiiiiiiiii e, 277
Beispiel fur einen Eventhandler...........c.cocoooviviiiiiiinininnn... 277

5.25.2 Anordnung der GUI-Elementeccccoeiviiiiiiiiiiiiiieiieienns 283
5.25.3 Die drei Geometriemanagerccouveiveeniineneineinieieeeiennnn. 284
PACK. . e 284

PlACE. .. e 286

(€} 5 (¢ PRSPPI PPRPPRRR 287

5.25.4 GUI-WIAGETS .eeuuiiiiiiiieiiie e 289
Taste: BUutton........oooiiii 289
Beschriftung: Label.........coooiiiii e, 290
Eingabefeld: Entry.......cccooiviiiiiiiiii e 292
Schieberegler: Scale.........coooiiiiiiiiiiiii 294
Rahmen: Frame..........ccooiiviiiiiiiiiiiiiic e 297
Beschrifteter Rahmen: LabelFrame..........c..ccoooviiiiinnnnn..n. 298
Schiebefenster: PanedWindow...........ccoeuveiiiiiiiiiiniiiiiniinennenn. 301
Ankreuzkastchen: Checkbutton........c...coooooiiiiiiiinn 303
RadiobUtton.....cc.viiiii e 306
MenubuULEON...cc.iiiii 308

5.26 WEDSEIVETcovvviruiiiniiiniiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiee 310
5.26.1 ZeichenKkodierungccoeuviiiiiiiiiiiiei e 312
5.26.2 Darstellung von Webseiten ohne Webserver 312
5.27 Logische AUSSQQEeNccceceieiiniiniinninniecincecencantasssssessecsscsnes 314
5.27.1 Wahrheitswerte anderer Datentypencccocceeeviiiniinnnnss 314

Martin Vogel: Bauinformatik mit Python, WS 2025/26

5.27.2 VergleichSOperatorencoeeviiiiiiiiiiiiiiieie e 315

5.27.3 Logische Aussagen uber Gleitkommazahlen 316
5.27.4 Boolesche Algebraccovviiiiiiiiiiiii e 317
Die Konjunktion: and...........cccoeoviiiiiiiiiiiiiiiieeceeeee e, 317

Die DiSjunktion: OT......cccoiiiiiiiiiiiiiieeeeee e 318

Die Negation: NOt......cccoviiiiiiiiiiii e 318

Die Kontravalenz: ™ccooouiiiiiiiiiiiiie e 319

o o) 1 = 1 Y o 319
Umkehrung logischer Aussagen..........ccoceeeviiiiiiiiniininnineennnnns 320
Boolesche Variablen..........ccoviiiiiiiiiiii e 320

5.27.5 Venn-Diagramineccc.eeuiiiiiiiniiieiiieieieeeeeeeeeee e eeaeenees 320

6 Datenspeicherung und Zahlensysteme 323
6.1 Bits und Bytescccceiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiesesicenes 323
6.1.1 DAS Bit civuuuiiiiiiiieieeiiiie et 323
6.1.2 DAS BYLE .ouiniiiiiii i 324
6.1.3 Das HexadezimalsSystemccccoeviiiiiiiiiiiiiiiicceeceeeeees 326
6.2 Zeichenkodierung - von ASCII bis Unicodeccoevvveneeneee 328
7 Anhang 332
7.1 Haufige Fehlermeldungencccccoievieniinicenniencinniecrnncencrnnes 332
7.2 Farben und Farbnamen (Auswahl)cccoceviiuiiniiiniininnnninnnnns 334
7.3 Der Windows-Paketmanager WinGetccccocuviuiiniinceniannanns 340
7.4 AbbildungsverzeiChnisccovviiiiiiiiniinniciiiiininiiceicaniann, 345
7.5 Links und Literaturhinweiseccccceeviiniiiniinninncinninncinnne 349
7.0 LIZENZouvivniinniiniiniiniiiniiniiniiiniiiiiaisiussesissiasssssssssasssnsssssses 352
7.7 Download und Feedbackcccccoervniiniiinninniinnninnincinncinnnene 353

Martin Vogel: Bauinformatik mit Python, WS 2025/26

1 Einleitung

I wish I understood what this was. But it's kind of nice.
Eric Idle’

Dieses Buch ist eine Erganzung zu der seit 2009 von mir gehaltenen Vor-
lesung , Bauinformatik” im Fachbereich Bau- und Umweltingenieurwesen
der Hochschule Bochum. Sie finden hier aulSer vielen Inhalten der Vorle-
sung auch einige Zusatzinformationen, die in ihrer Breite nicht in Hor-
saal-Lehrveranstaltungen passen.

In den Vorlesungen und Ubungen an der Hochschule lernen wir wichtige
Konzepte der Informatik kennen, indem wir uns selbst sprachliche Werk-
zeuge schaffen, mit denen wir ingenieurmalsige Probleme losen werden.
Wir bauen diese Werkzeuge, indem wir Handlungsanweisungen in einer
Sprache formulieren, die ein Computer interpretieren und ausfithren
kann - einer Programmiersprache.

Das vorliegende Werk ist kein Vorlesungsskript im klassischen Sinne. Die
Reihenfolge der Kapitel im Buch ist nicht dieselbe wie in der Vorlesung,
da ich diesen Text zum leichteren Nachschlagen nach Sachthemen geglie-
dert habe. AuRerdem werden wir in den Praktika und Ubungen manche
Techniken gelegentlich schon kurz kennenlernen, die erst spater im Se-
mester ausfuhrlich behandelt werden. Diese Vorgriffe tauchen im Buch
nicht auf.

Im Wintersemester 2022/23 fanden erstmals seit Beginn der Covid-19-
Pandemie wieder Prasenzvorlesungen im Horsaal statt. Beibehalten wur-
de jedoch das bewahrte Verfahren, iiber unser E-Learning-System Moodle
interaktive Texte und wochentliche Aufgaben anzubieten, zu denen die
Studierenden zur Kontrolle des Lernstandes Ruckmeldungen erhalten.
Auf dem zum Kurs gehorenden Peertube-Kanal® finden Sie eine standig
wachsende Zahl von Videos zum Kurs.

In Prasenz werden auch Ubungen und Tutorien in kleinen Gruppen
durchgefiihrt. Hierzu sind im Moodle-Kursbereich fiir eingeschriebene
Studierende nahere Informationen verfugbar.

1 https://web.archive.org/web/202101291827/https://twitter.com/Ericldle/status/
1355227039146467329

2 https://tube.tchncs.de/c/python/videos

Martin Vogel: Bauinformatik mit Python, WS 2025/26

10

https://tube.tchncs.de/c/python/videos
https://web.archive.org/web/20210129185127/https://twitter.com/EricIdle/status/1355227039146467329
https://web.archive.org/web/20210129185127/https://twitter.com/EricIdle/status/1355227039146467329

Im Gegensatz zu einem Papierbuch verandert sich der Inhalt in dieser
PDF-Datei gelegentlich. Sie sollten daher mit Zitaten vorsichtig sein,
wenn Sie einen wissenschaftlichen Anspruch an Ihre Arbeit haben. Zum
Wintersemester 2018/19 verschwand beispielsweise das komplette Kapi-
tel uber Matrizenrechnung mithilfe verschachtelter Schleifen aus diesem
Werk, weil es sich gezeigt hatte, dass dieser Themenbereich erhebliche
Schwierigkeiten hatte, die ,Mathe-Hirn-Schranke” zu passieren.

Falls Sie diese PDF-Datei auf einem Mobilgerat ansehen, sollten Sie einen
PDF-Betrachter verwenden, der Verkniipfungen (Links) unterstitzt!.
Durch Antippen der Seitenzahlen im Inhaltsverzeichnis konnen Sie so bei-
spielsweise direkt zum jeweiligen Kapitel springen. Auch externe Links
auf Webseiten funktionieren dann.

Trotz seines Umfangs ist dieser Text nicht als eigenstandiges Selbstlern-
buch konzipiert und stellt kein umfassendes Kompendium zur Program-
miersprache Python dar. Falls es Thnen dennoch gelingt, ohne die dazuge-
horenden Lehrveranstaltungen das Programmieren in Python mit diesem
Buch zu lernen, oder wenn Sie einen interessanten Fehler im Text entde-
cken, schreiben Sie mir! Meine Adresse steht auf der letzten Seite.

1 Die meisten Browser konnen das inzwischen ohne Zusatzsoftware.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

11

1.1 Bedeutung der Bauinformatik

Die Anwendung von Computern, ob in stationarer oder mobiler Form, ist
eine Kulturtechnik geworden, in die wir von Kindheit an hineinwachsen.
Als Ingenieurinnen und Ingenieure stehen wir aber vor der Aufgabe, nicht
nur nach Anleitung fertige Apps und andere Computerprogramme zu be-
dienen, sondern den Computer auch als individuell formbares Werkzeug
zur Losung von nicht standardisierten Problemen einzusetzen. Die Be-
triebssysteme von Mobilgeraten machen es oft absichtlich schwer, Daten
zwischen Programmen auszutauschen. Gerade der freie Zugriff auf Daten
eroffnet uns aber ganz neue Moglichkeiten, Erkenntnisse zu gewinnen.
Deshalb arbeiten wir bevorzugt mit einem PC anstelle eines Mobilgerats'.

Die Grenzen popularer Burosoftware sind mitunter schneller erreicht, als
es uns lieb ist, doch oft konnen wir scheinbar komplexe Probleme mit we-
nigen Zeilen Programmcode elegant und schnell 1osen. Zwar lieSen sich
viele dieser Aufgaben mit Ausdauer, Fleis und Uberstunden auch ohne
Programmierkenntnisse bewaltigen, sie wirden dann aber deutlich we-
niger zur Arbeitsfreude beitragen. Viele scheinbar absurde Phanomene
bei der Anwendung von Standardsoftware lassen sich zudem erst dann
verstehen, wenn wir wenigstens eine ungefahre Ahnung davon haben,
was gerade ,unter der Motorhaube” geschieht.

Informatik ist weit mehr als nur Programmierung, aber das selbstandige
Schreiben von Computerprogrammen wird in diesem Kurs der rote Faden
sein, der sich durch unsere funfmonatige Reise durch die Welt der forma-
len Sprachen, der Datenverarbeitung und der Algorithmen zieht.

1 Die Grenzen zwischen PCs und Mobilgeraten sind zugegebenermalsen flieRend.
Selbst an die meisten Smartphones kann man eine Maus, eine Tastatur und einen Mo-
nitor anschliefSen und hat damit ein Gerat, das vielen PCs kaum nachsteht. Anderer-
seits gibt es als PC verkaufte Gerate wie Chromebooks, die eigentlich nur Android-Ta-
blets mit Tastatur sind. Wenn wir von PCs reden, meinen wir damit ein Gerat mit dem
Betriebssystem Windows, macOS oder einer Desktop-Variante eines Linux-Betriebs-
systems.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

12

1.2 Ermutigung

Es gibt an vielen Schulen hervorragende Informatiklehrer und -lehrerin-
nen, die fachlich kompetent und padagogisch engagiert sind und Wunder-
bares leisten. Leider gibt es auch andere. Falls Sie seit dem Informatik-
unterricht in Threr Schule der Meinung sind, Computer niemals im Leben
verstehen zu werden, dafur aber eine unerklarliche Abneigung gegen
Hamster entwickelten: vergessen Sie am besten alles, was sie dort ge-
lernt haben, bevor Sie weiterlesen!

Haben Sie den Mut, Dinge auszu-
probieren! Sie lernen nicht, zu
programmieren, indem Sie ein
Buch durchlesen oder ein Video
ansehen. Sie lernen es vor allem,
indem Sie eigenhandig Pro-
gramme schreiben, Fehler machen
(das ist wirklich wichtig!), Fehler-
meldungen lesen und verstehen
sowie die Fehlerursachen finden,
begreifen und beseitigen. Immer
wieder.

Seien Sie aktiv! Damit Sie wirklich
etwas lernen, benotigen Sie aulSer
IThren Augen und Ohren auch Ihre
Hande. Schreiben Sie in der Vorle-
sung und auch beim Betrachten
von Videos mit, machen Sie sich
Notizen mit Stift und Papier - vor
allem, wenn etwas unklar scheint!
Besprechen Sie offen gebliebene
Fragen nach der Vorlesung mit ih-
rer Lerngruppe, suchen Sie die
Antworten in diesem Text, im In-
ternet oder in der Literatur!

NORMAL

PERSON SCIENTIST

I WONDER IF
THAT HAFPENS EVERY

T GUESS T
SHOULDNT DO THAT

Abb. 1: The Difference (Randall Munroe)

https://xkecd.com/242/ Creative Commons
Attribution-NonCommercial 2.5 License

Martin Vogel: Bauinformatik mit Python, WS 2025/26 13

https://xkcd.com/242/

1.3 Lerntipps

Bringen Sie kein Notebook oder Tablet mit in die Vorlesung! Es mag ver-
fuhrerisch erscheinen, vorgestellte Codeschnipsel gleich auszuprobieren
oder die Vorlesungsmitschrift gleich in leserlicher Druckschrift zu erfas-
sen. Thnen entgeht jedoch durch das Tippen zu viel vom eigentlichen Sinn
des Vorlesungsstoffs, 123456

Bearbeiten Sie vor allem die Wochenaufgaben selbst und besorgen Sie
sich keine fertigen Losungen! Sie geben die Ergebnisse nicht ab, um zu
beweisen, dass Sie in der Lage sind, fristgerecht eine Ware abzuliefern,
sondern um bei der eigenen Arbeit daran die Lerninhalte zu vertiefen. Au-
Berdem finden Sie nur so heraus, ob Sie das, was Sie zu wissen glauben,
tatsachlich verstanden haben.

Besonders tuckisch sind seit November 2022 die offentlichen Chats gro-
Ber Sprachmodelle, da die nur scheinbar intelligenten Systeme Formulie-
rungen grofler Selbstsicherheit fur zum Teil haarstraubend falsche Dar-
stellungen wahlen. Noch mehr als bei von Menschen erzeugten Vorlagen
gilt hier, dass sie aufs sorgfaltigste gepruft werden miussen. Sie kommen
nicht um das Verstehen herum, um Nutzen daraus ziehen zu konnen.

1 Besser lernen mit Stift statt Tastatur. heise online [online]. 4 Mai 2014. [Zugriff
am: 8 September 2023]. Verfugbar unter: https://www.heise.de/news/Besser-lernen-
mit-Stift-statt-Tastatur-2182057.html

2 For better learning in college lectures, lay down the laptop and pick up a pen. Broo-
kings [online]. [Zugriff am: 8 September 2023]. Verfiigbar unter: https://www.broo-
kings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-
pick-up-a-pen/

3 PATTERSON, Richard W. und Robert M. PATTERSON, 2017. Computers and producti-
vity: Evidence from laptop use in the college classroom. Economics of Education Re-
view. 1 April 2017. Bd. 57, S. 66-79. Verfiigbar unter: https://doi.org/10.1016/j.econe-
durev.2017.02.004

4 FISHER, Beth, 2015. Laptop Use in Class: Effects on Learning and Attention. Center
for Teaching and Learning [online]. 22 August 2015. [Zugriff am: 8 September 2023].
Verfugbar unter: https://ctl.wustl.edu/laptop-use-effects-learning-attention/

5 The Impact of Computer Usage on Academic Performance: Evidence from a Randomi-
zed Trial at the United States Military Academy,. Blueprint Labs [online]. [Zugriff
am: 8 September 2023]. Verfugbar unter: https://blueprintlabs.mit.edu/research/the-
impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-tri-
al-at-the-united-states-military-academy/

6 Using laptops in class harms academic performance, study warns, 2017. Times Hig-
her Education (THE) [online]. [Zugriff am: 8 September 2023]. Verfiigbar unter:
https://'www.timeshighereducation.com/news/using-laptops-in-class-harms-academic-
performance-study-warns

Martin Vogel: Bauinformatik mit Python, WS 2025/26

14

https://www.timeshighereducation.com/news/using-laptops-in-class-harms-academic-performance-study-warns
https://www.timeshighereducation.com/news/using-laptops-in-class-harms-academic-performance-study-warns
https://blueprintlabs.mit.edu/research/the-impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-trial-at-the-united-states-military-academy/
https://blueprintlabs.mit.edu/research/the-impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-trial-at-the-united-states-military-academy/
https://blueprintlabs.mit.edu/research/the-impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-trial-at-the-united-states-military-academy/
https://ctl.wustl.edu/laptop-use-effects-learning-attention/
https://doi.org/10.1016/j.econedurev.2017.02.004
https://doi.org/10.1016/j.econedurev.2017.02.004
https://www.brookings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-pick-up-a-pen/
https://www.brookings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-pick-up-a-pen/
https://www.brookings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-pick-up-a-pen/
https://www.heise.de/news/Besser-lernen-mit-Stift-statt-Tastatur-2182057.html
https://www.heise.de/news/Besser-lernen-mit-Stift-statt-Tastatur-2182057.html

Fast jeder Mensch, der sich eine Weile mit einer guten Programmierspra-
che auseinandersetzt, entwickelt fruher oder spater eine gewisse Begeis-
terung furs Programmieren und mochte gern noch interessantere und
umfangreichere Probleme losen, als wir im Rahmen dieser Veranstaltung
behandeln konnen. Am Ende dieses Buches finden Sie im Kapitel 7.5
(Links und Literaturhinweise) ein paar Empfehlungen, um Hilfen und An-
regungen jenseits des Tellerrands der Erstsemestervorlesungen zu erhal-
ten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

15

1.4 Suchmaschinentipps

Suchmaschinen wie Google, Kagi, Bing, Metager oder DuckDuckGo sind
unentbehrliche Werkzeuge zum schnellen Auffinden von Informationen im
WWW. Um in der Masse der Fundstellen gezielt die relevanten Seiten zu
finden, lassen sich die Suchen verfeinern.

Manche Suchmaschinen legen ihren Schwerpunkt darauf, moglichst viele
Ergebnisse zu liefern und interpretieren gestellte Suchanfragen extrem
unverbindlich. Andere Suchmaschinen bemiuhen sich, genau das zu lie-
fern, wonach gesucht wurde. Je nach Suchmaschine werden mehr oder
weniger der folgenden Modifikatoren unterstutzt.

Anfuhrungszeichen fassen mehrere Worter zu einer Phrase zusammen,
die als Ganzes im zu findenden Text vorkommen muss. Die Suche nach
hochschule bochum findet Texte, in denen sowohl das Wort ,,Hochschule”
als auch das Wort ,Bochum® vorkommen. Die Suche nach "hochschule
bochum" dagegen beschrankt die Fundstellen auf Texte zur Hochschule
Bochum.

Pluszeichen markieren Begriffe, die unbedingt auf der Seite vorkommen
mussen. Minuszeichen kennzeichnen auszuschlieliende Begriffe. Wer Bil-
der von Jaguaren sucht, sollte die Suche entweder mit jaguar -katze
+auto oder mit jaguar +katze -auto durchfithren, je nachdem, welche
Ergebnisse nicht gewunscht sind.

Die Suche nach Dateien eines bestimmten Typs oder Formats lasst sich
mit dem Schlusselwort ,filetype” beeinflussen. Die Eingabe von "python
3" bauinformatik filetype:pdf in die Suchleiste sollte die PDF-Datei
des Textes, den Sie gerade vor sich haben, recht weit oben auf der ersten
Suchergebnisseite auffuhren. Nichttextuelle Dateiformate wie mp3, mp4
oder jpg werden allerdings gelegentlich! ausgefiltert und nicht angezeigt.

Um nur Seiten anzuzeigen, die den gewunschten Suchbegriff im Titel ent-
halten, geben Sie das mit dem Schliisselwort title an: title:"Bau- und
Umweltingenieurwesen"

1 https://support.google.com/websearch/thread/260589615/filetype-operator-no-longer-
works

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://support.google.com/websearch/thread/260589615/filetype-operator-no-longer-works
https://support.google.com/websearch/thread/260589615/filetype-operator-no-longer-works

Sie konnen die Suche auf Seiten eines bestimmten Webauftritts begren-
zen. stundenplan site:hs-bochum.de beschrankt die Suche nach Stun-
denplanen auf die Website der Hochschule Bochum. Der Zusatz site: .de
findet nur Seiten, die fur Deutschlands Top-Level-Domain DE registriert
wurden.

Wenn Sie nur einen Teil der Adresse (URL) einer Seite kennen, konnen
Sie auch danach suchen stundenplan inurl:fbb.

Gruppen von Wortern, die alle auf der gesuchten Seite vokommen mus-
sen, konnen in Klammern gesetzt und mit AND verknupft werden: (Beton
AND nachhaltig). Wenn nur eines der Worter vorkommen muss, konnen
die Suchbegriffe mit OR verkniipft werden: (Apfel OR Birnen).

Probieren Sie die oben vorgestellten Modifikatoren einmal mit ein paar
unterschiedliche Suchmaschinen aus. Nicht immer ist die im Browser vor-
eingestellte Wahl die Beste.

Falls Sie eine Webseite mit interessanten Informationen finden, von de-
nen Sie annehmen, sie spater noch einmal gebrauchen zu konnen, sollten
Sie nicht einfach nur ein Lesezeichen im Browser setzen, weil dort nur
die Adresse und der Titel der Seite abgelegt werden und beides nicht sel-
ten keinen Hinweis auf die tatsachlichen Inhalte gibt. Besser ist es, die
Seite in einem Literaturverwaltungssystem wie Zotero' zu speichern, so-
dass sie die Inhalte auch dann noch wiederfinden, wenn die ursprungli-
chen Seiten nicht mehr aufrufbar sind.

Um Inhalte von Webseiten auch ohne Literaturverwaltungssystem dauer-
haft zu archivieren, konnen Sie den Dienst des Internetarchivs? in An-
spruch nehmen. Uber diesen lasst sich manchmal sogar auf historische
Versionen mancher Webseiten zugreifen.

1 https://www.zotero.org/

2 https://archive.org/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

17

https://archive.org/
https://www.zotero.org/

1.5 GroBRe Sprachmodelle

Unter der Bezeichnung ,KI“ finden derzeit (2025) erhebliche Umbriiche
in der Art und Weise statt, wie wir auf Informationen zugreifen. Insbeson-
dere die Grolen Sprachmodelle (large language models, LLM) wie
ChatGPT werden immer mehr zur Beantwortung von Fragen herangezo-
gen. Leider ist das Trainingsmaterial dieser Sprachmodelle oft von unzu-
reichender Qualitat, sodass zwar sehr uberzeugend klingende Antworten
gegeben werden, diese jedoch auf mehr oder weniger fatale Weise falsch
sein konnen. Ob eine Hoffnung besteht, dass sich das kurzfristig andern
wird, ist unklar. Es steht zu befurchten, dass neue Modelle zunehmend
mit den falschen Antworten alter Modelle trainiert werden, mit denen das
Web derzeit geradezu uberflutet wird.

Ralph Caspers hat einen sehr schonen Beitrag® fiir die Sendung mit der
Maus produziert, der die Funktion und das grolse Problem der Sprachmo-
delle verstandlich erklart.

1 https://www.youtube.com/watch?v= 80pKGuyKWc

Martin Vogel: Bauinformatik mit Python, WS 2025/26

18

https://www.youtube.com/watch?v=_80pKGuyKWc

2 PC-Grundkenntnisse

In den Vorlesungen und Ubungen des Kurses ,Bauinformatik” setze ich
gewisse im Umgang mit personlichen Computern (PC) alltagliche Grund-
kenntnisse voraus. In diesem Kapitel des Skriptes erhalten Sie einen kur-
zen Uberblick iiber einige Begriffe und Techniken, die sie verstanden ha-
ben sollten, wenn Sie sich mit den eigentlichen Themen dieses Semesters
auseinandersetzen.

Abb. 2: Schreib-/Lesekopfe einer Festplatte im GréofSenvergleich

Martin Vogel: Bauinformatik mit Python, WS 2025/26

19

2.1 Tastatur

Die Tastatur eines PC orientiert sich in ihrem grundlegenden Aufbau an
den im 19. Jahrhundert aufgekommenen Schreibmaschinentastaturen.
Wahrend diese maximal zwei verschiedene Zeichen pro Taste aufs Papier
bringen konnten, enthalten PC-Tastaturen auf mehreren Belegungsebe-
nen die haufigsten in Texten verwendeten Buchstaben, Ziffern und Son-
derzeichen sowie einige Steuer- und Funktionstasten.

Eingabetaste, Enter

Tabulatortaste, Tab

Feststelltaste, Caps Lock

Umschalten, Shift

Steuerung, Ctrl

Windowstaste, Super 3. Zeichen:
Taste + AltGr

|@~23\{[p]}..

Abb. 3: Tastenbezeichnungen unter Linux und Windows

PCs mit den Betriebssystemen Linux und Windows verwenden in der Re-
gel die gleichen Standardtastaturen (Abb. 3). In seltenen Fallen ersetzt an
Linux-PCs der Pinguin Tux das ,Windows-Fahnchen” auf der Super-Taste.

PCs der Firma Apple' verwenden abweichende Bezeichnungen und Sym-
bole fur einige Tasten.

1 Die Marketingabteilungen bestimmter Firmen versuchen weiszumachen, es gebe
zwei Sorten von schreibtischtauglichen Computern: den PC (mit Windows) und den
Mac (mit macOS). Das ist Unfug.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

20

Im Gegensatz zu den Bildschirmtastaturen von Mobilgeraten werden Son-
derzeichen auf korperlichen Tastaturen nicht durch langen Druck auf ei-
ne Taste, sondern durch eine Kombination mehrer Tasten, die gleichzeitig
oder nacheinander gedruckt werden mussen, erzeugt.

Da aus gestalterischen Grunden insbesondere auf Apple-Tastaturen viele
mit der Tastatur eingebbare Sonderzeichen nicht auf den Tastenkappen

aufgedruckt sind, hier eine Eingabehilfe:

Zeichen Name Windows Linux macOS
@ at |AltGr Q| |AltGrQ| |X L]
[eckige Klammer auf |AltGr 8| | AltGr 8| '\ 5]
] eckige Klammer zu |AltGr 9| |AltGr9| [\ 6|
{ geschweifte Klammer auf AltGr 7| |AltGr7| |\X 8]
} geschweifte Klammer zu |AItGr 0| |AlItGro0| [X 9]
/ Schragstrich
\ Riickwartsschragstrich AltGr 3| |AIGrR| |[X 0 7]
| senkrechter Strich AltGr <| |AltGr<| |[X 7]
” Anfiihrungszeichen auf 0132 |AItGrV| |[X 1t W]
“ Anfihrungszeichen zu 0147 |AltGrB| |\ 2]
) einfaches Anf.-zeichen auf 0130 |AltGrtV| |[XS]
‘ einfaches Anf.-zeichen zu 0145 |AltGrtB| |\ #]
» franz. Anfz. nach rechts 0187 |AltGrY| | X 0 Q]
« franz. Anfz. nach links 0171 [AltGrX| [X Q]
> einf. franz. Anfz. nach rechts 0155 |AltGroY| | X 0 N|
< einf. franz. Anfz. nach links 0139 |AItGrtX| |[X 0 B]
n My (Mikro-) |AItGrM | |AtGrM| | X M|

Multiplikationspunkt 0183 |AltGr,| | X 9]

.. Auslassungspunkte 0133 |AltGr .| I\
’ Apostroph 0146 |[AltGr#| | X 0 #|
— | Pfeil nach links 8592
! Pfeil nach unten 8595
1 Pfeil nach oben 8593
— Pfeil nach rechts 8594
1 hochgestellte 1 0185
2 hochgestellte 2 |AltGr2| |[AltGr2|

Martin Vogel: Bauinformatik mit Python, WS 2025/26

21

Zeichen Name Windows Linux macOS
3 hochgestellte 3 |AltGr 3| | AltGr 3|
< kleiner oder gleich 8804 (D<= \ >
> groBer oder gleich 8805 [> = X 0>
ungleich 8800 [@/= X0
+ Plus/Minus 0177 @ + - X +
- Minuszeichen 8722 12212
- Gedankenstrich 0150 [AIltGr - N
- Bindestrich =] =] =]
Unendlich-Symbol 8734 [©838 \,
X Multiplikationskreuz 0215
+ Divisionsoperator 0247
I Pi 0960 u3CO
% Durchmesserzeichen 8960 12300
v Wurzelzeichen 8730 u22la XV
S Summenzeichen Sigma 8721 u2211 W
Y00 Promillezeichen 0137 [@%O X TR
schmales festes Leerzeichen 8201 12009
festes Leerzeichen 0160 [Strg 0 | [X]

In den rechten Tabellenspalten werden mehrere ungewohnliche Symbole
verwendet. Das Symbol [® steht hier fur die unter Linux standardmalSig
verfugbare Compose-Taste, mit der jeweils mehrere leicht zu merkende
Tastendrucke zur Eingabe von Sonderzeichen kombiniert werden. Das
Symbol |, | bezeichnet die Leertaste. Das unterstrichene u symbolisiert
die Tastenkombination | Strg 1 UJ, welche unter Linux die Unicode-Einga-
be aktiviert.

Feste Leerzeichen werden zwischen Zahlenwerte und Einheiten gesetzt,
um eine automatische Trennung am Zeilenende zu verhindern. Schmale
feste Leerzeichen trennen Tausendergruppen grofser Zahlen.

MacOS besitzt eine systemweite Funktion zur Eingabe hoch- und tiefge-
stellter Zeichen. Dazu ist zunachst die gewunschte Zeichenfolge zu mar-
kieren. Die Tastenkombination (Control-Command-Plus) wandelt
die Zeichen dann in die entsprechenden hochgestellten Unicode-Zeichen
um und bewirkt dasselbe zum Tiefstellen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

22

Unter macOS lasst sich in der Systemeinstellung unter , Sprache und Text
— Eingabequellen” bzw. ,Tastatur — Eingabequellen” die ,Unicode-Hex-
Eingabe” aktivieren. Damit konnen die Zeichencodes bei gedruckter Tas-
te (Alt, Option) eingetippt werden.

Die Windows-Tastenkombinationen mit dem Schema ,|Alt| Zahlencode*
werden eingegeben, indem Sie die Taste mit der linken Hand ge-
druckt halten, wahrend Sie auf dem numerischen Ziffernblock rechts
nacheinander die entsprechenden Ziffern tippen. Beim Loslassen der Alt-
Taste erscheint das gewunschte Zeichen. Wenn Thre Tastatur keinen nu-
merischen Ziffernblock hat, konnen Sie diese Eingabemethode nicht nut-
zen. Die Zifferntasten der oberen Tastenreihe werden von Windows zur
Code-Eingabe nicht akzeptiert.

Etwas ungewohnlich bei der Code-Eingabe unter Windows ist die Verwen-
dung einer Dezimalzahl. Ublicherweise werden Unicode-Symbole tiber ih-
re Hexadezimalcodes! adressiert.

Um auch unter Windows den Luxus einer Compose-Taste und einer Uni-
code-Eingabe uber Hexadezimalcodes nachzurusten, lasst sich das Pro-
gramm ,WinCompose“ installieren®. Es erlaubt zudem, die selten willent-
lich verwendete GrolSbuchstabenfeststelltaste zur gut erreichbaren
Compose-Taste umzudefinieren.

1 Mehr dazu in Kapitel 6.1.3
2 CMD — winget install wincompose - siehe Kapitel 7.3

Martin Vogel: Bauinformatik mit Python, WS 2025/26

23

Optionen — WinCompose n

Allgemeines | Compose | Diverse Einstellungen

€51 Verhalten

[Compose-Taste: Feststelltaste

& Zeitiiberschreitung zuriicksetzen

@ Tastatur-LED | Compose “

[] Urspriingliches Verhalten der Compose-Taste beibehalten
[] Alternative Compose-Taste ist immer Compose

Erweiterte Unicode-Eingabe

(=) Sequenzen
Sequenzen aus dem Xorg-Projekt verwenden
Sequenzen aus dem XCompose-Projekt verwenden

WinCompose-Emaoji-Sequenzen verwenden

SchlieBen

Abb. 4: WinCompose riistet auch eine Unicode-Eingabe nach

Martin Vogel: Bauinformatik mit Python, WS 2025/26

24

2.2 Betriebssystem

Ein Betriebssystem verbindet die Anwendungssoftware (das konnen bei-
spielsweise kommerzielle oder freie Officepakete, heruntergeladene Apps
oder beliebige andere ausfihrbare Programme sein) mit der Hardware
(dem Gerat, auf dem die Programme laufen sollen).

Etwas umfassender ausgedruckt bezeichnet man als Betriebssystem eine
Programmsammlung, die Anwendungsprogrammen standardisierte Werk-
zeuge zum Zugriff auf interne und externe Gerate, gespeicherte Daten
und Datentrager sowie die Kommunikationskanale eines Rechnersystems
zur Verfugung stellt.

Haufig werden Betriebssysteme noch mit einer Vielzahl mehr oder weni-
ger nutzlicher Programme ausgeliefert. Wir nennen so ein Paket aus Be-
triebssystemkern und Anwendungsprogrammen eine Distribution. Wah-
rend zu Linux-Distributionen in der Regel ein oder mehrere Officepakete,
ein breites Sortiment an Programmiersprachen und tausende problem-
spezifischer Anwendungsprogramme aus dem wissenschaftlich-techni-
schen Bereich gehoren, wird das oft als unvermeidlich angesehene Wind-
ows in der Regel nur mit dem Allernotigsten zum Betrieb des Rechners
sowie einem Haufen Bloatware in Form von laufzeitbeschrankten Demo-
versionen kommerzieller Softwareprodukte verkauft. Erst seit dem Jahr
2020 wird mit Windows der einfache Paketmanager ,WinGet” ausgelie-
fert, mit dem sich uber das Textterminal eine Vielzahl von Softwarepake-
ten installieren lasst, ohne diese zuvor im Handel erwerben zu mussen
oder unter dem Risiko, sich stattdessen Schadsoftware einzufangen, auf
Downloadseiten suchen zu mussen. Eine Kurzanleitung zu WinGet befin-
det sich im Anhang dieses Textes (Kapitel 7.3).

Das auf Desktop-PCs und Notebooks im Ingenieurbereich hierzulande
meistverbreitete Betriebssystem ist derzeit Microsoft Windows, gefolgt
von Linux und dem damit entfernt verwandten macOS. Auf mobilen Klein-
geraten wie Smartphones und Tablets sorgen in der Mehrzahl die Be-
triebssysteme Android (ebenfalls Linux) und iOS fur die Kommunikation
zwischen den einzelnen Programmen und der Geratetechnik.

Auf grofSeren Rechnern, zum Beispiel den Servern publikumsintensiver
Webauftritte, den Supercomputern in Rechenzentren und den Datenzen-
tren von Cloudspeicherdiensten kommt nahezu ausschliefSlich Linux zum
Einsatz.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

25

2.3 Dateien und Verzeichnisse

Eine Datei ist eine zusammengehorige Gruppe von Informationen, die in
einem Verzeichnis eines Dateisystems durch einen eindeutigen Dateina-
men identifizierbar ist.

Abhangig von ihrem Inhalt unterscheiden wir zwischen Grafikdateien,
Textdateien, Videodateien, Programmdateien und zahlreichen anderen
Dateitypen.

Im Zusammenhang mit Dateien horen wir oft, dass diese ,geoffnet” oder
~geschlossen” werden. Die Anmeldung eines Programms beim Betriebs-
system zum lesenden oder schreibenden Zugriff auf eine Datei nennt man
,Offnen”. Greift ein Programm nicht mehr auf eine Datei zu, meldet es
seine Zugriffserlaubnis wieder ab. Die Datei wird ,,geschlossen”.

Solange eine Datei nicht geschlossen wurde, konnen wir uns nicht darauf
verlassen, dass von unserem Programm abgeschickte Daten wirklich in
die Datei geschrieben werden - moglicherweise sind sie noch in einem
Zwischenspeicher, wo sie auf einen gunstigen Augenblick warten, um tat-
sachlich in die Datei zu gelangen. Bis die Datei dann allerdings vollstan-
dig auf ihren Datentrager (Festplatte, USB-Stick, etc.) geschrieben wird,
dauert es auch nach ihrem Schlielfen manchmal noch eine gewisse Weile.
Bei langsamen USB-Sticks und grofSen Dateien mussen wir sogar mehre-
re Minuten Geduld aufbringen. Das Abziehen eines USB-Sticks direkt
nach der Meldung, dass das Schreiben abgeschlossen sei, kann deshalb
schlimmstenfalls zum Verlust samtlicher gerade zu schreibender Inhalte
fuhren.

Besonders unter Microsoft Windows ist das fruhzeitige SchlieSen einer
Datei wichtig, da dieses Betriebssystem regelmalsig den lesenden Zugriff
auf eine Datei verbietet, solange diese noch von irgendeinem Programm
geoffnet ist. Seit Windows 8 fuhrt das beispielsweise zu manch argerli-
cher Situation beim Erstellen von PDF-Dateien, da der PDF-Betrachter
der Firma Adobe in die Vorschaufunktion des Windows-Dateimanagers
~Explorer” eingebunden wurde und die unsinnige Eigenart hat, die zu-
letzt gelesene Datei dauerhaft geoffnet zu halten, selbst wenn das Pro-
gramm scheinbar geschlossen wurde, tatsachlich jedoch noch unsichtbar
im Hintergrund lauft. Erstellt man nun mit einem beliebigen Programm
eine PDF-Datei und entdeckt darin beim Probelesen einen Fehler, so ist es
mitunter nicht moglich, eine neue PDF-Datei nach der Korrektur unter

Martin Vogel: Bauinformatik mit Python, WS 2025/26

26

demselben Namen wie zuvor zu speichern. Verwenden Sie dann beim
Speichern einen anderen Namen fur Thre PDF-Datei oder greifen Sie zu
einem bedienungsfreundlicheren Betriebssystem.

2.3.1 Verzeichnisbaume

Dateien werden ublicherweise in einer hierarchischen, baumahnlichen
Verzeichnisstruktur organisiert. Jedes einzelne Verzeichnis kann aulSer
Dateien auch wieder andere Verzeichnisse enthalten, diese nennen wir
Unterverzeichnisse. Im botanischen Gegenstuck entsprechen die Dateien
den Blattern und die Verzeichnisse den Asten und Zweigen.

Kurioserweise wird die Wurzel eines Verzeichnisbaums meistens als oben-
liegend angesehen, was ihn signifikant von seinen botanischen Verwand-
ten unterscheidet:

C

M

\SMOpUT

\S91Ty uweyp

l L
1“Iiiif]liii=i

Abb. 5: Teil des Verzeichnisbaums unter Microsoft Windows

Die Grafik (Abb. 5) ist extrem vereinfacht. Tatsachlich kann ein Verzeich-
nisbaum eines Windows-PCs aus mehreren zehntausend Unterverzeich-
nissen bestehen. Das folgende Diagramm (Abb. 6) wurde mit einem Py-
thonprogramm aus den Verzeichnissen eines realen Windowsrechners
unseres PC-Saals zusammengestellt. Die Dateien selbst sind dort nicht
einmal enthalten; lediglich die Unterverzeichnisse bis hinab zur zwanzigs-
ten Ebene werden dargestellt. Aus asthetischen Grunden wurde das Wur-
zelverzeichnis C:\ in dem Diagramm unten angeordnet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

27

Abb. 6: Verzeichnisbaum eines realen Windows-PCs

2.3.2 Dateinamenerweiterungen

Dateien verfiigen seit den Anfangen des Personal Computers iiber ein
Suffix am Ende des Dateinamens, das einen Hinweis auf die Art des In-
halts der Datei gibt. Wir nennen so eine Art von ahnlichen Inhalten auch
»Dateiformat”.

Das Suffix, es wird auch ,Dateinamenerweiterung” oder , Extension” ge-
nannt, beginnt mit einem Punkt und ist meistens zwei bis vier Buchstaben
lang.

Die folgende Tabelle fuhrt einige haufig anzutreffende Dateinamenerwei-
terungen auf.

Suffix Formatname und Verwendung

»portable document format”

Layoutete Texte, die unabhangig vom verwendeten Gerat
immer gleich dargestellt werden. PDF-Dateien konnen
auch Grafiken und ausfullbare Formularfelder enthalten.
Das Format ist nach ISO 32000 genormt.

.pdf

Siehe Kapitel 2.8.4, ,PDF-Dateien”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

28

Suffix

Formatname und Verwendung

txt

,lext”

Einfache Textdatei ohne Grafiken und besondere Forma-
tierung.

Da TXT-Dateien keine Metadaten zur verwendeten Zei-
chenkodierung enthalten, kommt es haufig vor, dass Son-
derzeichen aulserhalb des ASCII-Zeichensatzes falsch dar-
gestellt werden. TXT-Dateien werden daher falschlicher-
weise oft als ASCII-Dateien bezeichnet.

Siehe Kapitel 6.2, ,Zeichenkodierung - von ASCII bis Uni-
code”.

.html

~hyper text markup language”

Textdatei mit besonderen Kennzeichnungen zur Darstel-
lung in Webbrowsern.

Siehe Kapitel 3, ,Hypertext”.

.CSV

,comma separated values”

Textdatei, die pro Zeile mehrere Werte enthalt, die mit ei-
nem Trennzeichen voneinander abgesetzt sind. Das
Trennzeichen kann das namensgebende Komma sein, an-
dere Zeichen wie Semikolon oder Tabulatorzeichen sind
aber ebenso ublich.

Siehe Kapitel 2.9.11, ,CSV-Dateien und Tabellenkalkulati-
onen”.

.odt
.ods
.odp
.odg

»open document text”, ,... spreadsheet”, ,... presentation”
»... drawing”

Das Open Document Format (kurz ODF) ist eine Gruppe
von Dateiformaten fur Burosoftware gemald der internati-
onalen Norm ISO/IEC 26300. Der letzte Buchstabe legt
fest, ob es sich (unter anderem) um eine Textverarbei-
tungsdatei, eine Tabellenkalkulationsdatei, eine Prasenta-
tion oder eine Zeichnungsdatei handelt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

29

Suffix

Formatname und Verwendung

.doc .docx
xls .xlsx

.ppt .pptx

»,Word document”, ,Excel spreadsheet”, ,Powerpoint
presentation”

Burosoftwareformate der Firma Microsoft. Die Formate
ohne ,x“ am Ende gelten als unsicher und veraltet.

-Py

»Python-Quelltext”

Textdatei mit einem in der Sprache Python geschriebenen
Programm. Zur Ausfithrung wird ein Python-Interpreter
benotigt, der den Quelltext in Maschinenbefehle uber-
setzt.

Siehe Kapitel 5, , Python”.

.Zip

»Zipped file”

Containerformat nach ISO/IEC 21320-1:2015, das andere
Dateien aufnehmen kann, um sie leichter weitergeben zu
konnen. Durch verlustfreie Kompression kann die Datei-
grolse einer ZIP-Datei kleiner sein als die Summe der Da-
teigroSen der aufgenommenen Dateien.

Siehe Kapitel 2.3.4, , Archivdateien (Containerdateien)”

.7z

»7Z Datei”

Gegenuber ZIP erheblich verbessertes offenes Container-

format, das eine starkere Datenkompression, grofSere auf-
nehmbare Datenmengen, sichere Verschlusselung und Da-
teinamen mit Sonderzeichen im Unicode-Standard ermog-
licht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

30

Suffix

Formatname und Verwendung

Jpg, .jpeg

.joint photographic experts group”
Verlustbehaftet komprimierendes Format fur Digitalfotos.

Die Kompression wird ublicherweise nur gerade so stark
eingestellt, dass sie nicht zu erkennbaren Storungen
fuhrt. Diese Storungen fallen besonders an harten Kon-
trastkanten auf und werden Kompressionsartefakte ge-
nannt.

Beim Versenden von Fotos in Messengern wie WhatsApp
werden Bildinhalte durch die ubermalSige Kompression
oft erheblich beschadigt.

-png

»portable network graphics”

Verlustfrei komprimierendes Grafikformat fur Rastergrafi-
ken. Rastergrafiken bestehen aus einer rechteckigen Ma-
trix aus Bildpunkten, denen jeweils eine Farbe und oft
auch ein Transparenzwert zugeordnet werden konnen.

Fur kontrastreiche Grafiken mit starken Kontrasten und
einfarbigen Flachen, wie beispielsweise Screenshots, sind
PNG-Grafiken dem JPG-Format unbedingt vorzuziehen.

.SVg

»Scalable vector graphics”

Vektorgrafiken bestehen aus geometrischen Linien und
Flachen, die auch ubereinander liegen konnen. SVG-Grafi-
ken konnen im Gegensatz zu Rastergrafiken beliebig ver-
grolsert werden, ohne dass sie dadurch unscharf werden.
Die einzelnen Elemente einer Vektorgrafik lassen sich
nachtraglich beliebig verandern.

Atf
.otf

~true type font”, ,open type font”

Datei, die das Aussehen und Verhalten einer Schriftart de-
finiert.
Siehe Kapitel 2.8.2, , Schriftarten”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

31

Suffix Formatname und Verwendung

,executable”

Datei mit unter Windows ausfuhrbarem Maschinencode.
-exe EXE-Dateien werden mit einem Compiler aus Programm-
quelltexten erzeugt, die in einer Programmiersprache ver-
fasst wurden.

Versteckte Erweiterungen unter Microsoft Windows

Fur Programme, die Dateien verarbeiten, ist es erforderlich, den genauen
Namen einer Datei und des Verzeichnisses, in dem diese sich befindet, zu
kennen. Leider wird beides im Windows-Explorer in der Regel nicht oder
sogar falsch angezeigt, obwohl Windows die Dateinamenerweiterung
zwingend zur Erkennung des Dateiformats benotigt.

Unter anderen Betriebssystemen wie macOS oder Linux gibt es diesen
Zwang zur Dateinamenerweiterung nicht. Der Dateityp hangt dort auch
vom Inhalt der Datei ab, nicht nur von ihrem Namen. Um diese
Benutzungsfreundlichkeit vorzutauschen, versteckt der Windows-Explo-
rer daher seit Windows XP bei manchen bekannten Dateitypen die vor-
handenen Dateinamenerweiterungen vor den Anwenderinnen und Anwen-
dern.

Das hat nicht nur den unangenehmen Nebeneffekt, dass Kriminelle im-
mer wieder erfolgreich ausfuhrbare Windows-Programme durch ihre Op-
fer starten lassen, weil das jenen zugeschobene ausfuhrbare Programm
im Explorer wie eine harmlose Bild- oder Textdatei gelistet wird, es be-
wirkt auch, dass wir Dateien im Windows-Explorer nicht mehr vollstandig
umbenennen konnen. Eine neu angelegte Textdatei , Berechnung.txt”
wird im Windows-Explorer beispielsweise nur als ,Berechnung” ange-
zeigt. Handelt es sich bei der Textdatei aber um ein Python-Programm, so
sollte es stattdessen auf ,.py“ enden, um durch Doppelklick gestartet
oder durch Rechtsklick mit IDLE geoffnet zu werden.

Wir konnen zwar versuchen, die Datei umzubenennen, doch hilft uns das
zunachst nicht weiter. Der Windows-Explorer zeigt die umbenannte Text-
datei anschlieBend zwar irrefuhrenderweise als ,Berechnung.py” an,
fuhrt das darin enthaltene Programm jedoch beim Doppelklicken immer

Martin Vogel: Bauinformatik mit Python, WS 2025/26

32

noch nicht aus, sondern ladt die Datei weiterhin nur in den Texteditor. In
Wirklichkeit heiSt sie nun namlich , Berechnung.py.txt“ und wird von
Windows daher immer noch als Textdatei behandelt.

Um diese unnotigen Probleme loszuwerden, sollten Sie im Datei-Explorer
jeder Windows-Installation, der Sie begegnen, eine Einstellung vorneh-
men, die dafur sorgt, dass Dateinamen grundsatzlich unverstummelt an-
gezeigt werden.

Unter Windows 10/11 drucken Sie dazu die Windowstaste B und tippen
das Wort , Ordneroptionen”. Sie erreichen so die hinter der etwas schra-
gen Bezeichnung ,Suchoptionen fur Dateien und Ordner andern“ ver-
steckten ,Explorer-Optionen” der Systemsteuerung.

Ordneroptionen E]g| Explorer-Optionen *

Allgemein | Ansicht | Dateitypen | Offinedateisn Allgemein Ansicht Sychen

Ordneranzicht
Sie kannen die Ansicht [z, B. Details oder Kacheln),

Ordneransicht
Sie kdnnen diese Ansicht (z. B. Details” oder Symbole”)

; - die Sie fur diezen Ordner venwenden, fur alle Ordner a:i| fiir alle Ordner dieses Typs iibemehmen
orot ubernehmen.
[Fir alle ubernehmen] ’ Alle zuriicksetzen

Fiir Ordner iibernehmen Crdner zuriicksetzen

Erweiterte Einztellungen: . .
Erweiterte Einstellungen:

|2 Dateien und Ordner ~
[Ansichtoptionen fiir jeden Ordner speichem

Dateien und Ordner
[] Abstand zwischen Elementen verringem (kompakte Ansicht)

[sutomnatizch nach Metzwerkordnern und Duckem suchen
D ateigrofeinformationen in Ordnertipps anzeigen
[] Einfache Dateifrsigabe verwenden [empfohlen)
Einfache Ordneransicht in der Ordnerliste des Explorers anzeige
Enweiterungen bei bekannten D ateitypen ausblendan
aﬁ ezchiitzte Systemdateien ausblenden [empfohlzn)
Inhalte von Sypstemordnermn anzeigen
] Miniaturansichten nicht zwischenspeichern
] Ordnerfenster in einem eigenen Prozess starten e’
< >

Wiederherstellen

] [Abbrechen] [Ulgernehmen]

[o

Bei der Eingabe in der Listenansicht

O Automatisch in Suchfeld eingeben

0 Eingegebenes Element in der Ansicht auswahlen
Benachrichtigungen des Synchronisierungsanbieters anzeigen
Dateigroleinformationen in Ordnertipps anzeigen
Dateisymbol auf Miniaturansichten anzeigen
BB crvciterungen bei bekanrten Datetypen ausblenden]
Freigabe-Assistent verwenden (empfohlen)
Geschiitzte Systemdateien ausblenden (empfohlen)
C] Immer Meniis anzeigen

Standardwerte

oK Abbrechen Ubernehmen

Abb. 7: Ordneroptionen in Windows XP (2001) und Windows 11 (2022)

Seit einiger Zeit blendet auch macOS bei einigen Dateitypen den hinteren
Teil von Dateinamen aus. Das kann fur jede einzelne Datei in deren Eigen-
schaftendialog (Cmd-i) deaktiviert werden. In den Einstellungen des Fin-
ders lasst sich dieses Verhalten allerdings auch gleich systemweit abstel-
len. Dazu muss dort das Hakchen vor ,Alle Suffixe einblenden” gesetzt
werden (Abb. 8).

Martin Vogel: Bauinformatik mit Python, WS 2025/26

L He @ Einstellungen

0~ @

Allgemein Etiketten Seitenleiste

S

TF

E‘Alle Suffixe einblenden
E‘\«"or dem Andern eines Suffixes nachfragen
E‘Vor dem Entleeren des Papierkorbs nachfragen

"1 Papierkorb sicher entleeren

"1 Zoomen mit Trackpad

Abb. 8: Dateinamenerweiterungen bei macOS heifSen Suffixe

Verbotene Zeichen und Dateinamen unter Windows

Unter Microsoft Windows 11 durfen diese neun ASCII-Zeichen nicht in
Dateinamen verwendet werden: < > : " | ? * \ /

Dies kann zu Problemen fuhren, wenn Dateien aus anderen Betriebssyste-
men, die in der Regel nur den Schragstrich nicht als Teil eines Dateina-
mens erlauben, auf einen Windowsrechner kopiert werden sollen.

AulRerdem kann eine Datei niemals den Namen NUL tragen. In fritheren
Windows-Versionen waren sogar die Namen CON, PRN, AUX, CONINS,
CONOUTS$, COM1 bis COM9 und LPT1 bis LPT9 als sogenannte ,reservierte Ge-
ratenamen” verboten. Diese Einschrankung galt selbst dann, wenn man
versuchte, der Datei aulser dem verbotenen Namen auch eine Dateina-
menerweiterung zu geben. Unter Windows 11 ist das nur problematisch,
wenn die Anzeige von Dateiendungen im Windows-Explorer unterdruckt
wird.

Eine weitere Besonderheit von Microsoft Windows ist, dass es die Grols-
und Kleinschreibung bei Dateinamen ignoriert und daher keine Datei
»XYZ.txt“ anlegen kann, wenn in demselben Verzeichnis bereits eine Da-
tei ,xyz.txt“ existiert. Stattdessen wird die vorhandene Datei uberschrie-
ben. Das fuhrt auch zu dem skurrilen Effekt, dass man die Grof3- und
Kleinschreibung eines Dateinamens unter Windows nicht nachtraglich an-
dern kann, ohne der Datei in einem Zwischenschritt einen Namen zu ge-
ben, der sich noch durch mindestens ein anderes Zeichen vom Ur-
sprungsnamen unterscheidet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

34

2.3.3 Desktop, Ordner und Verzeichnisse

In fast allen modernen PC-Betriebssystemen gibt es das Konzept einer Ar-
beitsflache, auf der Dateien und Verzeichnisse oder Verweise darauf zum
schnellen Zugriff abgelegt werden konnen.

Diese Arbeitsflache ist uiblicherweise bildschirmfullend und taucht im Da-
teimanager des Betriebssystems unter Namen wie ,Desktop” oder
»Schreibtisch” auf. Auch aus diesem Grund werden Betriebssysteme wie
Microsoft Windows, Ubuntu Linux oder macOS heute als Desktop-Be-
triebssysteme bezeichnet!.

Unter Microsoft Windows finden wir weitere besondere Orte zur Dateiab-
lage in der baumartigen Anordnung im linken Panel des Dateimanagers
»Explorer”. Diese Verweise auf bestimmte Verzeichnisse werden als ,, Ord-
ner” bezeichnet. Wir sehen im Bereich ,Schnellzugriff” zum Beispiel hau-
fig benotigte Ordner wie den Desktop oder den Ordner ,Downloads” fur
die vorubergehende Aufbewahrung heruntergeladener Dateien. Diese Lis-
te lasst sich mit einem Rechtsklick auf die Eintrage beliebig kirzen oder
erweitern.

Unterhalb der Schnellzugriffseintrage gibt es einen Bereich mit dem Na-
men ,Dieser PC“, in dem ebenfalls der Desktop und der Download-Ordner
sowie die personlichen Ordner fur Bilder, ,,Dokumente”, Musik und Vide-
os aufgefuhrt sind.

Grundsatzlich ist es keine schlechte Idee, den Desktop oder den Down-
loadordner nicht mit allen moglichen Projektdateien zuzupflastern. Legen
Sie dafur besser Unterverzeichnisse im Ordner ,,Dokumente” an.

1 Der andere Grund fir diese Benennung ist, dass sich Computer mit Desktop-Betriebs-
systemen in der Regel auf, neben oder unter Schreibtischen befinden. Das fiihrte zu
der Kuriositat, dass Notebooks einige Jahre lang ,Laptops” hielsen, da man sie ja auf
dem Schof$ (engl. lap) bedienen konnte. Die Bezeichnung wurde etwa zu dem Zeit-
punkt unpopular, als sich herumsprach, dass die Nahe heilSer Geratelufter zu mensch-
lichem Gewebe unerwiinschte Wirkungen nach sich zieht (https://www.newscien-
tist.com/article/dn6777-hot-laptops-may-reduce-male-fertility/).

Martin Vogel: Bauinformatik mit Python, WS 2025/26

35

https://www.newscientist.com/article/dn6777-hot-laptops-may-reduce-male-fertility/
https://www.newscientist.com/article/dn6777-hot-laptops-may-reduce-male-fertility/

o [+ = | Dieser PC — O *

m Computer Ansicht 9

« v« 4 @ > DieserPC v | D Dieser PC" durchsuchen 2
w3k Schnellzugriff SR Ordner (6)
[Desktop
l’ Downloads s Bilder l Desktop

= Dokumente

=| Bilder ﬁ Dokumente ' Downloads

D Musik

B videos J\ Musik m Videos

~ [Dieser PC
| Bilder ~ Gerdte und Laufwerke (3)

I Deskto
. B Dickettentautuerk (2 =
= Dokumente oy Ty 12,9 GB freivon 29,5 GB

‘ Downloads
- CD-Laufwerk (D:)
Musik
J‘a usi [
B videos

~ ‘i Lokaler Datentrager (C:)

Lokaler Datentrager (C:)

v Benutzer
v Qemu
J 3D-Objekte
| Bilder
[Desktop
/=] Dokumente

9 Elemente 0 =

Abb. 9: Bibliotheken als ,Dieser PC” im Windows-10-Explorer

Wo genau sich diese Ordner im Dateisystem der Festplatte oder anderer
angeschlossener Datentrager befinden, ist oft gar nicht auf Anhieb er-
kennbar. Kurioserweise ist die tatsachliche Verzeichnisstruktur unter
Microsoft Windows der im Explorer dargestellten Ordnung fast genau
entgegengesetzt.

Oberste Ordnungsinstanz sind in Wirklichkeit die Datentrager. Diese sind
in eine oder mehrere Partitionen unterteilt. Jeder von Windows lesbaren
Partition ist dabei ein Buchstabe zugeordnet. Diese Buchstaben werden in
der Regel fortlaufend vergeben. Die Buchstaben ,A:“ und ,B:” sind fur die
im letzten Viertel des vorigen Jahrhunderts in fast jedem PC zu findenden
Diskettenlaufwerke reserviert. Die Festplatte mit dem Windows-Betriebs-
system, den Anwendungsprogrammen und den personlichen Daten heifst
daher auch heute immer noch nach dem ersten damals freien Buchstaben
»,C:“. Rechner, die noch uber ein optisches Laufwerk fur CDs oder DVDs

Martin Vogel: Bauinformatik mit Python, WS 2025/26

36

verfugen, sehen dies in der Regel unter Windows als Laufwerk ,D:“ und
fur USB-Sticks und alle weiteren Laufwerke stehen die Buchstaben von
»E:“ bis ,Z:“ zur Verfugung.

Unterhalb des Stammverzeichnisses ,C:\“ befinden sich die Verzeichnisse
fur das Betriebssystem (,,C:\Windows*”), fur Programme (,C:\Program
Files”) und fur die personlichen Dateien (,,C:\Users\Anmeldename®).

Der Ordner ,Desktop” findet sich in Microsoft Windows 7 bis 11 schliels-
lich tief unten als Verzeichnis , C:\Users\Anmeldename\Desktop” und die
unsinnigerweise! als ,Dokumente” bezeichneten eigenen Dateien auf der-
selben Ebene als , C:\Users\Anmeldename\Documents*”.

RN = | Dokumente — O X
m Start Freigeben Ansicht 9
\ « 1T C:\Usels‘tﬂemu‘t[)ucuments | @ Dokumente” durchsuchen yel

s
‘i Lokaler Datentrager (2] Mame Anderungsdatum Typ
Benutzer Benutzerdefinierte O... 10.03.2016 12:14 Dateiordner
Cemu Python Scripts 03.08.2015 14:34 Dateicrdner

J 30-Objekte @ cmd font dejavu.reg 20.08.2019 13:46 Registrierungseintrige
= Bilder =] WI0-EULA et 03.08.2015 14:07 Textdokument
[Desktop

|5 Dokumente el 3

4 Elemente =

Abb. 10: Eigene Dateien unter Windows 10

Das Verzeichnis , C:\Users” von Microsoft Windows entspricht somit dem
Verzeichnis ,,/home” von Linux und Unix oder dem Verzeichnis ,/Users”
von macOS.

Der Windows-Explorer versteckt die wahren Verzeichnisnamen seiner
Ordner seit Windows 11 aulSerordentlich hartnackig. Konnte man unter
Windows 10 noch durch einen Klick auf das Icon links neben dem Ordner-
namen an den korrekten Verzeichnisnamen gelangen, besteht der einzige
Weg in Windows 11 darin, in das ibergeordnete Verzeichnis zu wechseln,
den Ordner rechtszuklicken und den Meniupunkt , Als Pfad kopieren” an-

1 Bevor die Microsoft Corporation das Wort ,Dokument” durch Anwendung auf alle
moglichen Arten beliebiger Informationsgruppen verwasserte, bedeutete es in
Deutschland ,, Urkunde” oder ,beweiskraftiges Schriftstiick”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

37

zuklicken. Aus dem im Windows-Explorer angezeigten Ordnernamen , O
> Dokumente >“ wird dann der wahre Verzeichnisname , C:\Users\Anmel-
dename\Documents”, wenn wir den Inhalt der Zwischenablage in einem
Text einfugen.

Wir benotigen diese wahren Datei- und Verzeichnisnamen, wenn wir Pro-
gramme entwerfen, die selber Dateien anlegen, lesen, verarbeiten und
schreiben werden. Bis dahin genugen uns der Desktop oder der Ordner
fur ,Dokumente”.

2.3.4 Archivdateien (Containerdateien)

Um Gruppen von Dateien einfacher weitergeben zu konnen und um Platz
zu sparen, fassen wir mehrere Dateien und sogar ganze Verzeichnisbau-
me zu einer komprimierten Archivdatei zusammen. Solche Dateien, die
mehrere andere Dateien aufnehmen, nennen wir auch , Containerdatei-
en”.

Unter Microsoft Windows heiSen diese Archivdateien seit Windows XP
»ZIP-komprimierte Ordner” und sind auf den ersten Blick von gewohnli-
chen Verzeichnissen nur schwer zu unterscheiden. Die Funktion zum An-
legen eines ZIP-Archivs ist etwas versteckt angeordnet und befindet sich
beim Windows-Explorer im Kontextmenu der rechten Maustaste unter
dem Menupunkt ,Senden an ...".

Explarer
Suchen...

Freigabe und Sicherheit. ..

[ﬁ’ Desktop (Verknipfung erstellen)

Ausschneiden _| E-Mail-Empfanger
Kopieren [} Eigene Dateien
Verkniipfung erstellen B 7IPkomprimierten Ordner
Laschen

Umbenennen

Eigenschaften

Abb. 11: Anlegen eines ZIP-Archives im Windows-Explorer

Martin Vogel: Bauinformatik mit Python, WS 2025/26

38

AulSer dem ZIP-Format von Windows gibt es noch andere Archivformate
wie RAR, TAR.BZ2 oder 7Z, die in der Regel effizienter komprimieren und
vielseitiger in der Bedienung sind.

Gerade das freie! 7Z-Format besitzt gegeniiber ZIP Vorteile, da die vom
Windows-Explorer verwendete ZIP-Version einen Fehler? aufweist, der da-
fur verantwortlich ist, dass es Dateinamen mit Umlauten oder Sonderzei-
chen nicht eindeutig speichert. In lokal begrenzten Betriebssystemmono-
kulturen fallt der Fehler nicht auf, doch beim Austausch zwischen
unterschiedlichen Sprachversionen von Windows oder zwischen Windows
und anderen Betriebssystemen, wie Linux oder macOS, kommt es bei mit
dem Windows-Explorer erzeugten ZIP-Dateien immer wieder zu Proble-
men mit Dateinamen. Falls Sie ZIP-Dateien verwenden, sollten Sie fur die
Dateinamen nur die Buchstaben ,A“ bis ,Z” und ,a“ bis ,z“ sowie Ziffern,
Punkte und Unterstriche , “ verwenden. Die Namen der verschiedenen
Dateien in der ZIP-Datei durfen sich nicht nur durch Grof3- und Klein-
schreibung unterscheiden, da Microsoft Windows sonst Probleme beim
Entpacken dieser Dateien verursacht.

Entpacken + Umlaute.zip Q | = - o x
| Ort: [m/
| | Parkhaus2.dwg 8942 kB CAD file 03. Juni 2015, 14:08

.i| Erluterungsbericht_docx 1.6 MB Microsoft Wor... 03, Juni 2015, 14:12
,i| Erluterungsbericht.pdf 890 4 kB PDF-Dokument O3, Juni 2015, 14:12
.i| Parkhaus2.pdf 1218 kB PDF-Dokument O3, Juni 2015, 14:08
= GeLnde_Parkaatz_PNG 532,4kB PNG-Bild 28. Mai 2015, 12:43

Abb. 12: ZIP-Datei mit Windows-Umlauten unter Linux

1 Als ,frei” bezeichnen wir Software, wenn ihre Verwendung von Patenten und sonsti-
gen Verwendungsbeschrankungen unbelastet ist. Freie Software ist nicht notwendi-
gerweise kostenlos. Oft wird das Wort ,frei“ daher durch Erlauterungen erganzt: ,frei
wie freie Rede” im Gegensatz zu ,frei wie Freibier”.

Das Programm 7zip erhalten Sie auf https://www.7-zip.org/download.html

2 Wer das Wort ,Fehler” nicht mag, darf es hier durch , microsofttypische Besonderheit
zur Aufrechterhaltung der Riuckwartskompatibilitat” ersetzen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

39

https://www.7-zip.org/download.html

Dass Windows ZIP-Archive scheinbar als gewohnliche Verzeichnisse be-
handelt, fihrt in der Praxis haufig zu Problemen, denn die ,transparente”
Unterstutzung von ZIP-Archiven durch Windows birgt eine Fulsangel. Der
Windows-Explorer tut zwar so, als sei eine ZIP-Datei ein ganz normales
Verzeichnis, tatsachlich wird jedoch jede im Archiv enthaltene Datei,
wenn sie doppelgeklickt wird, einzeln in das Windows-Temporarverzeich-
nis ,,%tmp%*“ entpackt und dort mit dem Programm geoffnet, das ihrem
jeweiligen Dateityp zugeordnet ist. Die anderen Dateien des Archivs, die
von der doppelgeklickten Datei moglicherweise benotigt werden, werden
jedoch dort im Temporarverzeichnis nicht gefunden, weil sie sich noch
unausgepackt in der Archivdatei befinden.

Viele Programme weigern sich aullerdem, geoffnete Dateien aus dem
Temporarverzeichnis nach Anderungen wieder dort zu speichern, weil
Windows die Anderungen dann nicht wieder in die Datei im ZIP-Archiv
Ubertragt. Wenn Sie bereits Anderungen an einer Datei durchgefiithrt ha-
ben, konnen Sie diese unter einem anderen Namen in einem regularen
Verzeichnis speichern, damit die Anderungen nicht verlorengehen.

Heruntergeladene ZIP-Archive sollten Sie daher immer komplett entpa-
cken, bevor Sie Dateien daraus bearbeiten.

Auch moderne Burosoftwaredateien bestehen intern aus einer Vielzahl
von Einzeldateien (Texte, Bilder, Formatanweisungen, etc.) und befinden
sich ebenfalls in einem ZIP-komprimierten Container. Wenn wir beispiels-
weise eine .docx-Datei mit der Endung .zip versehen, konnen wir sie un-
ter Windows wie ein Verzeichnis offnen und auf alle darin enthaltenen
Grafikdateien zugreifen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

40

2.4 Zwischenablage

Die Zwischenablage (ZA) ist unter vielen Betriebssystemen ein Konzept,
mit dem innerhalb eines Programms oder programmubergreifend Daten
ausgetauscht werden konnen.

Meistens ist die Zwischenablage uber das Menu ,Bearbeiten” eines An-
wendungsprogramms erreichbar, fast immer uber das Kontextmenu nach
Drucken der rechten Maustaste und am schnellsten uber drei unter Wind-
ows und Linux einheitliche Steuerungstastenkombinationen:

Kopieren (Markierte Inhalte werden in die ZA kopiert)
Ausschneiden (Inhalte werden in die ZA verschoben)
Einfugen (Von der Zwischenablage an ein neues Ziel)

Gelegentlich finden wir in Programmen zudem die Funktion ,Einfugen als
..."“, die es uns erlaubt, das Format oder die Art der einzufugenden Daten
auszuwahlen (zum Beispiel als ,normaler Text“ oder ,formatierter Text”).
Sie ist in der Regel uber die Tastenkombination erreichbar.

Auf manchen Tastaturen ist die Steuerungstaste nicht mit (Steue-
rung'), sondern mit (Control) beschriftet. Auf Apple-Rechnern wer-
den die Tastaturkommandos fiir die Zwischenablage nicht mit der Steue-
rungstaste, sondern mit der Taste (Command) ausgelost.

Im Englischen heilst die Zwischenablage Clipboard (Klemmbrett), wes-
halb die Einfugen-Funktion ublicherweise uiber ein wie ein Klemmbrett
aussehendes Icon erreichbar ist.

Abb. 13: Icons fiir ,Ausschneiden”, ,Kopieren” und ,Einfiigen”

1 Falls Ihr Informatiklehrer Thnen beigebracht hat, diese Taste hieflSe ,, String”, ,Stran-
ge” oder ,Strong“, geben Sie ihm bitte meine Telefonnummer. Ich muss mit ihm re-
den.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

In Abbildung 13 befindet sich rechts neben dem Klemmbrett-Icon ein klei-
nes Dreieck, hinter dem sich ein nach unten aufklappendes sogenanntes
Drop-Down-Menu verbirgt, das die zur Verfugung stehenden Einfugefor-
mate des Zwischenablageinhalts aufzahlt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

42

2.5 Bildschirmkopien

Zu Dokumentationszwecken ist es oft sinnvoll, Grafiken mit dem aktuel-
len Bildschirminhalt oder Teilen davon als sogenannte , Screenshots” in
einen Text einzufugen. Smartphonefotos sind als schnelle Bildnotizen
sehr beliebt, eignen sich fur technische Dokumentationen jedoch fast nie,
da sie in der Regel verwackelt, verdreht, verzerrt, unscharf, farbstichig,
falsch belichtet und mit einem als Moiré bekannten Streifenmuster tuber-
zogen sind. Besser ist es, den Bildschirminhalt unmittelbar zu verwenden.

Als sehr praktisch erweist sich dazu bei PCs die Taste | Druck|. Ende des
vergangenen Jahrhunderts sorgte das Drucken dieser Taste noch dafur,
dass die gerade angezeigten 80 x 25 Zeichen des Textbildschirms auf
dem angeschlossenen Drucker ratternd zu Papier gebracht wurden. Mit
der Einfuhrung von Betriebssystemen mit grafischen Benutzungsoberfla-
chen wurde die Funktion dieser Taste jedoch geandert. Sie kopiert nun
unter den meisten Windowsversionen den gesamten Bildschirminhalt in
die Zwischenablage und schreibt ihn unter Linux in eine Bilddatei im Bil-
derordner des angemeldeten Benutzers bzw. der angemeldeten Benutze-
rin. Die Tastenkombination kopiert nur den Inhalt des aktuel-
len Fensters (einschlielSlich der Fensterdekorationen wie Rahmen und
Titelzeile). Die meisten Bildschirmkopien in diesem Buch sind so entstan-
den.

Auf Apple-Tastaturen gibt es keine dedizierte Druck-Taste; hier helfen
Tastenkombinationen aus (Command), | 0 | (Shift oder Umschalttaste),
|, | (Leertaste) sowie der Ziffern | 3 |und | 4 | weiter.

Auch Mobiltelefone verfiigen in der Regel uber eine Screenshotfunktion.
Unter dem Linux-Betriebssystem Android wird diese haufig durch exakt
gleichzeitiges Driicken der Tasten | an/aus | und | leiser | ausgelost und auf
alteren iPhones durch exakt gleichzeitiges Driicken der Tasten
und [home| Neuere Apple-Smarthones ohne Home-Button verlangen
stattdessen die Tastenkombination aus und |lauter|. Je nach Mo-
dell und Hersteller sind auch andere Tastenkombinationen, Klopfsignale,
Wischgesten oder Spracheingabebefehle moglich. Der Phantasie der Her-
steller scheinen hier keine Grenzen gesetzt zu sein: Auf Samsung-Geraten
wischt man mit der Handkante von rechts nach links, auf Xiaomi- und

Martin Vogel: Bauinformatik mit Python, WS 2025/26

43

OnePlus-Geraten wischt man mit drei Fingern von oben nach unten, auf
Huawei-Geraten klopft man zweimal mit dem Fingerknochel auf den Bild-
schirm.

Unter Windows, Linux und macOS konnen wir auch beliebige Ausschnitte
von Bildschirminhalten anfertigen. Die folgende Tabelle zeigt die dazu er-
forderlichen Tastenkombinationen:

Funktion Linux macOS Windows

Den gesamten Bildschirm
in die Zwischenablage ko- | |Strg Druck| |Ctrl 8 ¢ 3 | |Druck]|
pieren

Den gesamten Bildschirm 1
als Grafikdatei speichern Druck $ 03

Ctrl 88 0 4 |

M Alt Druck |

Das aktuelle Fenster in die
Zwischenablage kopieren Druck

Das aktuelle Fenster als
Grafikdatei speichern Alt Druck EETN

Einen rechteckigen Bereich
in die Zwischenablage ko-
pieren

Strg

2
Dk Ctrl® 04] [B10S]

Einen rechteckigen Bereich

als Grafikdatei speichern i Druck ¥ 04

Ein kurzes?® Video des auf
dem primaren Monitor lau- | Ctrl Alt 1
fenden Desktops als Datei
aufzeichnen/stoppen

LN

In Windows 11 und in der Linux-Desktop-Umgebung GNOME 42 wurden
die zahlreichen Tastenkombinationen durch ein grafisches Menu abge-
lost, das alle Optionen vereinigt. Bildschirmkopien werden hier nach Aus-
losen der Druck-Taste und Wahl der entsprechenden Option sowohl in die
Zwischenablage kopiert als auch im Verzeichnis ,~/Bilder/Bildschirmfo-

1 Erst ab Windows 10
2 Erst ab Windows 10 ,, Creators Update”, 2017
3 StandardmaflSig wird die Aufzeichnung nach 30 Sekunden beendet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

tos” abgelegt. Videos werden entsprechend im Verzeichnis ,~/Videos/
Bildschirmaufzeichnungen“ gesammelt und durfen nun auch mehrere Mi-
nuten lang sein.’

3 - o

Auswahl Bildschirm Fenster

Abb. 14: Bildschirmkopiemenii in GNOME 42 und Windows 11

Das Bildschirmkopiemenu von Windows 11 bietet zusatzlich einen prakti-
schen Farbwahler, welche die Farbnamen und Hexcodes beliebiger Bild-
schirmstellen anzeigt, sowie eine Funktion, um regular nicht mit der
Maus auswahlbaren Text, zum Beispiel in Grafiken oder geschuitzten In-
halten von Webseiten und PDF-Dateien, mittels optischer Zeichenerken-
nung zu extrahieren. Es ist auch moglich, dem Bildschirmausschnitt grafi-
sche Elemente wie Pfeile oder Hervorhebungen hinzuzufugen.

Noch mehr Moglichkeiten bieten Grafikprogramme wie das sehr umfang-
reiche kostenlose Bildbearbeitungsprogramm GIMP?. Hiermit konnen Sie
auch zeitversetzte Bildschirmkopien anfertigen und sind sogar in der La-
ge ist, den Mauszeiger auf einem eigenen Layer in die Bildschirmkopie zu
ubernehmen.

1 Das sind die Namen der Linux-Verzeichnisse. In Windows miussen die Schragstriche
umgedreht und das Symbol ~ durch %USERPROFILE% ersetzt werden.

2 https://docs.gimp.org/de/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

45

https://docs.gimp.org/de/

2.6 Sonderzeichen

Satzzeichen, Symbole und Buchstaben, die nicht uber einzelne Tastendru-
cke eingegeben werden konnen, nennen wird Sonderzeichen. Um diese
Zeichen zu verwenden, konnen wir sie aus einer Zeichentabelle heraussu-
chen.

it Zeichentabelle = * B Gruppieren nach
Schriftart: | O Cambria Math v| = Uni@&Unterbereich:
= Latin
: Allg. Interpunktionszeichen
+H <= =2 X |+ I Wahrungszeichen
- 3 _ | Hoch- und Tiefstellungen
\?{ SE ﬁ Qj A ‘f f 3 u H H E + Buchstabenartige Symbole
—I—/*o . ‘\f\/'\‘ = Lay.9 EEARRR AR Zahlenformen
Pfeiltasten

vViniu J-.”.H ¢9§6 TIT T o el e e Mathematische Operatoren

IS ESIE T Technische Zeichen

v |22 R |2 R 2 = e = = = ==

N EEEEEEBE EEE BB EEEEEE

Z|<|> 0= | F| £ 2| S22 2|5 2 F 2= =S

NEEE

c|D|¢ |2 |S|2|E|2|S|2|Y|v|w|C|a|E|2(n|uld

Zeichenauswahl: | Auswahlen mierEn

18 Erweiterte Ansicht
Zeichensatz: Unicode
Gruppieren nach: Unicode-Unterbereich: ~

Suchen nach: unendlich Zuriicksetzen

Ausgewdhltes Zeichen: U+221E: Unendlich

Abb. 15: Die Zeichentabelle von Windows 11

Im Internet finden wir umfangreiche Codetabellen?!, in denen jedem Zei-
chen eine eindeutige Nummer zugeordnet ist, die oft als Hexadezimalzahl
dargestellt wird. Die meisten modernen Programme unterstitzen die in-
ternational genormte Zeichenzusammenstellung Unicode. Jedes weltweit
verwendete Schriftzeichen und tausende gangige Symbole einschliefSlich
der unentrinnbaren Emojis sind dort mit einer festgelegten Kodierung zu
finden. So lauten die Zeichencodes fur die beiden griechischen Buchsta-
ben a und B beispielsweise U+03b1 und U+03b2.

1 zum Beispiel https://symbl.cc/de/unicode-table/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://symbl.cc/de/unicode-table/

Um Sonderzeichen in Python zu verwenden, konnen wir entweder diesen
Zeichencode verwenden, wir schreiben ,a und pB“ dann wie in
print("\u03bl und \u03b2"), oder wir suchen das jeweilige Zeichen
aus der Zeichentabelle des Betriebssystems heraus und fugen es uber die
Zwischenablage in den Quelltext ein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

47

2.7 Texteditoren

Wir benotigen zum Editieren, also zum Verfassen und Bearbeiten von
Quelltexten, ein geeignetes Programm. Python bietet mit der integrierten
Entwicklungsumgebung ,IDLE” bereits einen einfachen Texteditor an.
Dieser ist fur kleinere Programme recht praktisch - nicht zuletzt, weil
dort durch Drucken der Taste sofort das gerade getippte Programm
ausgefuhrt werden kann.

blau: Namen von Klassen-
und Funktionsdefinitionen

rot: Kommentare grun: Zeichenkettenkonstanten
Syntax Highlighting.py _ o x
File Edit Format Run Options MVindow Help

]_# Demo- Program flr Syntax ngh 1ght1ng

3 demoFunktlon(]

4 "Zeichenkettenkonstante"
5

6 zeichen demoFunktion():

orange: schwarz: Sonderzeichen
Schlusselworter und eigene oder

purpur: _ importierte Bezeichner
Standardbezeichner,

z. B. vorbelegte
Funktionen

print(zeichen) \ o
- \\ \Ln:s Col:?

Abb. 16: Der Editor der Entwicklungsumgebung IDLE

Texteditoren fur Programmierende konnen die verschiedenen Elemente
eines Quelltextes je nach ihrer Bedeutung farblich kennzeichnen. Diese
sogenannte Syntaxhervorhebung (engl.: syntax highlighting) hilft uns bei
der Fehlersuche, da falsch geschriebene Schlusselworter und Standard-
bezeichner oder das Fehlen von Kommentar- und Anfuhrungszeichen zu
einer farblichen Auffalligkeit der Fehlerstelle fuhren.

Damit das Syntax-Highlighting funktioniert, muss der Editor ,wissen”,
welche Art von Text wir schreiben, denn ein Python-Programm wird logi-
scherweise ganz anders farbig markiert als ein HTML-Quelltext. In der
Regel trifft die Software die Entscheidung anhand der Dateinamenerwei-

Martin Vogel: Bauinformatik mit Python, WS 2025/26

48

terung. Das bedeutet aber auch: solange ein neuer Text nicht mit der kor-
rekten Dateinamenerweiterung gespeichert wurde, ist das Syntax-High-
lighting haufig inaktiv.

Hilfreich ist es auch, wenn der Editor die Nummer der aktuellen Textzeile
anzeigt, damit wir diese bei Fehlern wahrend des Programmlaufs schnell
auffinden und korrigieren konnen. Beim Editor der IDLE lasst sich die An-
zeige der Zeilennummern in den Voreinstellungen dauerhaft aktivieren.
Dort konnen Sie auch festlegen, ob Sie wirklich jedesmal gefragt werden
wollen, ob Thr Programm gespeichert werden soll, bevor Sie es mit
ausfuhren durfen.

Linux-Distributionen enthalten in der Regel eine Vielzahl geeigneter Edi-
toren. Populare und einfach zu bedienende Editoren mit grafischer Be-
nutzungsoberflache sind dort beispielsweise ,Gedit” oder , Geany”.

Character Map ~ Offnen ~ 1 gg‘l’ '_"a':h Euklid.py; y Speichern = - u} x

.Adlam 3
| Agyptische Hieroglyphen piill . T
| Ahom 3
| Albanisch 4
;
| Altitalisch 6 #......h.
Lalknardarabhicsh TR

& o = = = T R
. = = =3 = L 9

— 10
= | & | = | 2| 2= [11 def-ggt(a,-b):
= = = = = |12while.b.!=.0:
13, owaeseds a,-b.=.b,-a.%.-b
= = = = = 14return-a
= E S = =

=
*
A
A

A

Python ~ Tabulatorbreite: 4 v Z.55p. 17 INS

Abb. 17: Gedit unter Ubuntu Linux

Unter Microsoft Windows gibt es in der Standardausstattung des
Betriebssystems keine geeignete Software. Sie konnen jedoch mehrere
kostenlose Windowsprogramme im Internet finden.

Welchen Texteditor Sie zum Verfassen und Bearbeiten von Quelltexten
verwenden, ist weitgehend Geschmackssache. Probieren Sie einfach ein
paar aus!

Martin Vogel: Bauinformatik mit Python, WS 2025/26

49

Gute Erfahrungen haben wir mit den Programmen ,PSPad” des tschechi-
schen Programmierers Jan Fiala' und ,Notepad++“ von Don Ho aus
Frankreich? gemacht. Auch der unter Linux sehr verbreitete Editor ,Ge-
dit” ist in einer Windowsversion zu haben?.

Ein Textverarbeitungsprogramm wie Microsoft Word oder LibreOffice
Writer* ist zum Schreiben von Pythonprogrammen ungeeignet, da beim
Speichern in den Standarddateiformaten dieser Programme zusatzliche
Metadaten - das sind beispielsweise Gestaltungs- und Verwaltungsinfor-
mationen - in die Dateien geschrieben werden, wodurch die eigentlichen
Inhalte fur unsere Zwecke unbrauchbar werden.

1 Jan Fiala, PSPad, http://www.pspad.com/de/download.php
2 Don Ho, Notepad++, http://notepad-plus-plus.org
3 GNOME text editor, Gedit, https://wiki.gnome.org/Apps/Gedit

4 Der kostenlose und quellenoffene LibreOffice Writer ist auch das Programm, mit dem
ich gerade dieses Pythonbuch fiir Sie schreibe: http://de.libreoffice.org.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

50

http://de.libreoffice.org/
https://wiki.gnome.org/Apps/Gedit
http://notepad-plus-plus.org/
http://www.pspad.com/de/download.php

2.8 Textverarbeitungen

Textverarbeitungen und Textsatzsysteme erlauben es, langere struktu-
rierte Texte layoutunabhangig zu erfassen und inhaltsunabhangig zu ge-
stalten. Sie erstellen automatisch Inhalts-, Abbildungs- und Literaturver-
zeichnisse, passen Texte und Abbildungen in den vorgesehenen Bereich
ein und fuhren Querverweise innerhalb eines Textes automatisch nach.

Bei den meisten Programmen werden mehrere Dokumentvorlagen (Tem-
plates) mitgeliefert, um den Text direkt mit einem ansprechenden Layout
beginnen zu konnen. Die Vorlagen von Microsoft Word gehen allerdings
uberwiegend an den Gestaltungserwartungen technisch-wissenschaftli-
cher Texte vorbei.

Aa)
' NAME
Wl

Einfacher Zeilenabstand (... Schnappschuss-Kalender

LURAIDE ELORRIAGA

Modernes, chronologische... Professioneller Lebenslauf.... Professionelles Anschreibe...

Abb. 18: Dokumentvorlagen in Microsoft Word 2021

Martin Vogel: Bauinformatik mit Python, WS 2025/26

51

Fir LibreOffice gibt es auf der Erweiterungs-Website des Projekts' von
Anwenderinnen und Anwendern des Programms erstellte Vorlagen, die
fur unsere Bedurfnisse vermutlich eher angebracht sind.

Tabellarischer Lebenslauf

Vorlage fiir den tabellarischen Lebenslauf /
- CV-Template

6 months ago X 1.774 Not rated yet

Kraft-Fitness-Training

DE: Es handelt sich um eine einfache
Vorlage fiir einen Kraft-Fitness
Trainingsplan auf einer DIN A4 Seite,
ausgelegt fiir max. 14 Ubungen und 20
Einheiten/Tage. Die Beschreibung der
Vorlage ist auf deutsch, lasst sich aber mit
minimalem Aufwand in ander

6 months ago X 265 * Kk Kk K

Vorlage wissenschaftliche Arbeit

= = Diese deutschsprachige Dokumentvorlage
I fur LibreOffice/OpenOffice soll eine Hilfe
beim Erstellen wissenschaftlicher Arbeiten
in der Universitat oder Fachhochschule
sein.This document template in German
language for LibreOffice/OpenOffice aims
to

6 months ago Not rated yet
Wissenschaftliche Arbeit

Vorlage fiir eine Hausarbeit / Template for
a homework

6 months ago X 196 Not rated yet

Abb. 19: Dokumentvorlagen fiir LibreOffice

Template for Recipe

— This is a simple Template for creating a
z recipe. It is based on a Writer Template.

6 months ago X 429 Not rated yet

LinienBlatt-Designer

Dieses Draw-Dokument zeichnet
verschiedene gebrauchliche Linien-
Papiervorlagen in den Grofen von A8 bis
AQ. Diese Vorlagen sind zum Ausdrucken
fur den Haus- und Schulgebrauch gedacht,
wenn man mal eben nur ein Blatt braucht.
Es ist vergleichbar mit ein

6 months ago & 601 * % % 77 77

Vorlage wissenschaftliche Arbeit (Linux).

= = Diese deutschsprachige Dokumentvorlage
= ' fur LibreOffice/OpenOffice soll eine Hilfe
beim Erstellen wissenschaftlicher Arbeiten
in der Universitdt oder Fachhochschule
sein.Die Vorlage ist ausschlieBlich fur Linux
geeignet.
X 1214

6 months ago Not rated yet

Zeichnungsvorlage A4 - DIN 6771-1

Diese DIN A4 Zeichnungsvorlage im
Hochformat ist angelehnt an die alte Norm
DIN6771-1. Die blauen Hinweise in der
Ebene "Anmerkungen" sind als nicht
druckbar markiert.

6 months ago X 859 Not rated yet

Erstaunlich haufig werden Dokumentvorlagen in deutschsprachigen Tex-
ten ,Formatvorlagen” genannt. Das ist ziemlicher Unfug, wie wir im

nachsten Kapitel sehen werden.

1 https://extensions.libreoffice.org

Martin Vogel: Bauinformatik mit Python, WS 2025/26

52

https://extensions.libreoffice.org/

2.8.1 Formatvorlagen

Die sogenannten ,Formatvorlagen” legen fest, wie semantische Elemente
eines Textes wie beispielsweise Uberschriften, Absatze, Zitate und Ver-
zeichnisse gestaltet werden sollen. Es sind also eigentlich gar keine fes-
ten Vorlagen, sondern vielmehr jederzeit veranderliche Einstellungen. In
manchen Programmen heifSen diese Gestaltungseinstellungen auch Stile,
Styles oder Stylesheets. Da das Wort aber durch die Dominanz von Micro-
soft-Produkten eine weite Verbreitung erfahren hat, verwenden wir es
nun ebenfalls.

Als Beispiel fur die Anwendung einer Formatvorlage schauen wir uns ein-
mal die Uberschrift 2. Grades an, wie sie iiber diesem Absatz steht. Die
Formatvorlage enthalt hier die Information, dass sie in 16 Punkt hoher
Schrift in der Schriftart ,DejaVu Sans” gesetzt und fett gedruckt werden
soll. Falls nun alle Uberschriften 2. Grades ein anderes Aussehen erhalten
sollen, so genugt es, diese Formatvorlage zu andern und sofort werden
samtliche mit ihr formatierten Uberschriften angepasst.

Absatzvorlage: Uberschrift 2 D &
Hervorhebung Tabulatoren Initialen Flache Transparenz Umrandung Cliederung & Liste
Verwaltung Einzlige und Abstdnde Ausrichtung Textfluss Schrift Schrifteffekte Position

Schriftart: DejaVu Sans

DejaVu Sans

DejaVu Sans Condensed
DejaVu Sans Light
DejaVu Sans Mono
DejaVu Serif

DejaVu Serif Condensed
DIN Schablonierschrift

Nraid €Sanc Eallhacl

Schriftschnitt: Fett -
Grole: 16 pt -
Sprache: Deutsch (Deutschland) ~ Funktionen...

Fir Ausdruck und Anzeige am Bildschirm wird die gleiche Schriftart verwendet.

DejaVu Sans

Hilfe Zurlcksetzen Anwenden Auf Gbergeordnete Vorlage zurlicksetzen Abbrechen OK

Abb. 20: Schrifteinstellung einer Formatvorlage

Martin Vogel: Bauinformatik mit Python, WS 2025/26

53

Um einem Textabschnitt eine Formatvorlage zuzuweisen, markieren Sie
ihn mit der Maus und wahlen die gewunschte Vorlage aus der Formatie-
rungsleiste der Textverarbeitung.

Formatvorlagen

Y v &ry 2 @
Standard

Einzug erste Zeile
FlieRtext

FlieRtext, eingeriickt
Gegeniiberstellung
Grufsformel
Hangender Einzug
Marginalie
Uberschrift

Uberschrift 1

Uberschrift 3
Uberschrift 4

Abb. 21: Absatzformatvorlagen in LibreOffice

Ublicherweise werden Formatvorlagen absatzweise zugeordnet. Um nur
einige Buchstaben oder Worter gestalterisch definiert abzuheben, gibt es
neben den Absatzvorlagen auch sogenannte Zeichenvorlagen.

2.8.2 Schriftarten

Als Schriftart bezeichnet man die Gestaltung der Buchstaben und ande-
ren Zeichen einer Schrift. Die Dateien, in denen die Formen dieser Zei-
chen gespeichert werden, nennen wir Schriftartendateien oder Fontdatei-
en. Sie tragen im PC-Bereich haufig die Dateinamenerweiterung .ttf
oder .otf fur ,True Type Font“ bzw. ,Open Type Font”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 54

= o x

Datei Bearbeiten Punkt Element Hints Ansicht Metrik

|B]v H $

b ol [A § 66% Aktive Eber
S T e e T ERT BT

1
Q 53

: \

1" Msel m

] Mse2 Q

| Mse2—

1 1
1 # Gerist
] Q B Hinten
: Vome
)

Abb. 22: Bearbeitung eines Buchstabens im Fonteditor FontForge

izl
-
i

Sou

L
OO B+ @

=|
7
H
=l
&

Sou] Faeal

SoN]

SoH]

Eine Textverarbeitung kann beliebig viele Schriftarten verwenden. Aller-
dings kann es ein Problem geben, wenn Sie Textverarbeitungsdateien
weitergeben. Wenn Sie Pech haben, sieht Thre Datei auf unterschiedli-
chen Rechnern, unter unterschiedlichen Betriebssystemen oder in unter-
schiedlichen Textverarbeitungen ganz anders aus als beim Schreiben.
Schuld daran sind oft fehlende Schriftartendateien.

Wenn Sie zu mehreren Personen an einer Datei arbeiten, sollten alle die-
selben Schriftartendateien installiert haben oder sie in das Dokument ein-
binden. In LibreOffice geschieht das mit dem Menubefehl ,Datei — Eigen-
schaften — Schriftart — Schriftarten ins Dokument einbetten”.

Nicht alle Schriftarten erlauben die Einbindung. Manche unterliegen sehr
restriktiven Nutzungslizenzen.

2.8.3 Zeichenformatierung

Sie konnen Textstucke direkt formatieren anstatt Formatvorlagen zu ver-
wenden, das sollte aber moglichst die Ausnahme bleiben, weil die Bear-
beitbarkeit vor allem langerer Texte dadurch erheblich erschwert wird.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

55

Hervorhebungen von Textstellen werden auch Auszeichnungen genannt.
Sie sollten aullerst sparsam verwendet werden, weil sie den Lesefluss
unterbrechen und dadurch die Lesbarkeit eines Textes vermindern
konnen.

v Zeichen N
DejaVu Serif v 12 pt v
F K U~ S A A A

A~~~ A A~ X X
Abb. 23: Zeichenformatierung in LibreOffice

Fur Fettschrift wird Text mit dem Format ,fett“ versehen. Der Button da-
fur ist in eingedeutschten Textverarbeitungen meistens ein fettgeschrie-
benes ,F“, gelegentlich aber auch ein ,B“ (fur ,bold”) oder sogar nur ein
,,A”.

Kursivschrift soll ein wenig an geschwungene, leicht schrag gestellte
Handschrift erinnern. Kursiv formatierte Buchstaben sind daher nicht
einfach parallelogrammartig geschert, sondern in der Regel komplett an-
ders gestaltet als die geraden Buchstaben einer Schriftart.

Die Unterstreichung ist eine Auszeichnungsform, die heute eher selten
genutzt wird, da unterstrichene Textstellen zu sehr wie Hyperlinks ausse-
hen und so fur Verwirrung sorgen.

Sperrschrift mit einzeln geschriebenen Buchstaben ist verpont, da
durch Leerzeichen auseinandergezogene Worter nicht durch die Such-
funktion gefunden werden konnen und auch die automatische Silbentren-
nung hier nicht funktioniert.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

56

https://martinvogel.de/lexikon/hyperlink.html

2.8.4 PDF-Dateien

Zum Austausch von Texten, bei denen es auf das exakte Aussehen an-
kommt, verwenden wir das , portable document format”“ PDF. Wenn wir in
LibreOffice die Option , Gliederung exportieren” verwenden, erhalten wir
ein navigierbares PDF-Dokument, in dem wir alle Kapitel direkt ansprin-
gen konnen.

Zum erstmaligen Erzeugen einer PDF-Datei wahlen Sie den Menubefehl
»Datei — Exportieren als ... — als PDF exportieren”. Dort nehmen Sie alle
gewunschten Einstellungen vor, zum Beispiel, dass die Gliederung expor-
tiert werden soll. Alle weiteren PDF-Exportvorgange konnen Sie zukunf-
tig aus dem Hauptbildschirm durch Anklicken des PDF-Icons auslosen.

In Microsoft Office Word ist die Einstellung etwas versteckter. Rufen Sie
im Datei-Menu den Befehl ,Exportieren” auf und wahlen Sie dort , PDF/
XPS-Dokument erstellen” aus. Im nachsten Dialog drucken Sie den But-
ton ,Optionen” und aktivieren im sich offnenden Dialog im Abschnitt
»Nicht druckbare Informationen einschliefSen“ den Unterpunkt ,Textmar-
ken erstellen mithilfe von“. Dort wahlen Sie ,Word-Textmarken” oder
,Uberschriften“ aus. Wenn der Unterpunkt , Textmarken erstellen mithilfe
von“ ausgegraut und nicht auswahlbar ist, besitzt Thr Text keine richtigen
Uberschriften. Verwenden Sie fiir Uberschriften immer die entsprechen-
den Formatvorlagen und keine direkten Formatierungen!

Auf den meisten Rechnern werden PDF-Dateien standardmalflig mit einem
Webbrowser geoffnet. Um darin navigieren zu konnen, konnen Sie links
eine Seitenleiste einblenden. Je nach Browser heilst das zustandige Icon
am oberen Rand , Seitenleiste” oder , Lesezeichen” oder sieht aus wie ein
Hamburger: =. Wenn Ihr Browser das nicht unterstutzt, ist ein zusatzli-
cher PDF-Betrachter, wie beispielsweise Evince, sinnvoll. Software der
Firma Adobe benotigen Sie entgegen haufig verbreiteter Falschinformati-
onen nicht. Der Adobe Reader ist aulSerdem ziemlich ressourcenhungrig
und braucht mitunter recht lange, um uberhaupt zu starten und eine
PDF-Datei anzuzeigen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

57

5 MBaumFormatlk\mwin:- * + ~ o [u] X

« & T 8 =://martinvogel.de, t Bauinf] v Q suchen g 7 e =
D ~ 1 | von34s — |+ Automatischer Zoom ~ I 2@ & »
00 = -

oo — e

v 1E

inleitung
1.1 Bedeutung der Bauinformatik

1.2 Ermutigung
Hochschule Bochum

1.3 Lerntipps
1.4 Suchmaschinentipps Wws 2023[2024
¥ 2 PC-Grundkenntnisse
2.1 Tastatur
2.2 Betriebssystem Bauinformatik
¥ 2.3 Dateien und Verzeichnisse p m it Python

2.3.1 Verzeichnisbaume P
2.3.2 Versteckte Dateinamenerweiterungen 3 Dipl.-Ing. Martin Vogel

2.3.3 Desktop, Ordner und Verzeichnisse
2.3.4 Archivdateien

2.4 Zwischenablage

2.5 Bildschirmkopien

= ; ;
2.6 Sonderzeichen Bl " ""' ' ' ”
2.7 Texteditoren ."" { = “‘ "’
¥ 2.8 Textverarbeitungen 47) b AE AR AR . J‘J‘f ..
8. rl; 4 .
e DI

2.8.3 Zeichenformatierung

Abb. 24: Navigation der PDF-Dokumentstruktur in Firefox

2.8.5 Grafiken

Um eine Grafik in einen Text einzufugen, konnen Sie die gewunschte Gra-
fikdatei mit der Maus direkt in den Text ziehen. Vorhandener Text fliel3t
automatisch um die Grafik herum. Die Hohe und Breite der Grafik passen
Sie freihandig mit der Maus an oder Sie bestimmen die Abmessungen nu-
merisch exakt uber die Eigenschafteneinstellungen, die Sie durch Rechts-
klicken der Grafik aufrufen. Kontrast und Helligkeit lassen sich nachtrag-
lich einstellen. Das ist besonders fir eingefiigte Smartphonefotos wichtig,
mit denen Sie besonders einfach auf Papier vorliegende Bildinhalte in
Thren Text ibernehmen konnen.

Die Abstande der Grafik zum umgebenden Text konnen Sie nach Belieben
einstellen. Um einer Grafik eine Beschriftung zuzuordnen, rechtsklicken
Sie diese und wahlen den Menueintrag , Beschriftung einfiigen ...“. Sie
konnen zwischen verschiedene Kategorien auswahlen, fur die Sie spater
separate Abbildungsverzeichnisse erstellen konnen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

2.8.6 Verzeichnisse

Sie konnen automatisch aus Kapiteluberschriften Inhaltsverzeichnisse
oder aus Bildbeschreibungen Abbildungsverzeichnisse erstellen lassen,
die an einer beliebigen Stelle im Text eingefugt werden konnen. Achten
Sie darauf, alle Verzeichnisse vor dem Drucken oder vor dem Exportieren
des Textes als PDF-Datei aktualisieren zu lassen. In LibreOffice geschieht
das uber die Menufolge , Extras — Aktualisieren — Alles”.

2.8.7 Erzwungene neue Seite

Mit erzeugen Sie einen festen Seitenumbruch. Normalerweise ist
das niemals notwendig. Versuchen Sie auf keinen Fall, durch wiederhol-
tes Drucken der Eingabetaste auf die nachste Seite zu kommen. Sie wur-
den damit zeigen, dass Sie nicht begriffen haben, was eine Textverarbei-
tung von einer Schreibmaschine unterscheidet.

Auch zwischen zwei Absatze setzen Sie bitte nicht einfach eine leere Zei-
le. Arbeiten Sie immer mit den Abstandseinstellungen des verwendeten
Absatzformates.

2.8.8 Kopf- und FuBzeilen

Der Text in Kopf- und Fulzeilen erscheint auf jeder Seite Ihres Textes. Ei-
ne automatische Seitenzahl fugen Sie dort durch den Menubefehl , Einfu-
gen — Seitennummer” ein. Andere automatisch aktualisierbare Inhalte,
wie den Namen der Textverarbeitungsdatei, das Druckdatum oder die Ge-
samtbearbeitungszeit erhalten Sie uber ,Einfigen — Feldbefehl”.

Es ist empfehlenswert, dass Sie sich fur die Hausaufgaben in diesem Fach
zumindest aneignen, wie man mit dem von IThnen bevorzugten Programm
Uberschriften korrekt setzt, ein Inhaltsverzeichnis erzeugt, die Recht-
schreibkorrektur verwendet, Grafiken einbindet und PDF-Dateien er-
zeugt.

Daruber hinaus ist das Thema , Textverarbeitung” nicht Bestandteil dieses
Kurses.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

59

2.9 Tabellenkalkulationen

Tabellenkalkulationen gehoren zu den altesten Anwendungsprogrammen
der PC-Geschichte. Sie trugen maligeblich zur schnellen Verbreitung die-
ser Gerate in Buchhaltungen und Ingenieurburos bei.

C11 «<L>» TATAL L]

[
R oL R [I | e Y T Y [) O S

24
Abb. 25: Tabellenkalkulation 1979 (Bild: Wikipedia)

Bereits 1979 erschien die Tabellenkalkulation Visicalc fur den Apple][, ei-
nem der ersten je gebauten Personal Computer. 1983 war Lotus 1-2-3 fur
das junge Betriebssystem DOS erhaltlich, ein Jahr spater brachte das
frisch gegrundete Startup-Unternehmen ,Micro-Soft“ fur den Apple
Macintosh die Tabellenkalkulation Excel auf den Markt. Excel war eine
dermalsen originalgetreue Kopie von Lotus 1-2-3, dass es von diesem so-
gar den Fehler iibernahm, das Jahr 1900 als Schaltjahr auszuweisen'.
1985 veroffentlichte der Luneburger Schiller Marco Borries das Pro-
gramm StarWriter fur den 8-Bit-Heimcomputer Schneider CPC, welches
1995 zum ersten plattformubergreifenden Burosoftwarepaket StarOffice
heranwuchs und Grundlage fur das heutige LibreOffice (bzw. OpenOffice)
wurde. 2006 schliefSlich machte Google mit der Browserapplikation ,Text
und Tabellen” die Tabellenkalkulation unabhangig von einzelnen PCs und
ermoglichte es, mit mehreren Personen gleichzeitig uber das Internet an
derselben Datei zu arbeiten.

1 Konrad Lischka, Das Excel-Phantomschaltjahr 1900, 2008, http://www.spiegel.de/
netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637-
4.html

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://web.archive.org/web/20220522054905/https://www.spiegel.de/netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637.html
https://web.archive.org/web/20220522054905/https://www.spiegel.de/netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637.html
https://web.archive.org/web/20220522054905/https://www.spiegel.de/netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637.html

Allen Tabellenkalkulationen gemeinsam ist das Rechengitter oder Arbeits-
blatt, in dessen Zellen Zahlenwerte, Texte oder Formeln gespeichert und
ausgefuhrt werden konnen. Traditionell werden bei den meisten Tabellen-
kalkulationen die Spalten dieses Arbeitsblattes mit Buchstaben und die
Zeilen mit Zahlen bezeichnet. Die Zelle mit der Zellenadresse ,B3“ ist al-
so in der dritten Zeile der zweiten Tabellenspalte zu finden.

Wenn Tabellenblatter mehr als 26 Spalten verwenden, werden die Spal-
tenbezeichner aus mehreren Buchstaben zusammengesetzt. Nach der 26.
Spalte ,Z“ folgen als 27. und 28. Spalte ,AA” und ,AB”“, nach der 676.
Spalte "ZZ" folgen als 677. und 678. Spalte ,AAA” und ,AAB”“. Der letzte
vergebene Spaltenbezeichner in LibreOffice Calc und Microsoft Excel lau-
tet ,XFD" fur Spalte 16384.

2.9.1 Formeln

Beginnt der Inhalt einer Zelle mit einem Gleichheitszeichen, so wird der
Zellinhalt als Formel interpretiert. Mit Formeln lassen sich neue Zellwer-
te berechnen. Anstelle von Variablennamen werden in den Formeln einer
Tabellenkalkulation oft nur die Zellbezeichner anderer Zellen verwendet.

B3 v | fx 2+ = =0,19*A3
A DN
1 Nettopreis Mehrwert- Bruttopreis
steuer

2 100,00 € 19,00 € 119,00 €
BN 50,00 €] 9,50 ¢ 59,50 €

4 12,84 € 2,44 £ A 15,28 €

5 122,00 € 23,18 € 145,18 £€

6 32,00 € 6,08 £ 38,08 £

=
Abb. 26: Formel einer Tabellenkalkulation

In Abb. 26 lesen wir oben rechts ab, dass sich in der mit einem breiten
Rahmen hervorgehobenen Zelle B3 die Formel =0,19*A3 befindet, wel-
che also 19 % des Wertes von Zelle A3 ausrechnet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

2.9.2 Variablennamen

Um Formeln lesbarer zu gestalten, konnen wir anstelle von Zellbezeich-
nern richtige Variablennamen verwenden, die wir einzelnen Zellen oder
ganzen Zellbereichen zuweisen. Den gewunschten neuen Namen tragen
wir dazu nach dem Markieren der Zelle oder des Zellbereichs in das in
Abb. 26 oben links zu sehende Feld ein, in dem momentan noch der Zell-
bezeichner ,B2“ zu sehen ist.

Die Namen sollten nur aus den Buchstaben von ,A“ bis ,Z“, dem Unter-
strich ,, “ und Ziffern bestehen und durfen keine Leerzeichen enthalten.
Umlaute und sonstige Sonderzeichen sind in der Regel nicht zulassig.
Grofs- und Kleinschreibung wird ignoriert. Das erste Zeichen des Namens
darf keine Ziffer sein.

Die Namen C und R (sowie ¢ und r) durfen in Microsoft Office Excel und
LibreOffice Calc nicht verwendet werden.

2.9.3 Relative und absolute Zellbezuge

Beim Kopieren von Formeln stellen wir fest, dass die Zellbezeichner darin
automatisch verandert werden. Mit jeder Zeile, die die Formel beim Ko-
pieren nach unten wandert, erhohen sich die Ziffern der Zellbezeichner
um den Wert eins und mit jeder Spalte nach rechts wird der Spaltenbuch-
stabe heraufgesetzt. Aus der Formel =A2+B4 wird, wenn sie drei Spalten
nach rechts und vier Zeilen nach unten kopiert oder verschoben wird,
=D6+E8.

Relativ zur neuen Position bleiben die Zellbezuge dabei unverandert. Ein
Bezeichner, der an der alten Position auf ein Feld drei Spalten links und
zwei Zeilen oberhalb der Formel verwies, bezieht sich auch an der neuen
Position auf ein Feld drei Spalten links und zwei Zeilen oberhalb der For-
mel.

Damit Formeln sich beim Kopieren oder Verschieben nicht unerwunscht
verandern, sollten wir bevorzugt mit Variablennamen arbeiten. Diese be-
ziehen sich immer auf absolute Zelladressen und Zellbereiche. Wir kon-
nen aber auch Zellbezeichner als absolut kennzeichnen, ohne ihnen einen
Namen zu geben. Dazu stellen wir den Zeilen- und Spaltenbezeichnern je-
weils ein Dollarzeichen voran. Der Zellbezeichner $A2 wird auch auf der

Martin Vogel: Bauinformatik mit Python, WS 2025/26

62

neuen Position stets auf Spalte A verweisen, beim Zellbezeichner A$2
bleibt Zeile 2 fest eingestellt und A2 bezieht sich immer absolut auf Zel-
le A2.

2.9.4 Funktionen

Um Formeln innerhalb von Zellen nicht ubermaldig lang und kompliziert
werden zu lassen, verfugen Tabellenkalkulationen uber eine grof3e Zahl
eingebauter Funktionen. Leider gibt es hier keinen verbindlichen Stan-
dard, sodass in der Dokumentation der jeweils verwendeten Tabellenkal-
kulation nachgeschaut werden muss, ob die gesuchte Funktion dort exis-
tiert und wie sie dort heift. Zu allem Uberfluss haben dieselben
Funktionen in den internationalisierten Versionen eines Programms oft
unterschiedliche Namen.

Die meisten in Deutschland verwendeten Tabellenkalkulationen verwen-
den weitgehend dieselben Funktionsnamen, auch wenn diese zum Teil
recht ausufernde Langen besitzen (Abb. 27).

Ein Funktionsaufruf besteht immer aus einem Funktionsnamen und da-
hinter in Klammern eingeschlossenen Argumenten. Der Funktionsaufruf
SIN(B3) berechnet beispielsweise den Sinus des Bogenmal-Winkels in
Zelle B3 und WURZEL(C7) zieht die Quadratwurzel aus der Zahl in Zelle
C7.

Wenn eine Funktion mit mehreren Argumenten aufgerufen wird, so sind
diese in deutschsprachigen Tabellenkalkulationen mit einem Semikolon ;
zu trennen. In englischsprachigen Tabellenkalkulationen wird anstelle
des Semikolons ein Komma zur Trennung von Funktionsargumenten ver-
wendet. Das geht in Deutschland! nicht, weil wir das Komma schon als
Dezimaltrennzeichen verwenden. Anstelle von SUM(1.2, 3.4) schreiben
wir SUMME(1,2; 3,4), um die Zahl 4,6 zu erhalten.

1 Weltweit verwendet ungefahr die Halfte der Menschheit das Komma als Dezimal-
trennzeichen, die andere Halfte den Dezimalpunkt. Als drittes Dezimaltrennzeichen
ist in den Landern rund um den Persischen Golf das einem Komma ahnlich sehende
Momayyez , in Gebrauch.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

B4 v | fx ¥~ = =NETTOARBEITSTAGE(B2;B3)

A I D E | ¥

1. November 2024
5. Februar 2025

| 69

Abb. 27: Funktion mit zwei Parametern

J-IHL”N_L

Einige wenige Funktionen werden ohne Argumente aufgerufen. Die Funk-
tion HEUTE() beispielsweise gibt immer das aktuelle Datum zuruck und
ZUFALLSZAHL () eine beliebige Dezimalzahl zwischen null und eins.

2.9.5 Zellbereiche

Bezieht sich eine Formel nicht nur auf eine einzelne Zelle, sondern auf ei-
nen zusammenhangenden Bereich, so kann man diesen Bereich als
von:bis formulieren. Soll in Feld A5 beispielsweise die Summe der Fel-
der Al bis A4 ausgerechnet werden, so schreiben wir dies als
=SUMME (A1:A4) in A5 (Abb. 28).

I [[=

=SUMME(AL:A4)

[
Abb. 28: Bereichschreibweise

2.9.6 Fallunterscheidungen mit WENN

Innerhalb von Formeln konnen wir Entscheidungen auf der Grundlage lo-
gischer Aussagen treffen lassen. Der Funktion WENN ubergeben wir dazu
drei Argumente: Erstens die zu untersuchende logische Aussage, zwei-

Martin Vogel: Bauinformatik mit Python, WS 2025/26

64

tens den Wert, den die Funktion zurickgeben soll, wenn die Aussage
wahr ist und drittens den Ruckgabewert fur den Fall, dass die Aussage
nicht wahr ist. Merkhilfe: Wenn(was; dann; sonst).

Falls wir keine Werte fiir ,dann” und , sonst” angeben, so gibt die Wenn-
Funktion stattdessen den Wahrheitswert der Aussage als WAHR oder
FALSCH zuruck.

Als Beispiel aus dem Ingenieurwesen seien in dem in Abb. 30 gezeigten
Tabellenblatt in Spalte E, von Zelle E4 an abwarts, einige Zugspannungs-
werte aus Bauteilmessungen oder statischen Berechnungen eingetragen.
In Spalte F soll nun von uns untersucht werden, ob diese Spannungen ei-
nen zulassigen Grenzwert uberschreiten. Dieser steht in Zelle B1, der wir
der Lesbarkeit halber den Namen , Grenzwert” zugewiesen haben.

Die auszuwertende logische Aussage fur Zelle F4 lautet also
»BE4 <= Grenzwert”. Der darzustellende Text fur den Fall, dass die Aussa-
ge wahr ist, soll ,Spannung zulassig” lauten und der Text fur den Fall,
dass die Aussage falsch ist, lautet ,Grenzwert uberschritten!”

Wir konnen die Struktur dieser Fallunterscheidung grafisch ubersichtlich
als sogenanntes , Struktogramm?® darstellen:

E4 <= Grenzwert
wahr falsch

"Spannung zulassig" "Grenzwert Uberschritten!"
Abb. 29: Fallunterscheidung

In Zelle F4 schreiben wir diese Fallunterscheidung als Formel:
=WENN(E4 <= Grenzwert; "Spannung zulassig"; "Grenzwert iiber-
schritten!").

Die Anfuhrungszeichen setzen wir um alle Texte, die wir ausgeben wol-
len, um sie von Variablen wie Grenzwert oder Zelladressen wie E4 zu un-
terscheiden. Variablennamen schreiben wir immer ohne Anfuhrungszei-
chen und auszugebende Texte immer mit Anfuhrungszeichen.

An dieser Stelle mochte ich Sie dafiur sensibilisieren, dass es unterschied-
liche Typen von Anfuhrungszeichen gibt. In handschriftlichen Texten ver-
wenden Sie vermutlich seit Threr Grundschulzeit unterschiedliche offnen-

Martin Vogel: Bauinformatik mit Python, WS 2025/26

65

de und schlieSende ,GansefiilSichen”. Auf Computertastaturen gibt es
aber nur ein einziges Zeichen. Bitte verwenden Sie beim Programmieren
nur die simplen "Ersatz-Anfuhrungszeichen" der Schreibmaschinentasta-
tur, nicht die asthetisch ansprechenderen ,typographischen Anfuhrungs-
zeichen“!!

F4 > | B E = | =WENN(E4<=Grenzwert; "Spannung zulassiq" ; "Grenzwert iiberschritten!")
A | B | c | B | E |

1 | Zulssige Spannung: 10 N/mm? |

2 Zugspannungen in Rechteckquerschnitten
T3 | Héhe [mm] Breite [mm] Flache [mm?2] Zugkraft [N]| Spannung [N/mm?2] Bewertung
[| 7 22 154 1624 10,5[Grenzwert iberschritten!]
5 | 10 18 180 1686 9,4 | Spannung zuldssig
L 3 20 60 2276 37.9|Grenzwert Gberschritten!
7 30 11 330 2283 6,9 Spannung zuléssig
8 | 18 17 306 1862 6,1|Spannung zuldssig
9 | 30 18 540 2264 4,2 | Spannung zuldssig
10 | 23 28 644 983 1,5/ Spannung zulassig
_11 | 30 21 630 187 0,3 |Spannung zulassig
i 11 8 88 1017 11,6 | Grenzwert tberschritten!
13 | 10 30 300 972 3,2 | Spannung zulassig
14 | 11 6 66 2611 39,6 | Grenzwert Gberschritten!
15 | 26 15 390 2503 6.4 Spannung zulassig
16 | 15 7 105 1660 15,8 | Grenzwert Uberschritten!
17 19 25 475 1694 3,6 Spannung zulassig
18 | 15 28 420 2493 5,9 Spannung zulassig
19 | 25 24 600 477 0,8 | Spannung zuldssig
20 | 15 24 360 1361 3,8/Spannung zuldssig

Abb. 30: Tabelle mit Fallunterscheidungen

1 Unter Microsoft Windows stellt sich das Problem nicht, weil es dort ohnehin nur das
gerade Ersatz-Anfuhrungszeichen " auf der Tastatur gibt, wie es im 19. Jahrhundert
als Notlosung anstelle richtiger Anfithrungszeichen fiir die damals aufkommenden
Schreibmaschinen eingefiihrt wurde und wie es in der Sechzigerjahren des 20. Jahr-
hunderts in den ASCII-Code ibernommen wurde.

Unter dem Betriebssystem Linux besitzt die Tastatur jedoch oft auch die zehn korrek-
ten typographischen Anfithrungszeichen (,, “ " , * ' » « > <) auf den Belegungs-
ebenen mit [AltGr] und [AltGr].

Auch unter macOS konnen immerhin acht typographisch korrekte Anfithrungszeichen
auf den Belegungsebenen Option [\] und Option-Umschalten [\ 1] direkt eingegeben
werden. Siehe Kapitel 2.1. Die Wikipedia-Seite https://de.wikipedia.org/wiki/Anfiihrun
gszeichen fiithrt alle Tastenkombinationen zur Eingabe der Zeichen unter den drei
verbreiteten PC-Betriebssystemen auf.

Textverarbeitungen wie LibreOffice Writer oder Microsoft Word besitzen einen Auto-

matismus, der eingetippte ASCII-Anfihrungszeichen ungefragt durch typographische
Anfuhrungszeichen ersetzt. Diese ,Autokorrektur” macht Textverarbeitungsprogram-
me zum Schreiben von Computerprogrammen und Tabellenkalkulationsformeln recht
ungeeignet. Glucklicherweise ist die Funktion abschaltbar.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://de.wikipedia.org/wiki/Anf%C3%BChrungszeichen#Direkte_Eingabe_per_Tastatur
https://de.wikipedia.org/wiki/Anf%C3%BChrungszeichen#Direkte_Eingabe_per_Tastatur

Falls wir zwischen mehr als zwei Fallen unterscheiden mochten, konnen
wir die Wenn-Funktion verschachteln. Anstelle eines direkten Wertes fur
»dann“ oder ,sonst” setzen wir einfach eine komplette weitere Wenn-
Funktion ein.

Nehmen wir als Anwendungsbeispiel eine Stahlpreisliste. Sie enthalt fol-
gende Formulierung: ,Bei mehr als 16,1 Metern Lange ist (...) ein Auf-
preis von 10 Euro, bei mehr als 18,1 Metern 20 Euro und bei mehr als
22,1 Metern 30 Euro pro Tonne zu bertucksichtigen.” - wir mussen also
vier verschiedene Falle unterscheiden. Dazu formulieren wir drei logische
Aussagen: ,L > 22,1, ,L > 18,1“ und ,L > 16,1“. Der Ubersicht halber
stellen wir sie grafisch dar und schreiben unter jede Aussage, welche Ant-
wort wir erwarten oder welche Aussage wir als nachstes prufen mussen,
wenn die jeweilige Aussage wahr oder falsch ist.

L>221
wahr falsch
L> 18,1
wahr falsch
L>16,1
wahr falsch
30 20 10 0

Abb. 31: Drei verschachtelte Fallunterscheidungen

In der Formelschreibweise einer Tabellenkalkulation stellen wir diesen
Entscheidungsbaum so dar:

=WENN(L > 22,1; 30; WENN(L > 18,1; 20; WENN(L > 16,1; 10; 0)))

Dabei mussen wir darauf achten, dass die unvollstandige sprachliche
Konstruktion dieser Preisstaffelung so umgesetzt wird, dass nicht die Er-
fullung der ersten Bedingung (,bei mehr als 16,1 Metern Lange”) schon
alle anderen Falle einschlielst.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

2.9.7 VERWEIS, SVERWEIS und WVERWEIS

Weil Fallunterscheidungen mit mehreren Alternativen recht unubersicht-
lich werden, empfiehlt es sich, stattdessen eine kleine Tabelle anzulegen
und zugehorige Werte daraus ablesen zu lassen. Deutschsprachige Tabel-
lenkalkulationen kennen dazu die Funktion VERWEIS sowie ihre nahen
Verwandten SVERWEIS und WVERWEIS.

Die Funktion VERWEIS(w; s; z) sucht einen Wert w in einem sortierten(!)
Suchbereich s und gibt den korrespondierenden Wert aus dem gleich gro-
Ben Zielbereich z zuruck. Wenn w nicht in s enthalten ist, wird der grofSte
Wert aus s verwendet, der kleiner als w ist.

In Abb. 32 sehen wir einen Ausschnitt aus einer Stahlbau-Profiltabelle.
Der IPE-Bezeichnung in Spalte K ist dabei die Tragermasse in kg pro Me-
ter zugeordnet. Um nun beispielsweise den Massenwert eines IPE-140-
Tragers zu finden, verwenden wir die Formel =VERWEIS(140; K4:K10;
L4:L10) und erhalten den Wert 13,2.

IPE kg/m
80 62
100 83
120 10,7
140 132
160 16,2
180 193
10 | 200 23,0

O (0D (= | (LA | L

Abb. 32: VERWEIS

Als kleine Vereinfachung durfen Such- und Zielbereich zusammengefasst
werden, wenn sie unmittelbar benachbart sind. Die Formel
=VERWEIS(140; K4:L10) gibt also ebenfalls den Wert 13,2 zuruck.

Etwas umstandlicher zu verwenden sind die Funktionen SVERWEIS und
WVERWEIS, dafur kommen sie auch mit unsortierten Werten im Suchbe-
reich zurecht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

68

Die Funktion SVERWEIS(w; m; s; Xx) sucht einen Wert w (oder den
nachstkleineren) in der ersten Spalte der sortierten Matrix' m und gibt
aus dieser Zeile den Wert in Spalte Nummer s der Matrix zuruck. Die
ganz linke Spalte hat dabei die Nummer 1. Hat x den Wert 0 (oder
FALSCH), so zahlen nur exakte Treffer. Die Matrix darf dann unsortiert
sein.

Das Beispiel in Abb. 32 berechnet in Spalte E die Aufpreise fur Spalte D
gemals der Untertabelle im Bereich A2:B5. Die Formel ist deutlich kurzer
als die Fallunterscheidung aus Kapitel 2.9.6!

E3 v+ fx I = =SVERWEIS(D3; A2:5B55; 2)
- B E D |
1 |Ldnge = ... Aufpreis Lange Aufpreis
2 0 0,00€ 15,8 0,00 €
=N 16,1 10,00 € 17,5[10,00 ¢]
4 18,1 20,00€ 195 20,00€
5 221 30,00€ 15,7 0,00 €
6 186 20,00€
7 23,0 30,00€
8 174 10,00€
9 14,8 0,00 €

e el el

Abb. 33: SVERWEIS

Das ,, S“ in SVERWEIS steht ubrigens nicht fur ,Spalte”, sondern fur , senk-
recht”. Entsprechend gibt es daher eine Funktion WVERWEIS(w; m; 2z;
x), diese sucht ,waagerecht” einen Wert w (oder den nachstkleineren) in
der ersten Zeile der Matrix m und gibt den zugehorigen Wert aus Zeile
Nummer z der Matrix zuruck.

2.9.8 Zielwertsuche und Solver

Tabellenkalkulationen bieten die Moglichkeit, mit der sogenannten Ziel-
wertsuche einen Zellwert iterativ so lange zu verandern, bis das Ergebnis
einer linearen Formel einem gewunschten Wert entspricht.

1 Als ,Matrix” bezeichnen wir hier einen beliebigen rechteckigen Zellbereich, der min-
destens zwei mal zwei benachbarte Zellen umfasst.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

69

Beispiel (Abb. 34): A1l enthalt die Hohe eines Rechtecks, A2 die Breite und
A3 die Formel fiur die Flache, =A1*A2. Gesucht wird die Breite, die bei ei-
ner Hohe von 8 die Flache 20 ergibt.

A3 v || fx T = =A1*A2
__.'_d. B | o '
_1i 8 .
2 10 ’
| Zielwertsuche X |
| 8d |
4 | | Vorgaben -
Formelzelle: |SAS3 =
— Abbrechen
Zielwerk: 20 : ,
Hilfe
Variable Zelle: sAS52 =

Abb. 34: Zielwertsuche

Die Zielwertsuche findet schnell das gesuchte Ergebnis, sie kann aber
nur eine einzige Zelle verandern. Sind mehrere Eingangswerte einer For-
mel zu variieren, um ein bestimmtes Ergebnis zu erhalten, so greifen wir
auf einen sogenannten , Solver” zuruck.

Angenommen, wir mochten herausfinden, welches die geringste Zahl von
Cent-Munzen ist, mit der wir einen Betrag von 12,37 Euro zusammenstel-
len konnen. In Abb. 35 sind dazu in der mittleren Spalte ,Munzwert” (in
den Feldern C2 bis C7) die Munzwerte von einem bis 50 Cent eingetra-
gen. Links daneben in den Feldern B2 bis B7 ist die jeweilige Anzahl ver-
zeichnet. In der Spalte ,, Produkt” (D2 bis D7) wird das jeweilige Produkt
aus Anzahl und Munzwert berechnet. In der mit ,Summe” gekennzeich-
neten Zeile 8 der Tabelle werden schlieSlich die Summen der Eintrage
der Spalten B und D gebildet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

70

A R D E F [! b : o o

1 Anzahl Miinzwert Produkt
2 1150 1 1150 |
3 1 2 2 Zielzelle $BS8 =
4 1 5 5 | Zictwert
5 1 10 10 | Ietwer Maximum
6 1 20 20
7 1 50 50 | ® Minimum
JSumme 1155] 1237
-) i)) Wertvon =)
1 Optionen X
i 'Veranderbare Zellen |SB$2:$BS$7 =
Solver-Maschine: | LibreOffice Linearer Solver -
| Nebenbedingungen
| Einstellungen: Zellbezug Operator wert
Branch-and-Bound-Tiefe begrenzen sDsg = _ - 1237 = 3
Epsilon Level (0-3): 0
1 | [+ variable Zellen ganzzahlig = - =)
| | [+ variable Zellen nicht negativ
: Zeitlimit (Sekunden): 100 * || = v _ﬁ
| |: Bearbeiten... 4 || == ~ =
Hilfe OK Abbrechen Optionen... Hilfe SchlieRen Ldsen

R

Abb. 35: Solver

Der Solver variiert nun alle Felder im Bereich B2:B7 so lange, bis die An-
zahl der Miunzen den kleinstmoglichen Wert erreicht, wobei stets die ,Ne-
benbedingung” einzuhalten ist, dass die Gesamtsumme der Munzwerte in
Feld D8 genau 1237 Cent betragt. Weil abzahlbare Mengen, wie die ge-
suchte Anzahl von Miunzen, immer ganzzahlig und positiv sind, vermer-
ken wir dies zuvor in den Optionen des Solvers, da sonst keine Losung ge-
funden werden kann.

Die beiden Funktionen ,Zielwertsuche” und , Solver” sind in unterschied-
lichen Tabellenkalkulation mehr oder weniger gut zu finden.

In LibreOffice sehen wir sie im Menu , Extras”.

Wer Microsoft Office Excel 2019 verwendet, schaltet zum Menubandre-
gister ,Daten” um, Kklickt in der Icongruppe ,Datentools” in der dritten
Spalte auf das Icon ,Was-ware-wenn-Analyse” und wahlt dort den Unter-
menueintrag ,Zielwertsuche” aus. In der Icongruppe , Analyse” (falls vor-
handen) existiert mit etwas Gluck auch der Eintrag ,Solver”. Der Solver
ist in Microsoft Office Excel allerdings standardmalSig nicht enthalten und
muss dort ublicherweise als , Plugin“ nachinstalliert werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

71

2.9.9 Matrixformeln

Tabellenkalkulationen konnen sehr komplexe Berechnungen uber recht-
eckige Bereiche ausfuhren, die der Matrizenrechnung in der Mathematik
entsprechen.

Angenommen, wir haben ein Gleichungssystem mit drei Unbekannten zu
losen.

4x =2y +2z = 184
—3x +5y +4z = 29
4x =7y +12z = 749

Diese Gleichungen konnen wir in Matrixschreibweise so formulieren:

4 -2 2\(x| [184
-3 5 4]|y|=|29
4 -7 12)\z] |749

Um die Unbekannten auf die rechte Seite zu bekommen, bilden wir den
,Kehrwert” (die Inverse) der Matrix auf der linken Seite.

4 =2 2\'(184| [x
-3 5 4|29 |=|y
4 -7 12| \749] |z

Um die Matrixgleichung zu 10sen, brauchen wir also eine Funktion, die ei-
ne Matrix invertiert und eine Funktion, die eine Matrix mit einem Vektor
multipliziert. Wir finden diese Funktion in Calc und Excel als MINV und
MMULT.

A B C D E
1 4 -2 2 184 {=MMULT(MINV(A1:C3); D1:D3)}
2 -3 5 4 29 {=MMULT{MINV(A1:C3); D1:D3)}
3 4 -7 12 749 {=MMULT(MINV(A1:C3); D1:D3)}

Abb. 36: Matrixformeln

Martin Vogel: Bauinformatik mit Python, WS 2025/26

72

Das einzig wirklich Komplizierte an Matrixformeln ist ihre Eingabe. Sie
mussen dazu zuerst den Bereich markieren, in dem die Formel gelten soll
(hier die Zellen von E1 bis E3), dann tippen Sie die Formel ohne die um-
gebenden geschweiften Klammern ein und drucken schliefSlich die Tas-
tenkombination Steuerung-Umschalten-Eingabetaste ((Strg 1 4)).

Sie sollten nun die Losung des Gleichungssystems vor sich sehen.

4 -2 2 184 12
-3 5 4 29 -23
4 -7 12 749 45

Abb. 37: Geléstes Gleichungssystem

Die gesuchten drei Unbekannten lauten also x = 12, y = -23, z = 45.

2.9.10 Diagramme

Alle heutigen Tabellenkalkulationen bieten uns komfortable Moglichkei-
ten an, um einfache Diagramme aus eingetragenen oder berechneten
Zellinhalten zu erzeugen. In der Regel mussen wir dazu nur den zu visua-
lisierenden Datenbereich markieren (meistens genugt es schon, wenn
sich die zuletzt angeklickte Zelle im Datenbereich befindet) und im Menu
»Einfugen” den Menupunkt ,Diagramm” wahlen.

Im Ingenieurwesen ist insbesondere die Diagrammform ,x-y-Diagramm®”
von Wert, da diese einen klaren Koordinatenbezug zwischen zwei Werte-
gruppen herstellen kann. In LibreOffice und Microsoft Office Excel wah-
len wir dazu den Diagrammtyp ,XY*“ aus. In Apples Numbers ist entspre-
chend in der Rubrik fur 2D-Diagramme die Auswahlschaltflache mit
einzelnen Punkten anzuklicken.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

73

2 v | fx &~ = =COS(BOGENMASS(A2))

A | 8 I o E F G H J

1 |Winkel Sinus Kosinus
0 0,000__1,00]
3 10] 0,174] 0,985 app
4 20 0,342 0,940
5 30 0,500 0,866 2600
6 | 40 0,643 0,766 0,400
i
8
9

1,000

50 0,766 0,643
60 0,866 0,500
70 0,940 0,342 0000

0,200

10 | 80 0,985 0,174 om0

10 90 1,000 0,00

12 100 0,985 -0,174 '

13 110 0,940 -0,342 0600

14 | 120 0,866 -0,500 g9

15 130 0,766 -0,643

16 | 140 0,643 -0,766 -0

17 150 0,500 -0,866 Winkel
10 TR0 n a1l _NaAn

Abb. 38: x-y-Diagramm

2.9.11 CSV-Dateien und Tabellenkalkulationen

Tabellenkalkulationen unterstitzen neben ihrem eigenen, vereinzelt ex-
trem komplizierten!, Dateiformat immer auch ein sehr simples und uni-
verselles Datenaustauschformat, in dem die einzelnen Daten (Zahlen oder
Texte) zeilenweise und durch Kommas getrennt vorliegen. Nach diesen
~kommagetrennten Werten“ oder ,comma separated values” heifSen diese
Dateien CSV-Dateien.

Mustermann,Max,21,Bochum, 44801
Exempel,Elvira, 20,Gelsenkirchen, 45879

Texte werden in CSV-Dateien in der Regel in ASCII-Anfuhrungszeichen
gesetzt. Anstelle des Kommas ist als Trennzeichen oft auch ein Semikolon
oder ein Tabulatorzeichen ublich.

"Mustermann";"Max";21;"Bochum" ;44801
"Exempel”;"Elvira";20;"Gelsenkirchen" ;45879

1 Die Beschreibung des unter abenteuerlichen Bedingungen (http://www.groklaw.net/
article.php?story=2008032913190768) zur internationalen Norm gewordenen Micro-
soft-Office-Dateiformats OOXML ist iber 6000 Seiten lang. Und sie ist unvollstandig.
https://de.wikipedia.org/wiki/Office Open XML

Martin Vogel: Bauinformatik mit Python, WS 2025/26

74

https://de.wikipedia.org/wiki/Office_Open_XML
https://web.archive.org/web/20230503180813/http://www.groklaw.net/article.php?story=2008032913190768
https://web.archive.org/web/20230503180813/http://www.groklaw.net/article.php?story=2008032913190768

Formeln, Formatierungen und Diagramme gehen beim Speichern einer
Tabelle als CSV-Datei verloren.

Beim Import von Daten aus CSV-Dateien mussen wir zahlreiche Informati-
onen erganzen. Es muss klar sein, wie das Dezimaltrennzeichen aussieht,
ob und wie Datumswerte interpretiert werden, in welcher Zeichenkodie-
rung eventuell vorhandene Umlaute und Sonderzeichen vorliegen und
noch einiges mehr.

Textimport - [Wetterdaten_Sasel_fuer_Jahr_2012.csv] X
Importieren
Zeichensatz: | Unicode (UTF-8) -
Sprache: Deutsch (Deutschland) -
Ab Zeile: 1 - 4+
Trennoptionen
() Feste Breite (®) Getrennt
[] Tabulator [] Komma [+ Semikolon [] Leerzeichen [] Andere
[] Feldtrenner zusammenfassen Texttrenner: | " -
Weitere Optionen
(] Werte in Hochkomma als Text [] Erweiterte Zahlenerkennung
Feldbefehle
Spaltentyp -
|Standard Standard |Standard I
1
"2 | ort der Messung Saettigungsdampfdruck der Luft Absoluter Wassergehalt
3| Pa kg Wasser pro kg Luft
"4 | Poppenbiittel (H,-H,-Gymn,) 802,695658901 0,00514084273387
"5 | Poppenbiittel (H,-H,-Gymn,) 814,099781798 0, 00521654483294
"6 | Poppenbiittel (H,-H,-Gymn,) 831,471877506 0, 00533089419758
"7 | Poppenbittel (H,-H,-Gymn,) 855,138972782 0, 00548609223329
"8 | Poppenbiittel (H,-H,-Gymn,) 910,55730602 0, 00590912340004
"9 | Poppenbittel (H,-H,-Gymn,) 942,683385955 0, 00612076947257
N

Hilfe OK Abbrechen

Abb. 39: CSV-Import-Dialog in LibreOffice Calc

Beim Offnen einer CSV-Datei zeigt LibreOffice daher immer einen Textim-
port-Dialog an, in dem die aktuell benotigten Einstellungen uberprift
werden konnen. Die Wahl des Dezimal- und Tausendertrennzeichens wird

Martin Vogel: Bauinformatik mit Python, WS 2025/26

75

dabei indirekt uiber die Spracheinstellung vorgenommen. Ist das Dezimal-
zeichen ein Punkt anstelle eines Kommas, so sollte die Sprache auf ,Eng-
lisch” geandert werden.

Leider unterschlagt die verbreitete Tabellenkalkulation ,Microsoft Office
Excel”, diesen Dialog und verwendet nicht dokumentierte , Standardein-
stellungen'”, was gelegentlich zu Schlagzeilen fiihrt, wenn zum Beispiel
entdeckt wird, dass 20 % aller Gentechnik-Studien wegen Excels unver-
langter Datumsinterpretation importierter Daten fehlerhaft sind?.

In Excel darf eine CSV-Datei daher niemals einfach geoffnet werden, son-
dern sie muss mithilfe des Textimportassistenten, der im Menubandregis-
ter ,Daten” in der Gruppe ,Externe Daten abrufen” hinter dem Eintrag
»Aus Text” versteckt ist, importiert werden.

Excels notorischer Drang, alle moglichen Kombinationen aus Zahlen und
Trennzeichen in CSV-Dateien als Datumsangabe fehlzuinterpretieren, hat
sogar schon zu diversen popularen Memes gefuhrt (Abb. 40).

so Incelvs. Excel

 Incorrectly
Incel P Excel

adate

Abb. 40: Meme ,Incel vs. Excel” auf Reddit

1 https://support.office.com/de-de/article/Importieren-oder-Exportieren-von-Textdatei-
en-TXT-oder-CSV-5250ac4c-663c-47ce-937h-339e391393ba - ich méchte mich ibri-
gens an dieser Stelle gerne dahingehend korrigieren lassen, dass die Standardeinstel-
lungen doch irgendwo dokumentiert sind. Zuschriften mit Links auf die entsprechen-
de Dokumentation bitte per Mail!

2 Gene name errors are widespread in the scientific literature
Mark Ziemann, Yotam Eren und Assam El-Osta
Genome Biology 2016 17:177
https://doi.org/10.1186/s13059-016-1044-7
Abgerufen: 23 August 2016

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://doi.org/10.1186/s13059-016-1044-7
https://web.archive.org/web/20201126074931/https://support.microsoft.com/de-de/office/importieren-oder-exportieren-von-textdateien-txt-oder-csv-5250ac4c-663c-47ce-937b-339e391393ba?ui=de-de&rs=de-de&ad=de
https://web.archive.org/web/20201126074931/https://support.microsoft.com/de-de/office/importieren-oder-exportieren-von-textdateien-txt-oder-csv-5250ac4c-663c-47ce-937b-339e391393ba?ui=de-de&rs=de-de&ad=de

2.9.12 Anwendungsgrenzen

Obwohl Tabellenkalkulationen im Laufe der Jahrzehnte theoretisch immer
grolsere Datenmengen verarbeiten konnen, liegt ihr sinnvolles Hauptein-
satzgebiet weiterhin im Bereich uberschaubarer Tabellengro3en. Fur den
Umgang mit wirklich groSen Datenmengen ist die Verwendung von Tabel-
lenkalkulationen in der Regel zu unhandlich und zu fehleranfallig.

US-Amerikanische I'T-Forscher stellten in einer Metastudie fest, dass 88%
aller untersuchten Excel-Tabellen Fehler enthalten'. Fiir die Verwaltung
groBer Datenbestande? sind Datenbankprogramme besser geeignet und
fur die ingenieurmalSige Verarbeitung und Analyse komplexer Daten und
grolSer Datenmengen lernen wir die Sprache Python als wesentlich ele-
ganteres und machtigeres Werkzeug kennen.

Maximale Zeilenzahl

Excel 95 16.384 (2'%)

Excel 97 65.536 (2'°)

Excel 2007, LibreOffice 3.3 (2011) 1.048.576 (2%°)

Google Docs (Stand 2020) 1562 bis 400.000, je nach Spaltenzahl

Maximale Spaltenzahl

Excel 5, Google 256: A...Z, AA, AB...1IV

LibreOffice 3.3 1024: A...AM]

Excel 2007, LibreOffice 7.4 (2022) 16.384: A... XFD

Maximale Zellenzahl

Google Docs (Stand 2020) 400.000

LibreOffice 1.073.741.824 (2*)

1 What We Know About Spreadsheet Errors
Raymond R. Panko
Journal of End User Computing's, Band 10, Nr. 2, Seiten 15-21
http://panko.shidler.hawaii.edu/SSR/Mypapers/whatknow.htm
Abgerufen: 27. August 2019

2 Excel: Why using Microsoft's tool caused Covid-19 results to be lost
BBC / Leo Kelion
https://www.bbc.com/news/technology-54423988
Abgerufen: 13. Oktober 2020

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://www.bbc.com/news/technology-54423988
http://panko.shidler.hawaii.edu/SSR/Mypapers/whatknow.htm

3 Hypertext

Bevor wir in Kapitel 4 diese Buches mit der Einfuhrung in die Program-
mierung beginnen, wollen wir zunachst einmal einen Blick in die formell
strukturierte Welt einer typischen , Computersprache” werfen.

Eine der bekanntesten Sprachen, mit denen Texte so geschrieben werden
konnen, dass sie sowohl von Menschen gelesen als auch von Computern
richtig interpretiert werden, tragt den Namen ,HTML".

Die ,Hypertext Markup Language” HTML stellt Moglichkeiten zur Verfu-
gung, Textstellen so zu markieren, dass Verbindungen zwischen ihnen
hergestellt werden konnen, dass ihre Struktur gut wiedergegeben wer-
den kann und dass Informationselemente wie Listen, Bilder und Tabellen
einfach und ohne besondere Werkzeuge eingefiigt werden konnen.

Als Hypertext bezeichnen wir dabei einen strukturierten Text, der akti-
vierbare Komponenten enthalt, mit denen eine Navigation von einer Text-
stelle zu einer bestimmten anderen Textstelle im selben oder einem ande-
ren Hypertext moglich ist.

Die Start- und Zielpunkte dieser Verweise nennen wir , Anker”.

Die Verweise selbst werden als ,Links” oder auch , Hyperlinks” bezeich-
net. Da das englische Wort ,link“ auch ,Kettenglied” bedeutet, finden
sich in Mentuleisten oft Kettensymbole zum Einfugen eines Hyperlinks.

HTML ist zunachst einmal keine Programmiersprache: Sie ist nicht ohne
weiteres dazu geeignet, wiederkehrende Prozesse zu automatisieren oder
Berechnungen durchzufuhren. Wir werden sie aber im Laufe dieses Se-
mesters immer wieder dazu verwenden, Texte zu strukturieren und Inhal-
te fur Webbrowser darstellbar zu machen.

Hinter nahezu jeder Webseite steckt ein HTML-Text. Um diesen sichtbar
zu machen, genugt es in den meisten Webbrowsern unter Windows oder
Linux, die Tastenkombination zu driicken. Was auf den ersten
Blick wie ein chaotisches Gewimmel aus spitzen Klammern und krypti-
schen Abkurzungen anmutet, besitzt uberraschend oft eine klare Struk-
tur.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

78

3.1 HTML-Tags

Die Markierungen, die in gewohnliche Texte eingefiigt werden miussen,
damit aus diesen Hypertexte werden, heilSen ,Tags“. In HTML-Dateien
sind sie auf den ersten Blick dadurch erkennbar, dass sie von spitzen
Klammern umschlossen werden.

Ublicherweise treten HTML-Tags paarweise auf. Zu einem offnenden Tag
(Starttag) gehort ein schlieBendes Tag (Endtag), welches mit einem
Schragstrich eingeleitet wird.

Das englische Wort ,tag” (Aussprache: ,tahg”) bedeutet nicht nur Mar-
kierung, sondern auch Etikett oder Auszeichnung. Als ,RFID-Tags” ken-
nen Sie bestimmt die verbreiteten Funketiketten zur Diebstahlsicherung,
in Musikdateien werden die Informationen zu Titel und Kunstler im ,ID3-
Tag” gespeichert und die Reviermarken von Spruhlackschmierern heifSen
ebenfalls ,Tags”.

Abb. 41: Nerdwitz. tho: Markus Tacker, Lizenz: CC BY-ND 2.0

Martin Vogel: Bauinformatik mit Python, WS 2025/26

79

https://flickr.com/photos/tacker/9534194705
https://flickr.com/photos/tacker/9534194705

3.2 Hierarchische Ordnung

Starttag, Inhalt und Endtag bilden
gemeinsam ein HTML-Element.
Diese Elemente konnen ineinan-
der verschachtelt sein, durfen sich
aber nicht uberschneiden. Bevor
ein ubergeordnetes Element
durch ein Endtag geschlossen
wird, mussen zuerst alle unterge-
ordneten Elemente geschlossen
werden.

Diese strenge Ordnung ist der
Sprache XML (Extensible Markup
Language) geschuldet, auf deren
Struktur HTML und viele andere
zur computerbasierten Verarbei-
tung entworfenen Sprachen auf-
bauen.

Ein einfaches Beispiel der hierar-
chischen Ordnung in einem
HTML-Text zeigt das Diagramm in
Abbildung 42. Das HTML-Element
umfasst den gesamten Inhalt und
gliedert sich in einen Kopfteil
(head) und einen Inhaltsteil
(body).

Der Kopfteil enthalt hier nur das
Element ,title“. Es legt den vorde-

<html>

<head>

<title>
Begruessung

</title>
</head>
<body>
<hl>

Hallo Welt
</h1>
Schö:;n, dass
Sie da sind!
</body>
</html>

Abb. 42: HTML-Struktur

ren Teil der Titelzeile des im nachsten Bild zu sehenden Webbrowsers
fest. Ublicherweise finden wir im Kopfteil Angaben zu Autor und Zeichen-
kodierung sowie Hinweise fur Suchmaschinen und diverse andere Infor-
mationen, die auf der Webseite hinterher nicht direkt zu sehen sind.

Der Inhaltsteil enthalt den darzustellenden Text. In diesem Fall ist es der
Ausruf ,Schoén, dass Sie da sind!“, welchem eine Uberschrift ersten Gra-
des mit dem Inhalt ,,Hallo Welt” vorangestellt ist.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

80

Dass in dem Beispiel ausgerechnet das Wort ,Schon“ so unschon als
»Schön” daherkommt, hat den Grund, dass diese Ersatzdarstellung
auch unter ungunstigsten technischen Randbedingungen noch funktio-
niert. Mehr dazu in Kapitel 3.5.

Diese HTML-Datei wird in einem Webbrowser vermutlich so ahnlich dar-
gestellt werden, wie es Abbildung 43 zeigt'.

[Begruessung X

— C @ Ouelltexte."HTML—Text.html| w

Hallo Welt

Schon, dass Sie da sind!

Abb. 43: Ein Browser stellt HTML-Seiten dar

Es ist gut moglich, dass das Erscheinungsbild in unterschiedlichen Brow-
sern variiert, denn welche Schriftart verwendet wird, welche Abstande
die Textbereiche untereinander haben und wie grof3 die verschiedenen
Texte sind, steht nicht in der HTML-Datei. Es ist auch keine gute Idee,
das durch , geschickte” Verwendung von HTML-Strukturelementen festle-
gen zu wollen. Die Aufgabe der Sprache HTML liegt in der inhaltlichen
Strukturierung eines Textes. Fur das Layouten gibt es geeignetere Mittel
(siehe Kapitel 3.6).

1 Solche Abbildungen eines Bildschirmfensters oder eines kompletten Bildschirms
nennt man ,Bildschirmfoto” oder auch ,Screenshot”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

3.3 Attribute

Manche HTML-Tags sind mit Zusatzinformationen versehen, die wir , At-
tribute” nennen. Attribute haben einen Namen und ihnen kann mithilfe
eines Gleichheitszeichens ein Wert zugewiesen werden.

Eine Textstelle, die auf eine andere Webseite verweisen soll, benotigt bei-
spielsweise die Information, wie die Adresse der Seite lautet, die beim
Anklicken angesprungen werden soll. Wir verwenden dazu das Ankertag
a, indem wir ein HTML-Element anlegen, das aus dem zu markierenden
Text besteht, der mit einem Start- und Endtag umschlossen ist und wei-
sen im Starttag dem Attribut mit dem Namen href den Wert
L2http://www.hs-bochum.de/” zu.

In einem geeigneten Texteditor sieht das fertige HTML-Element dann so
aus wie der Inhalt des grauen Feldes:

Name / Wert Attribut
Starttag

|

Meine Hochschule

Endtag

Inhalt

Abb. 44: Bestandteile eines HTML-Elements

Die Zeichenfolge ,http://“ gibt dabei das URL-Schema an, das anzeigt, auf
welche Weise auf die Daten auf dem Webserver www.hs-bochum.de zuge-
griffen wird. In diesem Fall uber eine Internetverbindung mithilfe des
»Hypertext-Transfer-Protokolls“ http.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

82

3.4 Grafiken

Grafiken binden wir mithilfe des Tags img ein. Wichtigstes Attribut ist die
Quellenangabe src.

Mit weiteren Attributen konnen wir die Grofse des Bildes in , Pixeln” (un-
gefahr ein viertel Millimeter) oder relativ zum verfugbaren Platz ange-
ben. Zusatzlich konnen wir festlegen, ob und wie breit ein Rahmen um
das Bild gezeichnet werden soll.

Wenn sich das Bild nicht in demselben Verzeichnis wie die einbindende
HTML-Datei befindet, muss sein Dateiname noch um den (relativen oder
absoluten) Pfadnamen erganzt werden.

Wenn die Datei aus dem Internet geladen werden soll, ist ihrem Namen
das URL-Schema mit dem entsprechenden Protokoll, der Servername und
der Pfad zur Datei voranzustellen.

Wir konnen HTML-Tags beinahe beliebig verschachteln. Um ein Bild an-
klickbar zu machen, verwenden wir es als Inhalt eines Ankertags:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

3.5 HTML-Entitaten

HTML-Dateien mussen von unterschiedlichsten Rechnern verarbeitet
werden. Manche dieser Gerate unterstutzen jedoch nur eingeschrankte
Einzelbyte-Zeichensatze mit wenig mehr als zweihundert unterschiedli-
chen Zeichen!.

In HTML-Dateien konnen wir auch dann samtliche Unicode-Zeichen ver-
wenden, wenn die Datei selbst nur in einer Zeichenkodierung gespeichert
wird, die nur den minimalen 7-Bit-ASCII-Zeichensatz mit weniger als hun-
dert darstellbaren Zeichen kennt.

Den wichtigsten Sonderzeichen sind dabei kurze Namen zugeordnet. Die
Kombination aus solch einem Namen, einem einleitenden Ampersand und
einem abschlieSenden Semikolon nennen wir HTML-Entitat.

Ein kleines B (Beta) lasst sich beispielsweise durch die HTML-Entitat
β umschreiben, das grofSer-gleich-Zeichen = wird durch ≥ darge-
stellt und das Unendlich-Symbol «© wird mit ∞ umschrieben.

Auf http://unicode.e-workers.de/entities.php finden Sie eine Tabelle mit
den wichtigsten HTML-Entitaten.

Eine vollstandige sortierte Ubersicht iiber samtliche verfiigharen HTML-
Entitaten erhalten Sie mit dem folgenden Python-Programm:

html.entities
i,j sorted(html.entities.html5.1items(),
key= x:x[0].lower()):
e i:
print(j+"\t&"+1i)
UnicodeEncodeError:

1 Siehe auch Kapitel 6.2, Zeichenkodierung - von ASCII bis Unicode

Martin Vogel: Bauinformatik mit Python, WS 2025/26

84

http://unicode.e-workers.de/entities.php

3.6 CSS

Ein sauberes HTML-Dokument enthalt nur Informationen und Struktur-
elemente wie Uberschriften, Textabsatze oder Tabellen. Das Aussehen auf
dem Bildschirm oder Papier ist davon weitgehend unabhangig.

Um einem HTML-Dokument ein Layout mit bestimmten Schriftgrofen,
Fonts, Farben und Abstanden zuzuordnen, verwendet man die sogenann-
ten ,Cascaded Style Sheets”. Sie enthalten Anweisungen, wie bestimmte
HTML-Elemente zu formatieren sind.

Auf diese Weise konnen Form und Inhalt sauber getrennt werden und es
ist mit wenig Aufwand verbunden, denselben HTML-Text fur ganz ver-
schiedene Ausgabemedien, vom Mobiltelefon bis zum A3-Blatt, anspre-
chend zu gestalten.

In dieser Auflage des Skripts gehen wir nicht weiter auf das Layouten von
HTML-Dokumenten durch CSS ein. Fur das Selbststudium ist
https://wiki.selfhtml.org/wiki/CSS ein ganz guter Einstieg.

Wer einfach nur schnell eine nicht allzu wichtige HTML-Seite etwas hub-
scher machen will, muss dazu nicht unbedingt CSS lernen. Die gangig-
sten Sprachmodelle, wie ChatGPT oder Gemini, konnen aus gut formulier-
ten Beschreibungen den zur verlangten Darstellung benotigten CSS-Code
in brauchbarer Qualitat erzeugen. Das Problem besteht dann eher darin,
dass sehr viele Menschen gar nicht in der Lage sind, gut zu formulieren,
was sie eigentlich haben mochten®.

1 Kreativ tatige Menschen, die Auftragsarbeiten ausfiihren miissen, kennen das Pro-
blem.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

85

https://wiki.selfhtml.org/wiki/Einstieg_in_CSS/Stylesheets_einbinden#Warum_Layouts_mit_CSS.3F

4 Algorithmen und ihre Darstellung

Ein Algorithmus ist eine eindeutige Handlungsvorschrift, mit der sich ei-
ne Aufgabe in einer endlichen Zahl von Losungsschritten abarbeiten
lasst.

Algorithmen haben zunachst einmal gar nichts mit Computern zu tun. Je-
de Verwaltungsvorschrift in einer Behorde kann ein Algorithmus sein,
wenn sie die oben genannte Definition erfullt. Bevor Sie damit beginnen,
ein Computerprogramm zur Losung eines Problems zu schreiben, ist es
eine gute Idee, wenn Sie sich zuerst uber den zugrunde liegenden Algo-
rithmus Gedanken machen. Welche Schritte mussen in welcher Reihen-
folge ausgefuhrt werden? Gibt es Schritte, die wiederholt werden mus-
sen? Gibt es Schritte, die nur unter bestimmten Bedingungen ausgefuhrt
werden?

Durch eine grafische Darstellung dieses Algorithmus lasst sich die Umset-
zung in ein Programm oft erheblich vereinfachen. Fur die Programm-
dokumentation ist ein Diagramm der Programmstruktur zudem ein unver-
zichtbarer Bestandteil, um eine gewahlte Losung nachvollziehbar
festzuhalten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

86

4.1 Flussdiagramm

Bei sehr einfachen Algorithmen lasst sich die Reihenfolge der auszufuh-
renden Schritte grafisch mit einem Flussdiagramm veranschaulichen.

Pfeile zeigen die Reihenfolge der Ausfuhrung an. Berechnungen werden
durch Rechtecke dargestellt, Ein- und Ausgabevorgange durch Parallelo-
gramme und Fallunterscheidungen mit Rauten.

lies die Zahlen
a und b ein

ist b gleich
null?

teile a durch b,
speichere das
Ergebnis in ¢ A

gib eine Fehler-

Abb. 45: Ein einfaches Flussdiagramm

Bei komplexeren Algorithmen mit vielen Fallunterscheidungen oder mit
Schleifen, in denen Abschnitte wiederholt ausgefilhrt werden, verlieren
Flussdiagramme schnell ihre Ubersichtlichkeit. Zur Darstellung von nicht
trivialen Algorithmen verwenden wir deshalb in der Regel die im folgen-
den Kapitel vorgestellten Struktogramme.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

87

4.2 Struktogramm

Auch, wenn es auf den ersten Blick anders erscheinen mag: Struktogram-
me stellen eine besonders uibersichtliche Form dar, um Algorithmen unab-
hangig von der Programmiersprache, in der sie spater’ umgesetzt wer-
den, grafisch darzustellen.

Die Bearbeitungsreihenfolge der einzelnen Arbeitsschritte wird im Struk-
togramm streng von oben nach unten abgebildet, Schleifen werden einge-
ruckt und bei Fallunterscheidungen fachert sich das Struktogramm in
mehrere Spalten auf. Die im Flussdiagramm vorhandenen Richtungspfeile
zwischen den Arbeitsschritten gibt es in Struktogrammen nicht.

Struktogramme sind nach DIN 66261 genormt?. Nach ihren Erfindern
Isaac Nassi und Ben Shneidermann werden sie auch als Nassi-Shneider-
mann-Diagramme bezeichnet.

Gelegentlich findet man im Netz Struktogramme, in denen anstelle einer
sprachunabhangigen Darstellung eines Algorithmus Python- oder Java-
Programmcode enthalten ist. Das widerspricht dem Sinn dieser Darstel-
lungsart und sollte von uns nicht ibernommen werden.

4.2.1 Reihenfolge der Arbeitsschritte

Arbeitsschritte, die nacheinander (sequenziell) ausgefuhrt werden sollen,
werden im Struktogramm als untereinander liegende Rechtecke von glei-
cher Breite dargestellt. In den Rechtecken steht der jeweilige Arbeits-
schritt in stichwortartiger Kurzform.

1 Lassen Sie mich hier bitte wenigstens so tun, als wisste ich nicht, dass die meisten
kleineren Programme nicht so herum entstehen, sondern bei Bedarf schnell in die
Tastatur gehackt und, wenn uberhaupt, erst danach dokumentiert werden.

2 Als Mitglied der Hochschule Bochum konnen Sie diese und viele weitere Normen fiir
Sie kostenlos von https://nautos.de/U2P/login herunterladen, solange sie sich im Netz-
werk der Hochschule befinden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

88

https://nautos.de/U2P/login

Eingabe: x

y « f(x)

Ausgabe: y

Abb. 46: Struktogramm: Sequenz von Arbeitsschritten

Um zu zeigen, dass in einem Arbeitsschritt einer Variable ein Wert zuge-
wiesen wird, verwenden wir als Zuweisungszeichen (,,... wird zu ...“) ei-
nen nach links gerichteten Pfeil ,<“. Wir vermeiden dadurch jede Ver-
wechslungsgefahr mit dem Vergleichsoperator ,ist gleich”. Gelegentlich
findet man in Struktogrammen auch die auf Schreibmaschinen und PCs
ohne Compose-Taste! leichter zu tippende Ersatzdarstellung ,:=“ anstelle
eines Pfeils.

Anstelle von ,Eingabe:“ und , Ausgabe:”“ konnen wir auch kurzer ,E:“ und
»A:“ schreiben.

4.2.2 Fallunterscheidung

Gibt es in einem Algorithmus zwei Ausfuhrungsalternativen, die von einer
zu treffenden Entscheidung abhangen, so teilt sich das Struktogramm
darunter in zwei Spalten auf.

a=107
ja nein
A: ,a ist grolser A: ,aist
oder gleich kleiner als
zehn“ zehn“

Abb. 47: Struktogramm: Fallunterscheidung

Die Kopfzeile der Fallunterscheidung ist dreigeteilt. Das obere Dreieck
enthalt die Frage und die beiden unteren Dreiecke die beiden moglichen
Antworten.

1 Ich halte es fiir eine gute Idee, die fiir die meisten Menschen vollig tiberflissige Fest-
stelltaste (0, links neben der Taste ,,A”) zur Compose-Taste umzuwidmen. Den Pfeil
nach links tippen Sie dann einfach mit der Tastenfolge ,Compose < -“. Siehe auch htt-
ps://de.wikipedia.org/wiki/Compose-Taste.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://de.wikipedia.org/wiki/Compose-Taste
https://de.wikipedia.org/wiki/Compose-Taste

Je nachdem, welche Antwort die richtige ist, wird der Ausfuhrungszweig
in der linken oder in der rechten Spalte betreten.

Ausfuhrungszweige durfen auch leer sein.

Wird der Algorithmus im weiteren Verlauf wieder unabhangig vom ge-
wahlten Ausfuihrungszweig abgearbeitet, so werden die gemeinsamen
Ausfuhrungsschritte wieder in voller Breite dargestellt.

4.2.3 Mehrfachauswahl

Gibt es mehr als zwei Wahlmoglichkeiten, von denen immer nur eine aus-
gefuhrt wird, so gliedert sich das Struktogramm in entsprechend viele
Spalten auf.

X ist ...

\

<10 > 10 sonst

A: xist A: ,xist A: X ist
kleiner als | groRer als gleich
zehn“ zehn“ zehn“

Abb. 48: Struktogramm: Mehrfachauswahl

Die letzte Wahlmoglichkeit (,sonst”) ergibt sich aus den anderen und
muss nicht mehr explizit abgefragt werden. Diese Spalte der Fallunter-
scheidung wird im Struktogramm gegenuber den anderen abgesetzt.

4.2.4 Abweisende Schleife

Schleifen sind Abschnitte in einem Algorithmus, die mehrmals hinterein-
ander wiederholt werden konnen.

Uber die Anzahl der Wiederholungen entscheidet die im Schleifenkopf
formulierte Schleifenbedingung. Vor jedem Schleifendurchlauf wird die
Schleifenbedingung gepruft. Ist sie erfiillt, wird der Schleifendurchlauf
ausgefuhrt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

90

X1

solange x < 10:

Xex+1

A: X

Abb. 49: Struktogramm: Schleife

Wenn die Schleifenbedingung bereits bei der ersten Prufung nicht erfullt
ist, wird der Schleifenkorper niemals betreten. Man nennt diesen Schlei-
fentyp daher auch abweisende Schleife. Weil die Abfrage im Schleifen-
kopf erfolgt, werden abweisende Schleifen auch ,kopfgesteuerte Schlei-
fen” genannt.

Der zu wiederholende Schleifenkorper ist im Struktogramm stets einge-
ruckt.

4.2.5 Nichtabweisende Schleife

Wenn die Schleifenbedingung erst zum Ende der Schleife gepruft wird
und der Schleifenkorper daher immer mindestens einmal durchlaufen
wird, spricht man von einer nichtabweisenden Schleife. Analog zur , kopf-
gesteuerten” abweisenden Schleife werden nichtabweisende Schleifen
auch ,fullgesteuerte Schleifen” genannt.

x«0

Xex+1

A: X

bis x = 10
Abb. 50: Struktogramm: Nichtabweisende Schleife

4.2.6 Endlosschleife

Endlosschleifen sind Schleifen, deren Schleifenbedingung immer erfullt
ist. Sie werden in einem Struktogramm durch einen nach rechts einge-
ruckten , schwebenden” Block dargestellt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

E: x

y « f(x)

Ay

Abb. 51: Struktogramm: Endlosschleife

Eigentlich durften Endlosschleifen niemals Teil eines Algorithmus sein,
denn dessen Definition lautet ja, dass eine Aufgabe in endlich vielen
Schritten abzuarbeiten ist.

Ausbruch aus der Endlosschleife

Endlosschleifen in Struktogrammen besitzen daher eine Art Notausgang.
Dazu wird eine Abbruchbedingung im Schleifenkorper abgefragt. Ist sie
erfullt, erfolgt ein gezielter Aussprung. Diesen Aussprung stellen wir im
Struktogramm durch ein leeres! Feld dar, in dem durch zwei schrage Lini-
en ein Pfeil nach aullen angedeutet ist.

Der Algorithmus wird nach dem Aussprung unterhalb der Schleife fortge-
setzt.

Xex+1
A: X
) x =107 ,
ja nein
Aussprung -

Abb. 52: Struktogramm: Endlosschleife mit Aussprung

Siehe dazu auch Kapitel ,Aussprung mit break” auf Seite 153.

Wenn der Aussprung den einzigen Zweck hat, eine nichtabweisende
Schleife zu formen, sollten wir es unbedingt vorziehen, diese im Strukto-
gramm wie in Kapitel 4.2.5 gezeigt darzustellen. Das ist ubersichtlicher

1 In den Beispielen auf diesen Seiten ist es ausnahmsweise zusatzlich mit dem Wort
L»Aussprung” versehen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

92

und sauberer. Denken Sie bitte immer daran, dass ein Struktogramm kei-
ne grafische Darstellung eines Computerprogramms ist, sondern die gra-
fische Darstellung des darunter liegenden Algorithmus.

4.2.7 Beispiel fur ein vollstandiges
Struktogramm

Das folgende Struktogramm stellt einen Algorithmus dar, mit dem sich in
hochstens zehn Versuchen jede von der Anwenderin oder dem Anwender
des Algorithmus ausgedachte ganze Zahl zwischen 1 und 1000 ermitteln
lasst. Die Ruckmeldung erfolgt uber einen Tastendruck. Ist die ausge-
dachte Zahl grofSer als die vom Algorithmus , geratene”, so soll ein Minus-
zeichen eingegeben werden, ist sie zu grof, soll ein Pluszeichen eingege-
ben werden und jede andere Eingabe zeigt an, dass der Algorithmus die
Ratezahl erfolgreich herausgefunden hat.

Der Algorithmus bestimmt dazu ein Suchintervall mit Ober- und Unter-
grenze. Anfangs liegen diese Werte bei 1 und 1000. Mit jedem Ratever-
such wird das Intervall halbiert. Die Funktion int sorgt durch Abschnei-
den der Nachkommastellen dafur, dass das Ergebnis der Halbierung
wieder eine ganze Zahl wird. Nach spatestens 10 Halbierungen hat das
Suchintervall die Grolse 1 und die Zahl ist gefunden.

Untergrenze « 1

Obergrenze « 1000

wiederhole zehn Mal:

Ratezahl « int((Obergrenze + Untergrenze) / 2)
A: Ratezahl
E: Tastendruck

Tastendruck ist ...

T

e sonst
. K
Obergrenze « | Untergrenze « A pJuhu!
Ratezahl - 1 Ratezahl + 1
Aussprung

Abb. 53: Struktogrammbeispiel ,Zahlenraten”

Martin Vogel: Bauinformatik mit Python, WS 2025/26

93

4.2.8 Struktogramm-Editor

Es gibt diverse Programme zum Zeichnen von Struktogrammen. Sie beno-
tigen keines davon. Ein Stift, ein Lineal und ein Geodreieck oder ein ein-
faches Zeichenprogramm wie Dia' oder LibreOffice Draw reichen vollig
aus.

Structorizer 3.32-11 - o x
Datei Bearbeiten Diagramm Einstellungen Debug Hilfe
D EH@: a9 R YBEB: F=sdg4gXB
DEHREFEEDNGEER
0000000000 Fh: ¢ BE: # A HE

Zahlenraten

Untergrenze « 1

Obergrenze « 1000

wiederhole 10 Mal:

Ratezahl « int({Obergrenze + Untergrenze) / 2)

gib Ratezahl aus

lies Tastendruck ein

Tastendruck ist ...

wt" sonst

Obergrenze « Ratezahl -1 | Untergrenze « Ratezahl + 1 | gib aus: Juhu!"

Abb. 54: Der Struktogramm-Editor ,Structorizer”

Wenn Sie unbedingt ein spezielles Programm wie Structorizer? verwen-
den mochten, exportieren Sie die erzeugte Grafik bitte in einem Vektor-
format wie SVG oder PDF, damit das Ergebnis einigermalsen lesbar wird.
Die ganzen Uberpriifungs-Einstellungen im Programm konnen Sie deakti-
vieren. Sie helfen Thnen nur, wenn Sie versuchen, in dem Struktogramm-
Editor Java-Programme zu schreiben.

1 http://dia-installer.de/
2 https://structorizer.fisch.lu/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://structorizer.fisch.lu/
http://dia-installer.de/

5 Python

Zur Umsetzung unserer Algorithmen in von einem Computer ausfuhrbare
Programme benotigen wir eine Programmiersprache. Die Auswahl der
zur Verfugung stehenden Sprachen ist riesig. Es gibt zahlreiche speziali-
sierte Programmiersprachen fur die verschiedensten Anwendungsgebiete
von der kaufmannischen Buchhaltung bis zur kunstlichen Intelligenz. Es
gibt aber auch Sprachen, die universell fur eine Vielzahl von Aufgaben-
stellungen einsetzbar sind. Manche sind schwer zu erlernen, andere wie-
derum bieten so gut wie keine Einstiegshurden.

Gelegentlich werden Sprachen nur fur ein bestimmtes Betriebssystem
oder fur eine bestimmte Hardware (man sagt auch: fir eine bestimmte
Plattform) angeboten, einige Sprachen funktionieren sogar nur innerhalb
eines bestimmten Softwarepakets. Es gibt jedoch auch Sprachen, die fur
eine Vielzahl von Plattformen erhaltlich sind. Nicht zuletzt kann man fur
Programmiersprachen richtig viel Geld bezahlen - oder sie kostenlos her-
unterladen.

Aus all diesen Uberlegungen heraus haben wir uns fiir eine Sprache ent-
schieden, die 1991 von Guido van Rossum veroffentlicht wurde: Python.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

95

Python ist kostenlos, lauft auf so
gut wie allen verbreiteten Be-
triebssystemen, ist sehr einfach zu
erlernen, eignet sich jedoch als
Vielzwecksprache fur zahlreiche
unterschiedliche Anwendungsge-
biete. Sie ist objektorientiert und
besitzt nur wenige Sprachelemen-
te, kann aber durch Bibliotheken
fast beliebig modular erweitert
werden.

AulSerdem ist Python eine Skript-
sprache, deren Programmtexte
unmittelbar vom Python-Interpre-
ter ausgefuhrt werden konnen.
Sprachen wie Java, C oder Fortran
benotigen dagegen einen Compi-
ler, welcher den Quelltext erst
mehr oder weniger aufwendig in
ein ausfuhrbares Programm uber-
setzt, das dann unter Umstanden

Abb. 55: Guido van Rossum 2006 (dsearls,
CC-BY-SA 2.0)

nur auf der Plattform lauft, auf der es kompiliert wurde.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

96

http://www.flickr.com/photos/52614599@N00/199700290/
http://www.flickr.com/photos/52614599@N00/199700290/

5.1 Download und Installation

Python ist frei erhaltlich. Die Downloadpakete fur Windows und macOS
finden Sie auf http://www.python.org/download/. Wenn Sie eine Paketver-
waltung wie WinGet! unter Windows oder Synaptic unter Linux einsetzen,
konnen Sie Python einfach damit installieren.

Fur Mobilgerate gibt es angepasste Entwicklungsumgebungen, beispiels-
weise Pydroid 3 fiir das Linux-Betriebssystem Android? oder Pythonista 3
flir iOS°. Leider sind diese iiblicherweise nicht kostenlos.

Beachten Sie, dass es in der Vergangenheit zwei unterschiedliche Versio-
nen von Python gab, deren Quelltexte nicht ohne weiteres untereinander
austauschbar® sind! Die Sprache wurde mit der 2008 erschienenen Ver-si-
on 3 erheblich aufgeraumt. Prufen Sie vor allem ergoogelte Antworten
sorgfaltig darauf, dass sich diese nicht auf die vollig veraltete Version 2.7
von Python beziehen! Einige Forenantworten im Internet halten sich ver-
bluffend hartnackig.

Wir befassen uns in diesem Kurs nur mit der verbesserten Version Py-
thon 3. Die Unterversion (3.11 oder 3.12) spielt fur uns keine grofSe Rolle,
jedoch sollten Windows-Anwenderinnen und -anwender moglichst Versio-
nen von 3.6 an aufwarts installieren, um volle Unicode-Unterstitzung zu
geniellen. Auch die komfortablen F-Strings zur formatierten Zahlenausga-
be gibt es erst seit Version 3.6.

Unter Microsoft Windows kann Python sowohl mit als auch ohne Adminis-
trationsrechte installiert werden. Aus Grunden der Datensicherheit ist es
empfehlenswert, das Installationsprogramm immer mit Rechtsklick ,als
Administrator” zu starten und fur alle Benutzerinnen und Benutzer des
Computers zu installieren. Im Installationsprogramm selber hat es sich
bewahrt, die Option ,Customize Installation” zu wahlen und ein paar
Hakchen zu setzen, die das nachtragliche Installieren von Modulen er-
leichtern. Im Zweifelsfall setzen Sie lieber ein Hakchen mehr als eines zu
wenig.

1 Im Anhang-Kapitel 7.3 finden Sie eine kurze Anleitung zu WinGet.

2 Pydroid 3 - Educational IDE for Python 3
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=de

3 Pythonista 3 - https://itunes.apple.com/de/app/pythonista-3/id1085978097?mt=8
4 In der EDV bezeichnet man solche Unvertraglichkeit als , Inkompatibilitat”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

https://itunes.apple.com/de/app/pythonista-3/id1085978097?mt=8
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=de
http://www.python.org/download/

& Python 3.11.5 (64-bit) Setup

python

for

windows

Install Python 3.11.5 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

® Install Now
ChUsers\QemuhAppData\Local\Programs\Pythen'Python311

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize installation
Choose location and features

Use admin privileges when installing py.exe

%ﬂ.dd python.exe to PATH Cancel |

Abb. 56: Wihlen Sie ,Customize installation”

& Python 3.11.5 (64-bit) Setup

pgth?n

windows

Optional Features
Documentation
Installs the Python documentation files.
pip
Installs pip, which can download and install other Python packages.

telftk and IDLE

Installs tkinter and the IDLE development environment.

Python test suite

Installs the standard library test suite.

py launcher for all users (requires admin privileges)

Installs the global 'py’ launcher to make it easier to start Python.

. Back | | Next || Concel |

Abb. 57: Setzen Sie ruhig alle Hikchen

Martin Vogel: Bauinformatik mit Python, WS 2025/26

98

s Python 3.11.5 (64-bit) Setup _ %

Advanced Options

Install Python 3.11 for all users

hssociate files with Python (requires the 'py’ launcher)
Create shortcuts for installed applications
Add Python to environment variables
Precompile standard library

[Download debugging symbals
[Download debug binaries (requires VS 2017 or later)

Customize install location
CM\Program Files\Python311 Browse

pgth{qm

Back Glnstall Cancel

windows

Abb. 58: Installation fiir alle Benutzerinnen und Benutzer

Nach der Installation konnen Sie die integrierte Entwicklungsumgebung
IDLE unter Windows und Linux uber das Startmenu aufrufen.

Unter Windows-Betriebssystemen finden Sie IDLE 3 unter ,Start - (Alle)
Programme - Python 3.x - IDLE (Python GUI)“ oder Sie drucken die Win-
dowstaste B und tippen ,id...“ (Abb. 59).

Martin Vogel: Bauinformatik mit Python, WS 2025/26

99

Alle Apps Dokumente Einstellungen Mehr +

Héchste Ubereinstimmung

b IDLE (Pythcn 3.11 64-bit) E
App

IDLE (Python 3.11 64-bit)
App

1 Offnen

) Als Administrator ausfihren
Dateispeicherort 6ffnen
An "Start" anheften

~ An Taskleiste anheften

Deinstallieren

Abb. 59: Das Startmenti von Windows 11

Unter Linux-Desktopumgebungen wie beispielsweise Ubuntu Linux ist die
Entwicklungsumgebung unter ,Anwendungen - Softwareentwicklung -
IDLE 3“ einsortiert ... oder Sie dricken die Super-Taste (Windowstaste)
und tippen ,id...".

Wenn Sie gerade nicht an Threm eigenen Rechner sitzen und daher keine
Software installieren konnen oder durfen, mussen Sie trotzdem nicht auf
das Schreiben und Ausfuhren von Pythonprogrammen verzichten. Es gibt
inzwischen zahlreiche Webseiten, uber die Python 3 direkt in einem Web-
browser ausgefithrt werden kann'.

1 https://www.python.org/shell/
http://www.pythontutor.com/live.html
https://repl.it/languages/python3
https://'www.jdoodle.com/python3-programming-online
https://www.tutorialspoint.com/execute python3 online.php
https://www.onlinegdb.com/online python debugger

Martin Vogel: Bauinformatik mit Python, WS 2025/26

100

https://www.onlinegdb.com/online_python_debugger
https://www.tutorialspoint.com/execute_python3_online.php
https://www.jdoodle.com/python3-programming-online
https://repl.it/languages/python3
http://www.pythontutor.com/live.html
https://www.python.org/shell/

5.1.1 Module fur wissenschaftliches Arbeiten

Fur den Einsatz im wissenschaftlichen Bereich gibt es einige sehr interes-
sante Zusatzpakete fur Python, namentlich die Module fiir Numerik, sym-
bolische Mathematik und wissenschaftlich anspruchsvolle Diagrammdar-
stellungen: NumPy, SymPy, SciPy und Matplotlib. Diese lassen sich mit
der Paketverwaltung des Betriebssystems (Abb. 60) oder dem Python-In-
stallationsprogramm PIP (Abb. 61) schnell installieren.

Synaptic-Paketverwaltung - o x
Datei Bearbeiten Paket Einstellungen Hilfe
cl E’ 53 [Schnellauswahl-Filter Q
Neu laden Alle Aktualisierungen vormerken Anwenden Eigenschaften python3 Suche
F I e PYUNONID-INdl RUpedie W £3-L0uid; 0L, KD FTMILIATT T IVILPAMIL SUINY uDrdiy 101 Fywon >
thon3-matplotlib 15.1-1ubur 13,1 MB Python based plotting system in a style similar to Matlab (Python 3
Installiert (lokal oder veraltet) B ey P ¥ P 9¥ Y ®y)
Installiert (manusll) . python3-mccabe 0.21-1 58,4 kB Python code complexity checker (Python 3)
Nicht installiert M <% python3-minimal 3.51-3 123 kB minimal subset of the Python language (default python3 version)
thon3-mpmath 0.19-3 1961 kB library for arbitrary-precision floating-point arithmetic (Python3
Nicht installiert (zuriickgeblieh =) pY P i P gP ®y)
“2 python3-nose 1371 557 kB test discovery and running for Python3 unittest
5] python3-numexpr 2.4.3-1ubur 400 kB Fast numerical array expression evaluator for Python 3 and NumPy

[4 python3-numpy 1:1.11.0-1ul 9589 kB Fast array facility to the Python 3 language

Fast array facility to the Python 3 language @

Bildschirmfoto herunterladen Anderungsprotokoll abrufen Visit Homepage

Numpy contains a powerful N-dimensional array object, sophisticated
(broadcasting) functions, tools for integrating C/C++ and Fortran
code, and useful linear algebra, Fourier transform, and random number
Sektionen -
capabilities.
Status
Ursprung Numpy replaces the python-numeric and python-numarray modules which are
now deprecated and shouldn't be used except to support older
software.

Benutzerdefinierte Filter
Suchergebnisse
Architektur This package contains Numpy for Python 3.

1496 Pakete angezeigt, 2913 installiert, 0 defekt, 0 werden installiert oder aktualisiert, 0 werden entfernt

Abb. 60: Paketverwaltung Synaptic in Ubuntu Linux

Unter macOS offnen Sie ein Terminalfenster und unter Windows die Ad-
ministrator-Eingabeaufforderung? und geben dort ,pip3 install Modulna-
me“ ein. Wenn sich auf dem Rechner keine alte Python-2-Installation
mehr befindet, genugt oft auch ,pip install Modulname”.

2 Die Administrator-Eingabeaufforderung starten Sie, indem Sie die Windowstaste drii-
cken und ,,CMD* tippen. Danach konnen Sie entweder das Wort , Eingabeaufforde-
rung” rechtsklicken und ,als Administrator ausfithren” wahlen oder sie starten das
Programm mit etwas Fingerakrobatik Uiber Strg-Umschalten-Eingabetaste.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

101

Administrator: Eingabeaufforderung - python - Od >
586]

le Rechte vorbehalten.

nllecting antigravity
Using cached antigravity-©.1.zip
Installing collected pack antigravity
Running setup.py install for

Successfully installed antigravity-@.

4}] on win32
elp, ¢
import antigravity

Abb. 61: Paketinstallation mit PIP unter Windows 10

Die importierbaren Module erweitern die Sprache Python um zusatzliche
Vokabeln und sind gelegentlich durchaus in anderen Sprachen als Python
geschrieben. Die Ausfuhrungsgeschwindigkeit von C ist beispielsweise
der des Python-Interpreters oftmals (nicht immer) dramatisch uberlegen
und fur manche numerischen Aufgaben eignet sich das gute alte Fortran
besser.

Das Paket Numpy bringt sogar ein Programm namens f2py mit, das Fort-
ran- oder C-Quelltexte zu importierbaren Python-Modulen kompiliert.

Unter Windows kann es vorkommen, dass beim Versuch, PIP uber die Ein-
gabeaufforderung zu starten, die Meldung , Der Befehl "PIP" ist entweder
falsch geschrieben oder konnte nicht gefunden werden” erscheint. Dieses
Problem entsteht, wenn bei der Python-Installation das Hakchen bei ,Add
Python to Path” oder ,,Add Python to environment variables” nicht gesetzt
wurde, denn dann findet die ,Eingabeaufforderung” von Windows das
Programm PIP nicht. Starten Sie in dem Fall die Python-Installation er-
neut, wahlen Sie ,Modify” und setzen Sie das Hakchen.

Wenn Sie auf dem von Ihnen verwendeten Windows-Rechner nicht uber
Administratorrechte verfugen, konnen Sie PIP dennoch verwenden. Star-
ten es dazu mit dem zusatzlichen Parameter ,--user” (siehe Abb. 62).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 102

\Windows\System32\cmd.exe - python — O X

2 bit (Intel)] on win32

Abb. 62: Paketinstallation ohne Administratorrechte

Falls Sie einmal versuchen sollten, Matplotlib mithilfe von PIP fur eine ge-
rade neu herausgekommene Pythonversion zu installieren, und dabei sei-
tenweise rote Fehlermeldungen und gelbe Warnungen erhalten, konnte es
daran liegen, dass noch nicht alle benotigten Bibliotheken von ihren Ent-
wicklerinnen und Entwicklern auf die neue Version anpasst wurden. Blei-
ben Sie dann besser noch eine Weile bei der vorherigen Python-Version.
Solche Probleme werden ublicherweise recht bald behoben.

5.1.2 Virtuelle Umgebungen

Da es beim Nachinstallieren mancher neuer oder experimenteller Module
(derzeit vor allem im Bereich des maschinellen Lernens) zu Konflikten mit
anderen Modulen oder mit Sicherheitsmechanismen des Betriebssystems
kommen kann, ist es moglich, eine Pythoninstallation in einer sogenann-
ten virtuellen Umgebung (virtual environment) abzuschotten. Module, die
mittels PIP innerhalb einer virtuellen Umgebung installiert werden, sind
fur die ,normale” Python-Installation aufSerhalb der virtuellen Umgebung
nicht sichtbar.

In diesem Kurs kommen wir noch gut ohne virtuelle Umgebungen aus
und gehen daher nicht weiter auf diese Technik ein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

103

5.2 Erste Schritte in der IDLE-Shell

Die Python-Entwicklungsumgebung IDLE begrufst uns mit grofSer
Schlichtheit. Ein paar Zeilen Text mit Versionsnummern und drei dunkel-
rote GrolSer-als-Zeichen mit einem senkrechten Strich dahinter sind zu-
nachst scheinbar alles, was uns angeboten wird:

A |DLE Shell 3.10.0 - O x

File Edit Shell Debug Options Window Help
Python 3.10.0 (tags/v3.10.0:b4%4f5%, oct 4 2021, 19:00:18) [MSC w.192%
€4 bit (RAMD&E4)] on win3Z2
|Type "help™, "copyright™, "credits" or "license()" for more information.
>

Ln: 3 Col: 0

Abb. 63: Die Python-Shell der IDLE unter Windows

IDLE Shell 3.10.6 - o x
File Edit Shell Debug Options Window Help

Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux N

Type "help", "copyright", "credits" or "license()" for more information.
=>> |

Ln: 3 Col: 0

Abb. 64: Die IDLE-Shell unter Linux

Die drei grolier-als-Zeichen >>> bilden den sogenannten Prompt. Mit
ihm gibt der Python-Interpreter zu erkennen, dass er alle Aufgaben bear-
beitet hat und nun auf neue menschliche Eingaben wartet. Der blinkende
senkrechte Strich dahinter ist der Cursor, der die aktuelle Schreibpositi-
on anzeigt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

104

Ohne einen einzigen Python-Befehl zu kennen, konnen Sie die Python-
Shell jetzt schon als eine Art einfachen Taschenrechner verwenden, der
immerhin Klammern kennt und die Prioritat von Punktrechnung vor
Strichrechnung beherrscht. Aullerdem protokolliert die Shell alle Ein-
und Ausgaben.

Tippen Sie einfach mal nacheinander folgende Zeilen ein und drucken Sie
am Ende jeder Zeile die Eingabetaste:

l1+1

2 +3 *4

(2 + 3) * 4

1/7

"warum ist da kein Komma?"

Das Resultat sollte ungefahr so aussehen:

IDLE Shell 3.10.6 -

File Edit Shell Debug Options Window Help

>>>1 + 1
2
>>> 2 + 3 *¥ 4
14
>>> (2 + 3) * 4
20
>>>1/ 7
0.14285714285714285
>>> "warum ist da kein Komma?"
'warum ist da kein Komma?'
S>> |

Ln: 13 Col: 0

Abb. 65: Die IDLE-Shell als Taschenrechner

Bei der Division fallen zwei Dinge auf: die letzte Stelle des Ergebnisses ist
nicht gerundet, sondern abgeschnitten! und als Dezimalzeichen wird der
Punkt und nicht das Komma verwendet.

1 Wer das bei 1/7 nicht erkennt, weil periodische Dezimalbriiche in der Schule nicht
behandelt wurden, moge das Experiment mit 2/3 wiederholen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

105

Die letzte Eingabezeile zeigt, dass Python auch mit Texten umgehen
kann. Sofern Zeichenfolgen mit Anfithrungszeichen oder Hochkommas
umschlossen werden, gibt Python sie unverandert wieder. Fehlen die An-
fuhrungszeichen, so versucht Python, die Eingabe als Befehl oder Varia-
blenname zu verstehen.

Nur die unterste Zeile der IDLE-Shell nimmt Eingaben entgegen. Altere,
im Protokoll bereits nach oben gerutschte Eingaben konnen wir nicht
nachtraglich andern. Wenn wir einmal auf eine fruhere Eingabe zuruck-
greifen wollen, konnen wir die Tastenkombinationen Alt-P und Alt-N ver-
wenden (Merkhilfe: P wie previous und N wie next). Damit lassen sich die
bisher vorgenommenen Eingaben durchblattern.

In der IDLE-Shell haben wir bei unseren Experimenten ganz nebenbei ei-
ne wichtige Eigenschaft von Programmcode kennengelernt. Dieser wird
innerhalb eines zusammengehorigen Blocks streng zeilenweise von oben
nach unten abgearbeitet. Wahrend wir in der Mathematik, beispielsweise
beim Losen eines Gleichungssystems, alle Angaben gleichzeitig beachten
miussen, genugt es beim Programmieren, immer nur eine einzige Zeile im
Blick zu behalten.

a=1 # Der hier neu angelegten Variable a wird der
Wert 1 zugewiesen.

b=a+1 # In dieser Zeile erzeugen wir eine Variable b
und weisen ihr den Wert 2 zu.

a=b+1 # Nun wird a der Wert 3 zugewiesen. Der alte
Inhalt von a wird iiberschrieben.

a=a+1 # SchlieBlich wird der Wert von a um 1 erhoht.
Rechts steht 3 + 1 und a erhalt den Wert 4.

Viele Programmierneulinge erkennen diese Einfachheit nicht und versu-
chen oft, mehrere Zeilen eines Programms wie ein Gleichungssystem
gleichzeitig zu erfassen. Dadurch wirken Programmtexte viel komplizier-
ter als sie in Wirklichkeit sind, mitunter sogar widersinnig. Tatsachlich
geschehen dort Dinge einfach nur nacheinander.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

106

5.3 Fehlermeldungen

Auch wenn Python-Fehlermeldungen auf den ersten Blick vielleicht ein
bisschen alarmierend und unverstandlich wirken mogen: sie sind eine
grofe Hilfe bei der Fehlersuche in einem Programm. So wird uns immer
die Zeile im Quelltext angegeben, an der der Fehler aufgetreten ist und
eine (englischsprachige) Beschreibung der Fehlerumstande hilft uns, die
Fehlerursache schnell zu erkennen.

IDLE Shell 3.9.7 - O x

File Edit Shell Debug Options Window Help

>>> print MHallo Welt"
SyntaxError: Missing parentheses in call to 'print'.
Did you mean print("Hallo Welt")?
>>> Print("Hallo Welt")
Traceback (most recent call last):

File "/usr/lib/python3.9/idlelib/run.py", line 559,

in runcode

exec(code, self.locals)

File "<pyshell#6>", line 1, in <module>
NameError: name 'Print' 1s not defined
== |

- 4]

Ln: 22 Col:

Abb. 66: Python-Fehlermeldungen

Der einfachste und auch haufigste Fehler ist der sogenannte Syntaxfeh-
ler; man kann ihn als Grammatikfehler verstehen. Er tritt beispielsweise
auf, wenn Klammern fehlen oder ein Wort an einer vom Python-Interpre-
ter nicht erwarteten Stelle steht. Bei komplexeren Fehlern (diese werden
auch ,,Ausnahmen” genannt) ist die Fehlermeldung langer. Die letzte Zei-
le der Fehlermeldung gibt dann den Grund fiir die Ausnahme an und in
der zweiten Zeile der Fehlermeldung finden wir die Zeile im Programm-
text, an der der Fehler aufgetreten ist. Hier oder in der Programmzeile
daruber ist meistens irgendetwas zu reparieren.

Wenn in der Zeile, deren Nummer in der Fehlermeldung angezeigt wird,
partout kein Fehler erkennbar ist, besteht die Ursache des Fehlers meis-
tens darin, dass irgendwo weiter oben eine schlielfende Klammer fehlt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

107

Anfangs ist es vollig normal, dass ein Programm anstelle der gewunsch-
ten Ergebnisse zahlreiche Fehlermeldungen ausgibt. Lassen Sie sich da-
durch nicht entmutigen, Fehler gehoren zum Programmieren dazu. Nach
dem Schreiben eines Programms heilst die nachste Arbeitsphase immer
»~Fehlersuche” oder, weil Programmierfehler traditionell als Bugs bezeich-
net werden, ,Debugging”. In IDLE gibt es dazu sogar einen eigenen Me-
nupunkt in der Hauptmentuleiste.

Eine Tabelle mit den haufigsten Fehlermeldungen, ihrer Ubersetzung und
Ratschlagen zur Vermeidung und Behebung befindet sich im Anhang die-
ses Lehrbuchs auf Seite 332.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 108

5.4 Konstanten

Konstanten sind feste Werte in einem Programmtext. Wir haben sie schon
kennengelernt, als wir in der IDLE Zeilen wie 2 + 3 * 4 oder "warum
ist da kein Komma?" eingegeben haben.

Der Wert einer Konstanten kann zum Beispiel eine ganze Zahl sein, eine
Gleitkommazahl (auch Dezimalzahl oder FlieSkommazahl genannt), eine
komplexe Zahl, eine Zeichenkette oder ein Wahrheitswert. Wir nennen
diese Datentypen auch ,Klassen”.

In Anlehnung an ihre englischsprachigen Bezeichnungen werden diese
funf Klassen in Python kurz int, float, complex, str und bool ge-
nannt.

Deutsche Englische Python- Beispiel fur eine Kon-
Bezeichnung Bezeichnung Klasse stante dieser Klasse
Ganzzahl integer int 42
Gleitkomma- floating-point | ¢, 3.141592653589793
zahl number
Komplexe complex num- 1oy (1+1.41421356237309515)
Zahl ber

. character
Zeichenkette . str "Hallo Bochum!"

string
Wahrheits- Boolean value bool
wert

Beim Schreiben von Gleitkommazahlen mussen wir darauf achten, dass in
Python als Dezimalzeichen ein Punkt erwartet wird. Dies ist in fast allen
anderen Programmiersprachen so und wird IThnen spater in vielen Anwen-
dungsprogrammen wie beispielsweise den CAD-Programmen AutoCAD
und BricsCAD begegnen. Das Komma hat in Python eine eigene Bedeu-
tung und wird als Trennzeichen verwendet.

Eine Zeichenkettenkonstante muss von Anfuhrungszeichen umschlossen
werden, um nicht mit dem Namen einer Variable, einer Funktion oder ei-
nes anderen Objektes verwechselt zu werden. Sie haben die Auswahl zwi-

Martin Vogel: Bauinformatik mit Python, WS 2025/26

109

schen vier verschiedenen Arten von Anfuhrungszeichen: einfache ' An-
fuhrungszeichen, doppelte " Anfuhrungszeichen, drei einfache ''' Anfih-
rungszeichen und drei doppelte """ Anfuhrungszeichen.

Die dreifach gesetzten Anfuhrungszeichen erlauben es uns, Zeichenket-
tenkonstanten zu schreiben, die aus mehreren Zeilen Text bestehen.

Innerhalb einer Zeichenkettenkonstante durfen wir nicht dieselben An-
fuhrungszeichen verwenden, die wir zur Umgrenzung der Zeichenketten-
konstante gewahlt haben. Falls doch, muss jedem ,inneren“ Anfuhrungs-
zeichen ein Ruckwartsschragstrich \ vorangestellt werden. Mehr dazu in
Kapitel 5.21, ,,Zeichenketten”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

110

5.5 Variablen

Variablen gehoren zu den wichtigsten Bestandteilen einer Programmier-
sprache. Allerdings verwenden wir sie hier ganz anders als in der Mathe-
matik.

In Programmiersprachen sind viele Variablen nichts anderes als eine Ver-
bindung eines Wertes mit einem Namen. Wir konnen sie uns zunachst als
eine Art benannte Behalter vorstellen, in denen wir einzelne Werte, wie
beispielsweise eine Zahl oder eine Zeichenkette, zur spateren Verwen-
dung aufbewahren konnen.

Abb. 67: Variablenmodell ,beschriftete Kdstchen”

Diese Behalter besitzen allerdings ein paar Besonderheiten. So kann je-
der Behalter nur genau einen Wert enthalten. Wird ein neuer Inhalt in
den Behalter gegeben, verschwindet der alte Inhalt augenblicklich. Wenn
wir einen neuen Behalter anlegen, indem wir einen neuen Namen verge-
ben und diesem neuen Behalter den Wert eines existierenden Behalters
zuweisen, so erzeugen wir eine Kopie des Inhalts. Der existierende Behal-
ter behalt seinen Inhalt.

Die Zuweisung eines Wertes zu einer Variable geschieht mit dem Zu-
weisungszeichen ,=“ in der Form ,Variablenname = Wert“. Da die Zu-
weisung ausschliefSlich von rechts nach links erfolgt, ist es eine gute Idee,
dieses Zuweisungszeichen als ,wird zu” und nicht als ,ist gleich” zu le-

Sen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

111

Ein anderer wichtiger Unterschied zur Mathematik: Jeder Variable kann
beliebig oft ein neuer Wert zugewiesen werden, ohne dass dadurch ande-
re Variablen beeinflusst werden.

Python, wie viele andere Programmiersprachen auch, merkt sich nicht,
wie der Wert entstanden ist, der einer Variable zugewiesen wird. Ange-
nommen, wir weisen den beiden Variablen x und y die Werte 6 und 7 zu.
Eine dritte Variable heilse Antwort und erhalte das Ergebnis der Berech-
nung X * y. Der in der Variable Antwort gespeicherte Wert ist nun 42.
Andern wir anschlieBend den Wert von x oder y, so hat das auf den Wert
von Antwort keinerlei Auswirkungen mehr.

>>> X = 6
>>>y =7
>>> Antwort = x * y

>>> X
6

>>> Yy
7

>>> Antwort
42

>>> X =1

>>> y = 2

>>>

>>>

N< = X

>>> Antwort
42

Eine Besonderheit von Python ist es, mehreren Variablen gleichzeitig
denselben Wert zuweisen zu konnen.

a=b=c=22.5
print(a, b, c)

Martin Vogel: Bauinformatik mit Python, WS 2025/26

112

22.5 22.5 22.5

Wir konnen auch mehreren Variablen gleichzeitig mehrere Werte
zuweisen.

>>>a, b, c =1, 2, "halb drei”
>>> a
1
>>> b
2
>>> €
"halb drei’

In Python konnen wir sogar die Werte mehrerer Variablen in einer einzi-
gen Zeile gegeneinander austauschen.

>S5S X - IIXII
IIUII

>>> U

>>> X, U =u, X

>>> X

>>> U

Martin Vogel: Bauinformatik mit Python, WS 2025/26 1 13

5.5.1 Variablennamen

Variablennamen durfen aus einer ununterbrochenen Folge von Buch-
staben, Ziffern und Unterstrichen bestehen.

Das erste Zeichen darf keine Ziffer sein.

Im Gegensatz zu vielen anderen Programmiersprachen erlaubt Python
auch Buchstaben, die nicht im klassischen 26-Zeichen-Alphabet zu finden
sind.

Gultige Variablennamen sind beispielsweise:

X
X_min

¥4

schalke05

6ffnungsmai

KamelSchreibweise
ich_habe_einen_langen_namen_und_ich_werde_ihn_benutzen

Der unscheinbarste Variablenname ,_“ (einzeln stehender Unterstrich)
hat innerhalb der Entwicklungsumgebung IDLE eine besondere Stellung.
Er enthalt dort die jeweils letzte Ausgabe des Python-Interpreters.

>>> 3 % 4
12
>>> + 1

13

Es hat sich der Brauch entwickelt, den Variablennamen ,, “ in eigenen
Programmen nur dort zu verwenden, wo zwar aus syntaktischen Grunden
ein Variablenname angegeben werden muss, der Wert dieser Variable
aber im weiteren Programm gar nicht benotigt wird.

Der Unterstrich ist das einzige in einem Variablennamen erlaubte Zei-
chen, das kein Buchstabe und keine Ziffer ist. Operatoren wie ,+“ oder
.-, Emojis sowie das Leerzeichen , “ konnen nicht Bestandteil eines Vari-
ablennamens sein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

114

Manche Variablennamen sehen aus, als enthielten sie einen Punkt. Dieser
Punkt hat jedoch eine ganz besondere Bedeutung (Kapitel 5.19). Verwen-
den Sie ihn nicht fur Variablennamen!

>>> X:
min = 0
max = 99
>>> X.min
0
>>> X.Mmax
99

In sehr kurzen Variablennamen sollten die Zeichen I (grofses i) und 1 (klei-
nes L) sowie 0 (Ziffer null) und O (grofSes 0) vermieden werden, um Ver-
wechslungen zu vermeiden.

Es gibt Schriftarten wie die in diesem Text fur Quelltexte verwendete De-
javu Sans Mono!, welche sich sehr um eine Unterscheidbarkeit dieser Zei-
chen bemuhen.

I=20
1=1+1I
10 = 10
I0 =1+ 10

Andere Schriftarten, wie Microsofts Arial, machen das Lesen von Quell-
texten zum Ratespiel.

1=0
I=1+1
10=10
10=1+10

1 Die Deja-Vu-Fontfamilie steht unter einer freien Lizenz und kann kostenlos von
https://dejavu-fonts.github.io/ heruntergeladen werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 1 15

https://dejavu-fonts.github.io/

Den Inhalt (Wert) einer Variable finden wir heraus, indem wir den Varia-
blennamen mit korrekter Grofs- und Kleinschreibung am Prompt einge-
ben? oder indem wir die Funktion print zur Ausgabe einer oder mehrerer
Variablen verwenden.

print(I, 1, 10, I0)

0110 11

2 ,Eingeben” heilst, etwas zu tippen und dann die Eingabetaste d (Enter-Taste) zu dri-
cken.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 1 16

5.6 Rechenoperationen

Python unterstiitzt die Grundrechenarten und beachtet dabei die aus der
Mathematik bekannte Ausfuhrungsreihenfolge: Punktrechnung (- und :)
geht vor Strichrechnung (— und +), eine noch hohere Prioritat haben Po-
tenzen, und Klammern stehen uber allem.

Alle Operatorsymbole folgen der im PC-Bereich ublichen Schreibweise,
die sich daraus ableitet, dass zur Eingabe in der Regel eine klassische
Schreibmaschinentastatur verwendet wird. Daher werden anstelle des
Multiplikationspunktes - der Stern * und anstelle des Divisionsdoppel-
punktes : der Schragstrich / verwendet. Trotz der neuen Operatoren
gelten Multiplikation und Division weiterhin als Punktrechnung!

Der Multiplikationsoperator darf nicht entfallen, wenn Variablen mit Zah-
lenwerten multipliziert werden. Anstelle von 3x muss es daher beispiels-
weise stets 3 * x heilSen.

Potenziert wird nicht durch Hochstellen, sondern mit einem Doppel-
sternchen **. Die Kubikzahl 23 wird also in Python als 2 ** 3 geschrie-
ben'.

Beim Potenzieren von negativen Konstanten mussen wir darauf achten,
dass das Vorzeichen (unares Minus) in Python mathematisch korrekt wie
ein Subtraktionsoperator behandelt wird. Der Ausdruck -2 ** 2 ist daher
gleichwertig mit @ - 2 ** 2 und ergibt -4. Setzen Sie hier sicherheits-
halber Klammern: (-2) ** 2.

Vorsicht! Tabellenkalkulationen wie Microsoft Excel geben dem unaren
Minus eine hohere Prioritat als dem Potenzierungsoperator, was zu ge-
fahrlichen Vorzeichenfehlern in einer Rechnung fuhren kann.

1 Die Verwendung des Doppelsternchens als Potenzierungsoperator wurde schon 1954
von John Backus fir die Sprache Fortran festgelegt. Obwohl dieser Operator auch in
viele andere Sprachen, wie zum Beispiel COBOL, ibernommen wurde, verwendeten
John Kemeny und Thomas Kurtz stattdessen in ihrer 1964 vorgestellten Sprache BA-
SIC als Potenzierungsoperator das Zirkumflex . Dessen ungeachtet fuhrte Dennis
Ritchie ebendieses Zirkumflex in der 1972 von ihm verfassten Sprache C als Exklusiv-
oder-Operator ein, was spater von James Gosling fiir Java und Guido van Rossum fir
Python iibernommen wurde (Quelle: https://softwareengineering.stackexchange.com/
questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392 #
331392).

Martin Vogel: Bauinformatik mit Python, WS 2025/26

117

https://web.archive.org/web/20251105101849/https://softwareengineering.stackexchange.com/questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#331392
https://web.archive.org/web/20251105101849/https://softwareengineering.stackexchange.com/questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#331392
https://web.archive.org/web/20251105101849/https://softwareengineering.stackexchange.com/questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#331392

Fur ganzzahlige Divisionen mit Rest (zum Beispiel ,, 14 durch 4 ergibt 3,
Rest 2“) verwendet Python die Operatoren // und %.

>>> 14 / 4
3.5

>>> 14 // 4
3

>>> 14 % 4
2

Dabei erhalten wir mit dem Operator // den ganzzahligen Quotienten
zweier Zahlen und mit % den dazu gehorenden Divisionsrest. Weil der Di-
visionsrest in der Mathematik auch Modulo heilst, wird das Prozentzei-
chen % in diesem Zusammenhang Modulo-Operator genannt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 1 18

5.7 Funktionen und Module

Aus der Mathematik kennen wir bereits Funktionen wie sin(x) oder f(x,y),
die zu einem oder mehreren Eingangswerten einen bestimmten Funkti-
onswert zuruckgeben.

Diese Eingangswerte werden auch Parameter oder Argumente der Funk-
tion genannt.

Eingangswert(e),
Riickgabewert(e) -——— Funktion - Parameter,
Argument(e)

Abb. 68: Funktion mit Eingangswerten und Riickgabewert

AulSer diesen ,reinen” Funktionen gibt es auch Funktionen, die eine Wir-
kung haben. Sie steuern beispielsweise ein Gerat oder geben etwas auf
dem Bildschirm aus.

Eingangswert(e),
Riickgabewert(e) -—— Funktion - Parameter,
Argument(e)

Wirkung
Abb. 69: Funktion mit Wirkung

Die Wirkung einer Funktion wird manchmal auch ,Nebenwirkung” oder,
als Fehlubersetzung des englischen ,side effect”, ,Seiteneffekt” oder so-
gar ,Nebeneffekt” genannt.

Funktionen in Python konnen wir beinahe als kleine eigenstandige Pro-
gramme verstehen. Variablen, die innerhalb einer Funktion eingefuhrt
werden, sind ublicherweise aufSerhalb der Funktion nicht sichtbar. Auch
Zuweisungen zu Variablen, die unter gleichen Namen aullerhalb der
Funktion verwendet werden, gelten nur innerhalb der Funktion. Wir sa-
gen dazu, dass die Funktion einen eigenen Namensraum besitzt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

119

Es gibt zwar die Moglichkeit, auSerhalb der Funktion eingefuhrte Varia-
blen mithilfe des Schlisselworts global zu verandern; im Sinne eines
sauberen Programmierstils ist jedoch die Verwendung globaler Variablen
wegen der damit verbundenen Nebenwirkungen verpont. In diesem Text
wird daher auf globale Variablen nicht weiter eingegangen. Versuchen
Sie bitte, alle benotigten Werte als Parameter zu ubergeben und lassen
Sie die Funktion alle von ihr berechneten Werte explizit zuruckgeben.

Eine Funktion ohne definierten Ruckgabewert gibt ein besonderes Objekt
zuruck: None. Dadurch ist sichergestellt, dass wir keine Fehlermeldung
erhalten, wenn wir einer Variablen den Ruckgabewert einer Funktion zu-
weisen.

6 - sum(..) - (1, 2, 3)

None <«— — print(..) -« 1, 2, 3

i

Bildschirmausgabe:
123

Eingegebene Zeichenkette «———— input(..) <« "gib eine Zeichenkette ein:

i

Bildschirmausgabe:
gib eine Zeichenkette ein:

Abb. 70: Funktionen mit und ohne Wirkung oder Riickgabewert

Martin Vogel: Bauinformatik mit Python, WS 2025/26

120

Beispiele fur eingebaute Funktionen

Absolutwert einer Zahl abs(-4)
kleinster bzw. grofSter Wert einer Anzahl von Ele- min(a, b, ¢, ..)
menten max(a, b, ¢, ..)

Lange eines iterierbaren Objekts, beispielsweise

len("Text"
einer Zeichenkette ()

Summe der Zahlenwerte eines iterierbaren ODb-

sum([1, 2, 3
jekts, beispielsweise einer Liste (1 1

Eine neue sortierte Liste aus einem iterierbaren

ted([3, 1, 2
Objekt erzeugen sorted([1)

Zahl a auf n Nachkommastellen runden round(a, n)

Ausgabe von Werten auf dem Bildschirm print("Text", 123)

Eingabe einer Zeichenkette input("Text: ")
help("sum")

Hilfe (englisch)

help("builtins")

Python verfugt im Verhaltnis zu anderen Programmiersprachen uber rela-
tiv wenige eingebaute Funktionen. Bei der Installation werden jedoch
zahlreiche Module mitgeliefert, die tausende von Funktionen fur alle
moglichen Einsatzgebiete zur Verfugung stellen. Um diese Funktionen zu
nutzen, mussen wir sie lediglich importieren.

5.7.1 Funktionsweiser Import

Aus einem Modul konnen wir entweder alle darin vorhandenen Funktio-
nen auf einen Schlag importieren ...

Modulname *

... oder wir beschranken uns beim Import auf einzelne ausgewahlte Funk-
tionen.

Modulname Funktionsname

Martin Vogel: Bauinformatik mit Python, WS 2025/26 12 1

Das ist zwar etwas mehr Tipparbeit, aber sehr sinnvoll. Denn wenn meh-
rere Module die gleichen Funktionsnamen verwenden, kann es sonst pas-
sieren, dass die zuletzt importierten Module unkontrolliert bereits vor-
handene Funktionen uberschreiben.

Die importierten Funktionen lassen sich direkt mit ihrem Namen anspre-
chen:

S>S> math cos
>>> cos(0)
1.0

Falls uns der Name einer zu importierenden Funktion unpassend er-
scheint, weil er beispielsweise unbequem lang oder der deutsche Name
angebrachter ist, konnen wir auch einen eigenen Namen fur die Funktion
vergeben.

Das Modul math besitzt beispielsweise eine Funktion gcd(x, y), die den
greatest common denominator, also den grofSten gemeinsamen Teiler
zweier ganzer Zahlen x und y zuruckgibt. In der Schule haben wir diese
Funktion als ,ggT“ kennengelernt. Wir konnen die Funktion nun so im-
portieren, dass sie in unserem Programm nicht gcd, sondern ggt heilst:

math gcd ggt

5.7.2 Modulweiser Import

Es ist auch moglich, alle Funktionen eines Moduls so zu importieren, dass
es dabei nicht zu Namenskonflikten kommt. Dazu verwenden wir die fol-
gende Schreibweise:

Modulname

Nachdem ein Modul auf diese Art importiert wurde, konnen wir jede
Funktion des Moduls ansprechen, indem wir ihrem Funktionsnamen den
jeweiligen Modulnamen voranstellen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

122

Modulname.Funktionsname (Parameter)

Beispiel:

>>> math

>>> math.cos(0)
1.0

Das sorgt in den meisten Fallen fiir einen sehr lesbaren Quelltext, weil
immer klar ist, aus welchem Modul eine Funktion stammt.

Auch hier konnen wir beim Import einen kirzeren Namen vergeben.
Manche Abkirzungen sind sogar so etwas wie ein allgemeiner Standard
geworden. So wird das Modul zur Darstellung anspruchsvoller Diagram-
me matplotlib.pyplot lblicherweise als plt abgekiirzt und die Nume-
rikbibliothek numpy als np.

matplotlib.pyplot plt
numpy np

Eine Liste aller in der aktuellen Python-Sitzung importierbaren Module
erhalten wir durch den Aufruf help(“modules").

5.7.3 Das Mathematik-Modul: math

Weil im Bau- und Umweltingenieurwesen wohl kaum ein Berechnungspro-
gramm ohne Mathematikfunktionen auskommt, schauen wir uns dieses
Modul noch etwas genauer an.

Eine vollstandige Ubersicht iiber den Umfang des Mathematikmoduls lie-
fert uns die Funktion help. Leider ist sie nur fur diejenigen richtig hilf-
reich, die einigermalSen gut Englisch konnen.

math
help(math)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 123

Fur alle anderen erklart die folgende Tabelle deshalb einige ausgewahlte

Funktionen des Moduls ,, math“:

Funktion Beschreibung
floor(x) Rundet x ab.
ceil(x) Rundet x auf.
Schneidet die Nachkommastellen von x ab. Die Funkti-
trunc(x) on verhalt sich also bei positiven Zahlen wie floor(x)
und bei negativen Zahlen wie ceil(x).
gcd(x, y) ggT der beiden ganzen Zahlen x und vy.
sin(a) . . : :
Die Winkelfunktionen Sinus, Kosinus und Tangens. Der
cos(a) . . .
Winkel ist stets in Bogenmals anzugeben!
tan(a)

) Die Umkehrfunktionen von Sinus und Kosinus (in der
asin(x) Mathematik oft als sin™(x) und cos(x) geschrieben) er-
acos (x) mitteln zu einer Zahl x zwischen —1 und 1 den dazugeho-

rigen Winkel in Bogenmals.
Die Tangensfunktion hat gleich zwei Umkehrfunktionen:
atan(s) nimmt die Steigung s als einzelne Zahl entgegen
atan(s) und gibt einen Winkel zwischen —11/2 und n/2 zuruck.
atan2(y, x) benotigt zwei Zahlenwerte x und y und gibt
atan2(y, X) den Winkel der Polarkoordinaten des Punktes (x, y) zu-
ruck. Da x und y unterschiedliche Vorzeichen haben dur-
fen, lassen sich alle Winkel von -i1 bis 1 ermitteln.
radians(w) | Rechnet einen Winkel von Altgrad in BogenmalR um.
degrees(a) Rechnet einen Winkel von Bogenmals in Altgrad um.
Quadratwurzel (square root). Kann auch ohne Verwen-
dung des math-Moduls als x**0.5 geschrieben werden.
sqrt(x) Bei negativen Werten von x wirft die Funktion sqrt(x)
eine Fehlermeldung vom Typ , ValueError” aus, wogegen
x**0.5 eine komplexe Zahl zuruckgibt.
exp(x) Exponentialfunktion e*
pow(a, b) Potenzfunktion a® - identisch mit a**b
log(x) Naturlicher Logarithmus (Basis e)

Martin Vogel: Bauinformatik mit Python, WS 2025/26

124

Funktion Beschreibung

log(x, b) Logarithmus zur Basis b

logl0(x)
Dekadischer Logarithmus (Basis 10)
log(x, 10)

5.7.4 Funktionszuweisungen

In Python ist es moglich, Funktionen genauso wie Zahlen oder Zeichen-
ketten einer Variable zuzuweisen. Die Funktion kann dann unter dem Na-
men der Variable ausgefuhrt werden.

>>> a = 44801
>>> b = "Bochum"
>>> ¢ = print

>>> c(a, b)
44801 Bochum

Vorsicht! Umgekehrt ist es auch moglich (wenn auch fast immer unsin-
nig), die Namen vorhandener Funktionen wie print oder input als Varia-
blennamen fur Zahlenwerte oder Zeichenketten einzusetzen. Die Funkti-
on ist dann fur den aktuellen Programmlauf verloren.

Bei der Zuweisung einer Funktion zu einer Variable durfen keine Klam-
mern hinter dem Funktionsnamen stehen, sonst wird die Funktion sofort
ausgefuhrt und anstelle der Funktion selbst nur ihr Ruckgabewert der Va-
riable links vom Gleichheitszeichen zugewiesen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

125

5.8 Eingabe mit input(...)

Unsere Programme sollen nicht immer mit denselben Werten rechnen,
sondern auch menschliche Eingaben entgegennehmen. Das konnen
Mausaktionen sein, zum Beispiel das Anklicken oder Verschieben von
Grafikelementen, aber auch im einfachsten Fall eine direkte Tastaturein-
gabe.

Um in einem Programm eine Zeichenfolge von der Tastatur einzulesen,
gibt es die Funktion input. Thren Riickgabewert weisen wir iiblicherweise
einer Zeichenkettenvariable zu.

>>> a = input()
Hallo!

>>> b = input("Wie heiBft Du? ")
Wie heiBft Du? Maggy Mustermann

>>> a
'Hallo!"'

>>> b

‘Maggy Mustermann'

Die Klammer nach einem Funktionsnamen ist zur Ausfuhrung der Funkti-
on unbedingt notwendig. Sie darf leer sein, kann aber im Falle von input
auch einen in Anfuhrungszeichen gesetzten Fragetext enthalten, um den
das Programm Bedienenden mitzuteilen, welche Eingabe erwartet wird.

5.8.1 Lesen aus Textdateien

Viel haufiger als uiber die Tastatur erhalten Programme in der Ingenieur-
praxis ihre Eingaben aus Dateien, die beispielsweise aus Messanlagen
stammen oder von anderen Programmen erzeugt wurden.

Um mit Python den Inhalt einer Datei zu lesen, melden wir beim Betriebs-
system an, dass wir die Datei zum Lesen offnen wollen (Modus ,r“ wie
~read”). Wir erhalten dann ein Dateiobjekt, das sogenannte Dateihandle.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

126

Dieses Dateihandle, nennen wir es der Einfachheit halber ,meine_datei”,
besitzt die Methode read, mit der wir den gesamten Inhalt der Datei als
eine einzige lange Zeichenkette lesen.

Die folgenden Zeilen 6ffnen die Datei ,Liste.txt”, lesen deren Inhalt in
eine Variable , Inhalt” und geben diesen Inhalt auf dem Bildschirm aus.

open("Liste.txt"™, "r") meine_datei:
Inhalt = meine_datei.read()

print("In der Datei ,Liste.txt“ steht folgendes:")

print(Inhalt)

Da das Dateihandle ein iterierbares Objekt darstellt, konnen wir auch mit
Schleifen auf die Dateiinhalte zugreifen. Eine Vertiefung dieses Themas
finden Sie in Kapitel 5.22.1.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

127

5.9 Ausgabe mit print(...)

Die Funktion print gibt die ihr iibergebenen Inhalte auf dem Bildschirm
aus und beginnt danach eine neue Zeile.

print("Die Variable a hat den Wert", a)

Die Variable a hat den Wert 3

print("Die Variable b hat den Wert", b)

Die Variable b hat den Wert 4

print("Die Summe beider Zahlen ist", a+b)

Die Summe beider Zahlen ist 7

Zwischen den Klammern durfen beliebig viele durch Kommas getrennte
Funktionsparameter stehen. Wir bezeichnen diese Parameter auch als die
Argumente der Print-Funktion. Sie werden von ihr, voneinander jeweils
durch ein Leerzeichen getrennt, hintereinander ausgegeben.

Lassen wir die Klammer leer, so gibt der Aufruf print() nur eine Leerzei-
le aus.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

128

5.9.1 Ausgabe in Textdateien

Mit der Print-Funktion konnen wir nicht nur Texte auf dem Bildschirm
ausgeben; sie ist auch in der Lage, Texte in eine Datei zu schreiben. Wir
denken uns dazu einen Namen fur die neue Datei aus (zum Beispiel
,Liste.txt”), offnen die Datei zum Schreiben (Modus ,w” wie ,write”)
und erhalten dabei, genau wie vorhin beim Lesen, ein Dateihandle. Nen-
nen wir es auch hier wieder ,meine_datei“. Jeder Aufruf der Print-Funk-
tion, bei dem wir dieses Dateihandle angeben, schreibt nicht auf den Bild-
schirm, sondern in die Datei.

open("Liste.txt", "w") meine_datei:

print("Dies ist eine Textdatei.", file=meine_datei)

print("Sie ist zum Schreiben geéffnet.",
file=meine datei)

print("Innerhalb der with-Einriickung kann ich "
"beliebig oft in die Datei schreiben.",
file=meine_datei)

print("Beim Verlassen der Einriickung wird sie geschlossen.")

Warnung!

Das Schreiben in eine Datei ist eine der wenigen Gelegenheiten, Schaden
auf einem Rechner anzurichten. Eine existierende Datei, die im Modus
,W*“ erneut zum Schreiben geoffnet wird, verliert augenblicklich und ohne
jede Riickfrage ihren gesamten Inhalt. Seien Sie aufmerksam beim Uber-
schreiben wichtiger Daten! Legen Sie aullerdem regelmalSig Sicherheits-
kopien Threr wichtigsten Dateien auf nicht dauerhaft mit Threm Rechner
verbundenen lokalen Datentragern an!

Martin Vogel: Bauinformatik mit Python, WS 2025/26

129

5.9.2 Alternatives Trennzeichen: sep

Die Print-Funktion trennt alle auszugebenden Elemente standardmalflig
mit einem Leerzeichen.

a=3
b=14
=5

print(a, b, c)

345

Anstelle des Leerzeichens konnen wir auch beliebige andere Zeichen
oder Zeichenfolgen als Trennzeichen zwischen den durch print auszuge-
benden Parametern verwenden.

Diese Trennzeichen nennt man auch Separatoren. Sie werden uber den
zusatzlichen Parameter sep an die Funktion uibergeben.

Um beispielsweise die Inhalte der drei Variablen a, b und ¢ mit jeweils ei-
nem Semikolon getrennt hintereinander auszugeben, schreiben wir:

print(a, b, c, sep = ";")

3;4;5

Wird als Separator die leere Zeichenkette "" eingestellt, so gibt Python
die Werte der Parameter direkt hintereinander aus.

print(a, b, c, sep = "")

345

Martin Vogel: Bauinformatik mit Python, WS 2025/26

130

5.9.3 Alternatives Zeilenende: end

Wenn es uns stort, dass die Print-Funktion nach der Ausgabe eine neue
Zeile beginnt, oder wenn wir am Ende einer Zeile ein besonderes Zeichen
sehen wollen, so konnen wir dieses Verhalten mit dem Parameter end be-
einflussen.

Der Standardinhalt von end ist der Zeilenwechsel "\n", es ist aber auch
jede andere Zeichenfolge moglich.

Soll Python beispielsweise nach einer Print-Ausgabe ohne Zeilenwechsel
weiterschreiben, so veranlassen wir das, indem wir end="" schreiben.

a=3

b =4

c=5

print("Drei Zahlen: ", end = "")
print(a, b, c)

Als Ergebnis erhalten wir:

Drei Zahlen: 3 4 5

Martin Vogel: Bauinformatik mit Python, WS 2025/26

131

5.10 Typumwandiung

In Python ist es moglich, den Typ einer Variable durch Zuweisung eines
neuen Inhalts zu andern. Einer Variable, die eine Zeichenkette enthalt,
konnen wir beispielsweise ohne weiteres eine Gleitkommazahl zuweisen.
Der alte Inhalt wird uberschrieben und der Variablentyp andert sich auto-
matisch. Viele andere Programmiersprachen erlauben eine solche dyna-
mische Typisierung nicht. Dort muss gegebenenfalls schon vor der Ver-
wendung einer Variable explizit deren Typ festgelegt werden.

Fur den Fall, dass es in einem Python-Programm erforderlich ist, den Typ
einer Variable gezielt zu verandern, stehen dazu fur die bisher behandel-
ten Variablentypen die Funktionen int, float, complex, str und bool zur
Verfugung.

Im folgenden Beispiel wird eine Zeichenkette, die das Zeichen ,3“ ent-
halt, in eine Ganzzahl mit dem Zahlenwert 3 umgewandelt, woraufhin
sich ihr Verhalten grundlegend andert.

>>> g = ||3||

>>> a

>>> 4 * a

'3333'

>>> a = int(a)

>>> a

>>> 4 * a
12

Martin Vogel: Bauinformatik mit Python, WS 2025/26

132

Insbesondere Tastatureingaben durch die Funktion input miissen erst in
einen Zahlentyp umgewandelt werden, wenn sie als numerische Werte
weiterverarbeitet werden sollen, denn die input-Funktion gibt in Python
3 immer eine Zeichenkette zuruck - selbst, wenn ausschliefSlich Ziffern
eingetippt wurden.

Wir konnen diese Umwandlung entweder in zwei getrennten Schritten
vornehmen ...

input("Gib eine Zahl ein: ")
int(z)

... oder wir fassen die beiden Schritte elegant zusammen und sparen da-
durch sowohl eine Programmzeile als auch eine Hilfsvariable ein:

a = int(input("Gib eine Zahl ein: "))

Auf diese Art verschachtelte Funktionen werden vom Python-Interpreter
stets in der Reihenfolge ,von innen nach aulSen” ausgewertet. Hier wird
also zuerst die Funktion input aufgerufen und deren Riickgabewert an
die Funktion int weitergegeben. Der Riickgabewert von int wird schliel3-
lich der Variable a zugewiesen.

5.10.1 Evaluation von Ausdriucken

Python-Ausdrucke, die als Zeichenkette vorliegen, wie beispielsweise
"13 * 17"

"'Zeichen' + 'kette'" oder

"sin(1l/x)"

konnen mit der Funktion eval ausgewertet (evaluiert) werden.

>>> g = "13 * 17"

>>> eval(a)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 133

221

Entdeckt Python in der Zeichenkette Variablennamen, werden die aktuel-
len Werte dieser Variable dort eingesetzt; findet es Funktionen, so wer-
den diese ausgefuhrt.

>>> eval("a")
'13 * 17"

>>> eval(a + a)
378573

Die letzte Zahl, 378573, ist dabei das Ergebnis der Auswertung der Zei-
chenkette "13 * 1713 * 17", die das Ergebnis der Verknupfung a + a dar-
stellt.

Die Funktion eval bietet sich als perfekte Erganzung zur input-Funktion
an. Abhangig von der jeweiligen Eingabe hat der Ruckgabewert von
eval(input(..)) immer den richtigen Typ®.

Die Fahigkeit von eval, ganz beliebige Funktionen auszufuhren, kann zu
einem Sicherheitsrisiko werden, falls Pythonprogramme von boswilligen
Personen ausgefuhrt werden. Fur Pythonprogramme auf offentlich er-
reichbaren Webservern gilt daher ein striktes Verbot, eval zu benutzen.
Sie sollten eval auch nie verwenden, wenn Sie die Funktion auf Daten
aus unbekannten Quellen anwenden.

>>> a = eval(input("Gib Dein Alter ein: "))
Gib Dein Alter ein: 22

>>> a
22

>>> a = eval(input("Gib Dein Alter ein: "))

1 In Python 2 war diese Umwandlung noch in die input-Funktion eingebaut. Wer tat-
sachlich die buchstabengetreue Eingabe im Programm verwenden wollte, musste dort
auf die Funktion raw_input zuriickgreifen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 134

Gib Dein Alter ein: open("index.html","w").write("Pwned")

Der Fachausdruck fur das ungewollte Einschleusen von ausfithrbaren Be-
fehlen an einer Stelle, die harmlose Daten erwartet, lautet ,Code Injec-
tion"!.

Die Funktion eval erlaubt es, durch zusatzliche Parameter einzuschran-
ken, welche Funktionen und Variablen in den auszuwertenden Ausdri-
cken verwendet werden durfen, das geht aber uber den Stoff dieses Se-
mesters hinaus.

1 Jeder, der mit dem Thema zu tun hat, kennt Bobby Tables: https://xkcd.com/327/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 135

https://xkcd.com/327/

5.11 Das erste richtige Programm

Bis jetzt haben wir jeden Python-Befehl einzeln in die Shell getippt, damit
er ausgefuhrt wird. Um Befehle, die stets in einer bestimmten Reihenfol-
ge ausgefuhrt werden sollen, nicht immer wieder neu schreiben zu mus-
sen, konnen wir diese als Datei speichern. Die Folge von Befehlen nennen
wir ,Programm® und die Textdatei mit den Programmbefehlen ist dement-
sprechend eine ,Programmdatei”.

Um in IDLE eine neue Programmadatei anzulegen, drucken wir die Tasten-
kombination | Strg N | oder wahlen die Menufolge ,File - New File“.

Es erscheint ein leeres Fenster, in das wir nun unseren Programmtext
eintippen konnen.

print("Dieses Programm addiert zwei Zahlen.")

a = float(input("Gib einen Zahlenwert fiir a ein: "))
b = float(input("Gib einen Zahlenwert fiir b ein: "))
c=a+b

print("Die Summe von",a,"und",b,"ist",c)

Mit der Taste oder uber die Meniifolge ,Run - Run Module” kénnen
wir das Programm starten. Vorher wird es automatisch gesichert.

Dieses Programm addiert zwei Zahlen.
Gib einen Zahlenwert fiir a ein: 23.45
Gib einen Zahlenwert fiir b ein: 56.78
Die Summe von 23.45 und 56.78 ist 80.23

Beim ersten Start werden wir gefragt, in welcher Datei das Programm ge-
speichert werden soll. IDLE erganzt den eingegebenen Namen automa-
tisch um die Dateinamenerweiterung ,,.py“, damit sofort klar ist, dass es
sich dabei um ein Python-Programm handelt.

Falls die Dateiendung ,.py“ unter Microsoft Windows nicht angezeigt
wird, empfiehlt sich in Blick in Kapitel 2.3.2.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

136

5.11.1 Python und der Windows-Explorer

Beim Doppelklicken von Pythondateien im Windows-Explorer offnet sich
oft nur fur Sekundenbruchteile ein schwarzes Fenster und das Programm
startet scheinbar gar nicht. Tatsachlich wird es ganz normal ausgefuhrt
und beendet. Beendete Programme werden von Windows automatisch
wieder geschlossen. Um das Fenster, in dem das Programm lauft, geoff-
net zu halten, konnte man als letzte Zeile einen Aufruf der Funktion
input() hinzufiigen. Das Programm wartet dann auf das Driicken der
Eingabetaste und das Fenster bleibt bis dahin geoffnet, falls es nicht we-
gen eines nicht abgefangenen Fehlers zuvor beendet und geschlossen
wurde.

Um ein Pythonprogramm mit dem Editor der IDLE zu offnen, ist im Win-
dows-Explorer seit Windows 11 ein etwas umstandliches Verfahren not-
wendig, da das klassische Kontextmenu friherer Windows-Versionen hin-
ter einem in Windows 11 neu eingefuhrten vorgeschalteten Menu
versteckt wird. Rechtsklicken Sie dazu die Pythondatei, die Sie bearbei-
ten wollen, wahlen Sie den untersten Menupunkt ,Weitere Optionen an-
zeigen” aus, suchen Sie im sich offnenden Untermenu den Eintrag , Edit
with IDLE” und klicken Sie danach auf die gewunschte IDLE-Version (in
der Regel ist das die zuletzt installierte Version).

18] ED = jm| Tl sortieren = anzeigen aee (B Details

=
Name Anderungsdaturn Typ

| [# Mein Pythonprogramm.py 18.12.2025 11:37 Pythor ™

Offnen

Edit with Thonny

Edit with [DLE b Edit with IDLE 3.10 (64-bit)
Mit Motepad++ bearbeiten Edit with IDLE 3.14 (64-bit)

e [E]

Im Editor bearbeiten T
Zu Favoriten hinzufigen ‘
7-Iip >

Offnen mit >
I

Abb. 71: Das versteckte Kontextmenti des Windows-11-Explorers

Martin Vogel: Bauinformatik mit Python, WS 2025/26

137

5.12 Quelltextformatierung

5.12.1 Kommentarzeilen

Um ein Programm fir Andere oder uns selbst nachvollziehbar zu halten,
sollten wir zwischen die auszufuhrenden Zeilen hilfreiche Kommentare
schreiben. Wahrend des Schreibens eines Programms scheint das Kom-
mentieren oft vollig uberflussig zu sein. Wir wissen ja schliefSlich genau,
warum wir jede einzelne Zeile genau so formuliert haben! In ein paar Wo-
chen wissen wir es aber vielleicht nicht mehr. Python gilt zwar als eine
der lesbarsten Programmiersprachen uberhaupt, doch alte oder fremde
unkommentierte Quelltexte analysieren zu mussen, ist eine Strafarbeit.

Zur Kennzeichnung von Kommentaren wird das Doppelkreuz-Zeichen #
verwendet, welches oft auch ,Nummernzeichen”, ,Hash” oder ,Raute”
genannt wird".

Sobald der Python-Interpreter dem Zeichen # aulSerhalb einer Zeichen-
kettenkonstante begegnet, wird der Rest der Zeile von ihm ignoriert.

#!/usr/bin/env python3

Programm zur
Addition zweier

Zahlenwerte
a=4 # a festlegen
b=7 # b festlegen

Addition durchfiihren und
Ergebnis in c speichern
c=a+b

Ergebnis ausgeben
print(c)

1 Die Bezeichnung ,Hashtag” fur dieses Zeichen ist verbreitet, aber falsch. Ein Hash-
tag besteht immer aus der Kombination eines Doppelkreuzes mit einem Stichwort,
zum Beispiel #bochum.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

138

https://mastodon.social/tags/bochum

Kommentare in derselben Zeile unterzubringen, in der sich bereits Code
befindet, ist zwar erlaubt, jedoch nur bei sehr kurzen Zeilen sinnvoll.

Wir konnen sogar ganze Programmabschnitte ,,auskommentieren®”, um sie
vorubergehend oder dauerhaft von der Ausfuhrung auszuschlielsen. Der
IDLE-Editor hat dazu einen eigenen Menupunkt ,Comment Out Region”
im Menu , Format”“.

Auch Zeichenkettenkonstanten, die ohne weiteren Bezug im Quelltext ste-
hen, konnen die Funktion eines Kommentars ubernehmen. Mehrzeilige
Kommentare lassen sich dann mit drei Anfuhrungszeichen einleiten und
abschlielSen.

Eine besondere Form des Kommentars wird dazu verwendet, einen kur-
zen Hilfstext zu selbstgeschriebenen Funktionen auszugeben. Wenn zu
Beginn einer Funktion eine Zeichenkettenkonstante ohne weitere Zuwei-
sung formuliert wird, so wird ihr Inhalt ausgegeben, wenn die Funktion
help mit dem Namen der Funktion aufgerufen wird (Siehe Kapitel 5.17).

Anfangs sind Kommentare hilfreich, die erklaren, was in den auf den
Kommentar folgenden Zeilen geschieht. Sobald Sie Pythonprogramme
nicht nur schreiben, sondern auch lesen konnen, sind solche Kommentare
allerdings kaum noch notwendig. Eigentlich steht ja alles, was geschehen
soll, auch im Programmcode selbst. Nun ist es viel wichtiger, zu doku-
mentieren, warum das folgende Stuck Code genau so aussieht, wie Sie es
geschrieben haben. Diese Information ergibt sich ublicherweise nicht al-
lein durch scharfes Hinsehen.

5.12.2 Zeilenlange

Um unsere Programme lesbar zu halten, sollten wir stets darauf achten,
Quelltextzeilen nicht langer als 72, hochstens 79, Zeichen werden zu las-
sen.

Der Editor der Entwicklungsumgebung IDLE hat noch nicht einmal eine
Moglichkeit des horizontalen Scrollens vorgesehen. Das ist vielleicht et-
was eigenwillig, aber aus erzieherischen Gesichtspunkten sehr hilfreich.

Tatsachlich sind Sie durch diese Besonderheit kaum eingeschrankt, da
sich zu lange Python-Ausdrucke in der Regel gut auf mehrere Zeilen ver-
teilen lassen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

139

Bei der Ausgabe von Zeichenkettenkonstanten konnen Sie einfach ein An-
fuhrungszeichen setzen und in der nachsten Zeile weiterschreiben.

print("eine sehr lange Zeile")

ist dasselbe wie

print("eine sehr "
"lange Zeile")

Ebenso konnen Sie innerhalb von Klammern fast beliebige Zeilenumbru-
che vornehmen. Lediglich innerhalb eines Schlusselworts oder eines Be-
zeichners sind keine Zeilenumbruche zugelassen.

Variable = (Wertl + Wert2 * Wert3)

kann auch als

Variable = (Wertl +
Wert2 *
Wert3)

geschrieben werden.

Auch ohne umschlieSende Klammern sind Zeilenumbriuche moglich. Dazu
trennen Sie die zu lange Zeile mit einem Ruckwartsschragstrich.

Variable = Wertl + \
Wert2 * \
Wert3

Martin Vogel: Bauinformatik mit Python, WS 2025/26 140

5.12.3 GroR- und Kleinschreibung

In diesem Skript wird die Grof3- und Kleinschreibung von Variablennamen
und anderen Bezeichnern durchgehend willkurlich verwendet. Es gibt je-
doch auch Softwareentwickler, die hier nach einem strengen Schema vor-
gehen. Falls Sie einmal in einem Team arbeiten sollten und dort nicht nur
deshalb programmieren, um sich selbst die Arbeit zu erleichtern, sollten
Sie sich moglichst untereinander abstimmen, um Missverstandnisse zu
vermeiden.

Es ist vielleicht keine schlechte Idee, hier der Gestaltungsrichtlinie PEP 8
zu folgen. Diese sieht folgende Namenskonventionen vor!:

Namensbeispiel Verwendung
_ _ Fur alle Namen von Modulen, Variablen, Attribu-
kleinschreibung ten, Funktionen und Methoden. Zur besseren
mit_unterstrich Lesbarkeit zusammengesetzter Namen sind Un-

terstriche hilfreich.

Flur die Namen von Klassen. Unterstriche wer-
KamelSchreibweise @ den nicht verwendet, stattdessen Grofbuchsta-
ben mitten im Wort.

GROSSBUCHSTABEN Fur Konstanten bzw. Variablen deren Wert wah-

rend des gesamten Programmlaufs unverandert
MIT_UNTERSTRICH bleibt.

Dies ist aber kein Zwang. Gerade, wenn Sie deutschsprachige Variablen-
namen verwenden, sieht eine konsequente Kleinschreibung eher be-
fremdlich aus und daran, dass Konstanten immer grofSgeschrieben wer-
den sollten, halt Python sich nicht einmal selbst mit seinen Bezeichnern
None, True und False oder der Konstanten pi im Modul math.

1 https://www.python.org/dev/peps/pep-0008/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

141

https://www.python.org/dev/peps/pep-0008/

5.12.4 Shebang und Zeichenkodierung

Unter Linux und macOS hat die erste Zeile eines Quelltextes eine beson-
dere Funktion: Diese auch im Deutschen Shebang' genannte Zeile gibt
dem Betriebssystem an, mit welchem Programm der Quelltext ausgefuhrt
werden soll.

Mochten wir zum Beispiel als ,ausfuhrbar” markierte Python-Dateien
beim Doppelklicken nicht nur in den Editor laden, sondern auch starten
konnen, so sollten wir sie mit der Shebang-Zeile

#!/usr/bin/env python3

einleiten, damit das Betriebssystem immer den aktuellen Python-Interpre-
ter fur die Ausfuhrung zur Verfugung stellt.

Unter Microsoft Windows gibt es diesen Schutz nicht. Python-Dateien
sind dort, wie viele andere Dateitypen auch, unmittelbar ausfuhrbar und
werden in der Regel in einem Terminalfenster gestartet, das beim Pro-
grammende wieder geschlossen wird.

Leider ist unter Windows die Information, mit welchem Programm eine
Datei geoffnet wird, fest an die Dateinamenerweiterung gebunden, des-
halb gibt es dort in der Regel Probleme, wenn mehrere Versionen einer
Software installiert sind und eine Datei beispielsweise durch Doppelklick
im Windows-Explorer gestartet werden soll. Windows kennt zwar die
Moglichkeit, eine Datei im Explorer rechtszuklicken und uber den Menii-
punkt , Offnen mit ...“ ein Programm auszuwahlen, dieses Verfahren ver-
sagt jedoch, wenn die zu verwendenden Programme den gleichen Namen
haben und lediglich in unterschiedlichen Verzeichnissen abgelegt sind.
Unter Windows ist es daher ublich, nur eine einzige Version jeder instal-
lierbaren Software zu verwenden.

1 Man konnte das englische Wort ,Shebang” mit ,Gedons” ibersetzen, aber das fuhrt
Zu nichts.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

142

5.13 Verzweigungen

Nicht immer sind Programmablaufe so linear wie in den vorangegange-
nen Beispielen. Die interessanteren Programme fihren je nach Ausgangs-
situation ganz unterschiedliche Programmteile aus.

So ist es zur Vermeidung von Fehlern wahrend der Programmausfuhrung
(sogenannte Laufzeitfehler) sinnvoll, vor bestimmten Berechnungen die
Eingangswerte zu uberprufen. Nur wenn diese Eingangswerte uberhaupt
plausibel sind, sollten wir unser Programm rechnen lassen. Wenn nicht,
sollten wir stattdessen eine hilfreiche (und nicht allzu unfreundliche) Feh-
lermeldung ausgeben.

Beispiel: wenn wir versuchen, durch die Wurzelfunktion sqrt aus der Bi-
bliothek math die Wurzel aus einer negativen Zahl zu ziehen,

math.sqrt(-1)

so bricht Python die Programmausfuhrung mit einer Fehlermeldung vom
Typ ,math domain error” ab. Dasselbe geschieht, wenn der Arkussinus ei-
ner Zahl ausgerechnet werden soll, die nicht im Intervall [-1, 1] liegt.

Die Entscheidung daruber, ob ein Programm bestimmte Befehle ausfuhrt
oder nicht, wird mithilfe der sogenannten logischen Ausdrucke getroffen.
Das sind Ausdrucke, denen eindeutig einer beiden booleschen Wahrheits-
werte True oder False entspricht.

Wenn Sie gerne etwas mehr uber logische Ausdrucke erfahren mochten,
als in den folgenden Beispielen behandelt wird, ist ein Ausflug in Kapitel
5.27 das Richtige fur Sie.

5.13.1 Fallunterscheidungen: if ... elif ... else

Mit dem Schlisselwort if (wenn) konnen wir einen logischen Ausdruck
dazu nutzen, den Programmlauf zu beeinflussen. Nur wenn der Ausdruck
hinter dem if eine wahre Aussage oder ein gleichwertiger Ausdruck ist,
wird der darauf folgende Programmblock ausgefuhrt. Wir sprechen von
einer ,bedingten Ausfuhrung”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

143

Ein ,Programmblock” ist dabei ein Abschnitt eines Programms, der aus
einer oder mehreren zusammengehorenden Programmzeilen besteht.

In Python wird der auf die if-Bedingung folgende Programmblock da-
durch festgelegt, dass die Zeilen dieses Blocks mit vier Leerzeichen ein-
geriickt werden.'

z = float(input("Gib eine Zahl ein: "))
z < 0:
print("Die Zahl ist negativ.")

Die eingeruckte Print-Funktion wird also nur dann ausgefuhrt, wenn die
Bedingung ,,z < 0“ wahr ist.

Was aber konnen wir tun, um auch dann eine passende Meldung auszuge-
ben, wenn die Bedingung ,,z < 0“ nicht wahr ist? Wir konnten zum Bei-
spiel zwei Abfragen hintereinander durchfuhren.

z2<0:

print("Die Zahl ist negativ.")

z >= 0:

print("Die Zahl ist positiv oder null.")

1 In den bisher ersonnenen Programmiersprachen gibt es ganz unterschiedliche
Schreibweisen, um die Zusammengehorigkeit eines Programmblocks zu kennzeich-
nen. Verbreitet ist die Verwendung von Begrenzern in Form von Schliisselwortern
oder Klammern. In Pascal (Delphi) beginnt ein mehrzeiliger Programmblock immer
mit dem Schliisselwort begin und endet mit end;. In Java und C beginnt ein mehrzei-
liger Programmblock mit { und endet mit };. Einzeilige Programmblocke werden in
allen drei genannten Sprachen nicht notwendigerweise mit Begrenzern versehen. Sie
enden am obligatorischen Semikolon.

Der grofSe Vorteil von Pythons Blockbildung durch Einriickung liegt in einer hervorra-
genden Lesbarkeit des Programmtextes. Python gilt nicht ohne Grund als eine der
lesbarsten Programmiersprachen tiberhaupt.

Ublicherweise betragt das Maf der Einriickung 4 Leerzeichen. Es sind auch andere
Werte moglich, Sie durften theoretisch sogar Tabulatorzeichen zum Einricken ver-
wenden; die Einriickung innerhalb eines Blocks muss aber stets einheitlich sein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

144

Das funktioniert zwar, ist aber viel zu kompliziert. Denn daraus, dass die
Bedingung ,z < 0“ nicht erfullt ist, ergibt sich ja bereits, dass ,,z = 0“
wahr sein muss. Wir erinnern uns an die Fallunterscheidungen im Struk-
togramm (Kapitel 4.2.2):

z<0?
ja nein
A: Die Zahl A: ,Die Zahl
is.t"negativ“ ISt positiv
oder null“

Abb. 72: Fallunterscheidung im Struktogramm

Hier ist nur eine einzige Abfrage notwendig. Wurden wir den Algorithmus
dazu verwenden, einem Menschen einen Auftrag zu geben, so wirden wir
ihm sagen: ,Wenn z kleiner als null ist, dann schreibe »Die Zahl ist nega-
tiv«, sonst schreibe »Die Zahl ist positiv oder null«”.

Ein Schlusselwort mit der Bedeutung , sonst” gibt es in Python auch. Es
heilst hier ,else”. Wir konnen unser Programm also vereinfachen:

if z < 0:
print("Die Zahl ist negativ.")
else:
print("Die Zahl ist positiv oder null.")

Was aber, wenn wir drei oder mehr Falle zu unterscheiden haben?

if z < 0:
print("Die Zahl ist negativ.")
else:
if z > 0:
print("Die Zahl ist positiv.")
else:
print("Die Zahl ist null.")

Martin Vogel: Bauinformatik mit Python, WS 2025/26

145

Mit jeder zusatzlichen Abfrage miussen wir einen neuen Programmblock
einrucken. Irgendwann wurde der Platz knapp. Wir wollen ja keine Zeilen
erhalten, die langer als 72, hochstens 79 Zeichen lang sind.

In Python durfen wir daher auf die Einruckung verzichten, wenn direkt
auf ein else wieder ein if folgt und wir beides mit dem Schliisselwort
elif! zusammenfassen.

Mit elif wird eine Abfrage in Python nur dann gestartet, wenn die voran-
gegangene Abfragebedingung nicht erfullt wurde. Es konnen beliebig vie-
le elif-Abfragen hintereinander ausgefiihrt werden. Ganz am Ende einer
Kette von Abfragen konnen wir schlief8lich mit else alle ubriggebliebenen
Falle einfangen, die bisher nicht berucksichtigt wurden.

Unser Programmbeispiel formulieren wir nun so:

z = float(input("Gib eine Zahl ein: "))
z <0:
print("Die Zahl ist negativ.")
z > 0:
print("Die Zahl ist positiv.")

print("Die Zahl ist null.")

Im Struktogramm sieht diese Fallunterscheidung so aus wie in Abb. 73.

E: z
z
<0 } sonst

Q;ﬁﬂ'; A: ,Die | A:,Die
Zahl ist | Zahl ist
nega- Lt u a“
tiv® positiv null

Abb. 73:if ... elif ... else im Struktogramm

Eine abschliefSende Bemerkung: Auch, wenn Fallunterscheidungen fast

1 Dass sowohl Else als auch Elif weibliche Vornamen sind, ist reiner Zufall.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 146

ein bisschen aussehen wie Schleifen: sie sind es nicht. Bitte, blamieren
Sie sich nicht im Gesprach durch die Verwendung der Formulierung , If-
Schleife”!

5.13.2 Mehrfachunterscheidungen match ... case

Wenn viele Entscheidungen vom Wert einer einzigen Variable abhangen,
konnen wir seit Python 3.10 einen neuen Verzweigungstyp verwenden.

Sportart = "FuBball"
Schneehohe = 0

match Sportart:
case "FuBBball":

ort = "Stadion"
case "Wasserball" | "Turmspringen":
ort = "Schwimmbad"
case "Eisschnellauf" | "Eishockey" | "Eiskunstlauf":

ort = "Eislaufhalle"

case "Skifahren" if Schneehdhe ==
ort = "Skihalle"

case "Skifahren" if Schneehdhe > 0:
ort = "Skipiste"

case _
ort

f"Der Ort fiir {Sportart} ist unbekannt."

Der erste passend case-Block wird ausgefiihrt, alle folgenden Uberein-
stimmungen werden ignoriert.

Mit , | “ lassen sich einzelne Ausdrucke als Alternativen setzen. Eine nach-
gestellte if-Bedingung schrankt eine Auswahl ein und der Unterstrich _
wird oft als letzte Vergleichsoption anstelle eines else-Zweiges verwen-
det.

Ein Unterstrich ist ja eigentlich ein gultiger Variablenname, und tatsach-
lich werden Variablen nach dem Schlusselwort case ganz anders verwen-
det, als man es vielleicht erwartet. Trifft Python dort auf einen anderen
Variablennamen als _, so wird nicht der hinter match stehende Wert mit

Martin Vogel: Bauinformatik mit Python, WS 2025/26

147

dem aktuellen Wert der Variable verglichen, sondern Python versucht, ihn
in diese Variable hineinzuschreiben(!). Ist das erfolgreich, weil die Struk-
tur der zu untersuchenden Daten mit der Struktur des case-Ausdrucks
ubereinstimmt, so wird der Zweig ausgewahlt.

Werkzeug = "Sage", "Zange", "kleiner Hammer", "grofer Hammer"
Gegenstand Werkzeug:
Gegenstand.split():

["Sage"]:

print(Gegenstand, "zum Sagen")
["Zange"]:

print(Gegenstand, "zum Greifen")
[groBe, "Hammer"]:

print(Gegenstand, "zum Hammern", grofe, "Nagel")

Die Ausgabe dazu sieht so aus:

Sage zum Sagen

Zange zum Greifen

kleiner Hammer zum Hammern kleiner Nagel
groBer Hammer zum Hammern groBer Nagel

5.13.3 Fehlerbehandlung

Um unsere Programme nicht dadurch unnotig kompliziert zu machen,
dass wir versuchen, alle moglichen Fehler vorherzusagen und durch
kunstvoll geschachtelte if-elif-else-Konstruktionen abzufangen, kon-
nen wir Python auch einfach anweisen, zu versuchen, einen Programmteil
auszufuhren und uns nur fur den Fall, dass das schiefgeht, eine gute Re-
aktion uberlegen.

Den Programmblock, dessen Ausfithrung versucht werden soll, leiten wir
dabei mit try: ein (anschlieBend die Einruckung nicht vergessen!) und
den Programmzeilen zur Fehlerbehandlung wird das Schlusselwort
except: vorangestellt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

148

Das konnte fur den Versuch, die Wurzel aus dem Quotienten zweier Zah-
len auszugeben (was bekanntlich immer dann schiefgeht, wenn der Nen-
ner null oder der Bruch negativ ist), beispielsweise so aussehen:

print(sqrt(a/b))

print("Fehler! Variable b ist 0 oder a/b ist negativ.")

Wenn der try-Block ohne Fehler durchlauft, wird der except-Block nicht
ausgefuhrt.

Die haufigste Fehlerquelle in einem laufenden Programm ist die Eingabe
von Werten durch den Benutzer oder die Benutzerin. Hier kann von Leer-
eingaben uber Texteingaben und falsche Dezimalzeichen bis hin zu vollig
unvorhergesehener Kreativitat alles mogliche passieren. Das folgende
Programmbeispiel fragt daher hartnackig solange nach, bis es endlich ei-
nen gultigen Zahlenwert erhalt. Die in der ersten Zeile angelegte boole-
sche Variable ungiiltigeEingabe bestimmt dabei, wie lange die Schleife’
ausgefuhrt wird. Sie wird anfangs auf True gesetzt und verandert ihren
Wert erst dann zu False, wenn die Umrechnung der Eingabe durch float
keinen Fehler hervorruft.

ungiiltigeEingabe =
ungiiltigeEingabe:

a = float(input("Gib eine Zahl ein: "))
ungiiltigeEingabe =

print("Das ist keine Zahl.")

1 Wie Sie die in Kapitel 4.2.4 vorgestellten Schleifen in Python realisieren kénnen, er-
fahren Sie in Kapitel 5.14 auf Seite 151.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 149

Wer eine Neigung zu Tippfehlern hat, sollte bei der Verwendung der hier
vorgestellten universellen Fehlerbehandlung allerdings vorsichtig sein, da
auch Syntaxfehler den Sprung in den except-Block auslosen.

Um das zu vermeiden, gibt es in Python die Moglichkeit, fur verschiedene
Fehlerarten eigene Fehlerbehandlungsroutinen zu formulieren. Wer nur
auf Zahlenumwandlungsfehler testen will, schreibt oben besser except
ValueError: anstelle von except: hin.

Damit unser Programm auf mehrere Fehlerbedingungen unterschiedlich
reagieren kann, ordnen wir mehrere except-Blocke untereinander an.
Der Programmblock nach except ValueError: behandelt dann eine
misslungene Zahlenumwandlung oder einen verfehlten Definitionsbe-
reich, Nulldivisionen werden im Block nach except ZeroDivisionError:
einer Fehlerbehandlung zugefuhrt und die eingeruckten Programmzeilen
nach except KeyboardInterrupt: kuimmern sich um den Versuch der
Anwenderin oder des Anwenders, das laufende Programm durch Dricken
der Tastenkombination abzubrechen.

Wollen wir mit einem einzigen except-Block mehrere Fehlerbedingungen
behandeln, so fassen wir diese zu einem Tupel zusammen.

print(sqrt(a/b))
(ValueError, ZeroDivisionError):
print("Fehler! Variable b ist 0 oder a/b ist negativ.")

Eine Liste mit haufigen Fehlermeldungen finden Sie im Anhang auf Seite
332 dieses Textes.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

150

5.14 Programmschleifen

Wenn unser Programm bestimmte Vorgange wiederholen soll, dann ist es
sinnvoll, die Programmbefehle dazu nicht mehrfach hintereinander zu
schreiben, sondern nur einmal einen Programmblock zu formulieren, der
dann mehrfach ausgefuhrt wird. In Python bilden wir einen Programm-
block dadurch, dass wir ihn einrucken.

Diesem Programmblock stellen wir eine Zeile voran, die aussagt, wie oft
oder unter welchen Bedingungen der Block wiederholt werden soll.

Die gesamte Konstruktion aus einleitender Bedingung und zu wiederho-
lendem Programmblock nennen wir ,Programmschleife”.

Python kennt zwei Schleifentypen: die bedingte Schleife, bei der die Wie-
derholung an den Wahrheitsgehalt einer logischen Aussage (Kapitel 5.27)
gebunden ist, und die Zahlschleife.

5.14.1 Bedingte Schleifen mit ,, while“

Eine bedingte Schleife wiederholt eine Anweisungsfolge solange, wie eine
dazugehorige logische Aussage wahr ist. Sie wird mit dem Schliusselwort
while eingeleitet.

Als Beispiel diene ein einfacher Countdown-Zahler, der einen Zahlenwert
i beginnend bei 3 so lange verkleinert, wie dieser grofSer oder gleich null
ist.

i« 3

solange i = 0:

A

jei-1

Abb. 74: Bedingte Schleife im Struktogramm

Die Umsetzung in einem Pythonprogramm sieht diesem Struktogramm
bemerkenswert ahnlich:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 15 1

i>=0:
print(i)
i=1i-1

Das Programm erzeugt folgende Ausgabe:

SO = N W

Vor der Schleife wird die Zahlvariable i auf einen Startwert gesetzt. In
der Schleife wird ihr Inhalt bei jedem Durchlauf erneut ausgegeben und
anschlieSend um 1 verkleinert.

SchliefSlich springt die Programmausfuhrung wieder zur Abfrage im
Schleifenkopf oberhalb des eingeruckten Schleifenkorpers, um erneut zu
entscheiden, ob die Schleife wiederholt oder verlassen wird.

Damit die Schleife jemals wieder verlassen wird, muss innerhalb des
Schleifenkorpers der Wahrheitswert der logischen Aussage in der einlei-
tenden if-Abfrage geandert werden. Hangt diese Aussage allein von i ab,
ist also irgendwo im Schleifenkérper der Wert von i zu andern. Geschieht
dies aufgrund eines Programmierfehlers nicht, lauft die Schleife endlos
weiter. Eine recht haufige Fehlerursache ist das Testen zweier Gleitkom-
mazahlen auf Gleichheit, da hier schon geringste Rundungsfehler dafur
sorgen, dass die Zahlen als unterschiedlich angesehen werden. Siehe Ka-
pitel 5.27.3.

Endlosschleifen in Computerprogrammen konnen schlimmstenfalls, je
nach verwendeter Programmiersprache, den ganzen Rechner lahmlegen.
Python ist da zum Gluck recht umganglich. Ein in eine Endlosschleife ge-
ratenes Python-Programm lasst sich mit der Tastenkombination
stoppen oder uber den Fenster-SchlielSen-Button des Betriebssystems be-
enden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

152

Aussprung mit break

Im Gegensatz zu anderen Programmiersprachen, die zwischen abweisen-
den und nicht abweisenden Schleifen unterscheiden, gibt es in Python
nur einen einzigen bedingten Schleifentyp.

Die Konsequenz daraus scheint zu sein, dass wir alle Algorithmen vom
Typ ,wiederhole etwas, solange eine Bedingung erfullt ist” so umformu-
lieren mussen, dass sie als ,solange eine Bedingung erfullt ist, wiederho-
le etwas” gelesen werden konnen.

Sie konnen ja mal versuchen, die nicht abweisende Schleife aus Abb. 75
in eine abweisende Schleife umzubauen, die dasselbe tut. Wie stellen Sie
sicher, dass der Schleifenkorper mindestens ein Mal ausgefihrt wird?

Gib BegrulSungstext aus

lies a und b ein

c<a+b

gib ¢ aus

solange Rechnung erwunscht
Gib Abschiedstext aus

Abb. 75: Nicht abweisende Schleife im Struktogramm

Es ware aber doch schade, wenn wir vorhandene Algorithmen extra um-
bauen mussten, um sie in Python umsetzen zu konnen.

Tatsachlich mussen wir das nicht und die Losung ist auch gar nicht
schwer. Damit die Schleife auf jeden Fall betreten wird, formulieren wir
eine Schleifenbedingung, die immer erfullt ist.

Nun schreiben wir den Programmblock des Schleifenkorpers und ganz
am Ende formulieren wir eine if-Abfrage, die die Schleife beenden kann.
Python erlaubt es, eine Schleife jederzeit zu verlassen, indem wir das
Schlusselwort break verwenden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

153

print("Der unermiidliche Addierer fiir a + b = c")

while True:

a = float(input("Gib einen Zahlenwert fiir a ein: "))
b = float(input("Gib einen Zahlenwert fiir b ein: "))
c=a+b

print("Die Summe von",a,"und",b,"ist",c)
jn = input("Noch eine Berechnung (j/n)? ")
if jn in ("n"™, "N"):

break

print("Es war mir ein Vergniigen, fiir Dich zu addieren.")

Zum Vergleich hier ein ahnliches Programm, aber diesmal mit einer ab-
weisenden Schleife ohne break. Nun ist zwar eine Hilfsvariable (Berech-
nung_erwiinscht) notwendig, die zuerst einmal auf True gesetzt werden
muss, damit die abweisende Schleife uberhaupt betreten werden kann,
das Programm wirkt jedoch aufgeraumter und lesbarer:

print("Der unermiidliche Addierer fiir a + b = c")
Berechnung_erwiinscht = True

while Berechnung_erwiinscht:
a = float(input("Gib einen Zahlenwert fiir a ein: "))
b = float(input("Gib einen Zahlenwert fiir b ein: "))
c=a+b
print("Die Summe von",a,"und",b,"ist",c)

jn = input("Noch eine Berechnung (j/n)? ")
Berechnung_erwiinscht = jn not in ("n", "N")

print("Es war mir ebenfalls ein Vergniigen.")

Martin Vogel: Bauinformatik mit Python, WS 2025/26

154

Unstrukturierte Programmierung

Grundsatzlich sollten wir eine Schleife durch die Verwendung von break
nur dann verlassen, wenn unser Programm dadurch wirklich lesbarer
wird. Dasselbe gilt fur das Zuruckspringen zum Schleifenkopf mithilfe des
dahnlichen Befehls continue. Ein Nachteil beider Sprungbefehle ist, dass
sich die damit verbundenen Algorithmen nicht mehr strukturiert durch
Nassi-Shneidermann-Diagramme darstellen lassen, was in der Informatik-
ausbildung oft dazu fuhrt, sie aus erzieherischen Grinden zu verbieten.
Ebenso verhalt es sich mit dem vorzeitigen Herausspringen aus einer
Funktion mithilfe von return.

Mit Flussdiagrammen lassen sich die damit verbundenen , Abkurzungen”
im Programmlauf zwar noch darstellen, die damit verbundenen Uberkreu-
zungen der Ablaufpfade fuhren aber bei intensiver Verwendung zu einem
unleserlichen Programmierstil, der als ,Spaghetticode” verrufen ist.

5.14.2 Verkurzte Arithmetiknotation

Um ein wenig Tipparbeit zu sparen - und um unsere Programme lesbarer
zu gestalten - konnen wir bei Zuweisungen, bei denen ein Variablenname
beiderseits des Zuweisungszeichens = auftauchen wurde, eine verkurzte
Schreibweise anwenden. Dazu durfen wir den Variablennamen auf der
rechten Seite der Zuweisung fortlassen. Stattdessen stellen wir den ver-
bleibenden Operator nun dem Zuweisungszeichen voran.

Folgende Schreibweisen sind jeweils gleichwertig:

ausfuhrlich verkurzt Resultat

X =x+1 X += 1 x wird um 1 erhoht (inkrementiert)

X =x -1 Xx -=1 x wird um 1 vermindert (dekrementiert)
X =Xx * 2 X *= 2 x wird verdoppelt

XxX=x/2 X /= 2 x wird halbiert

X = X ¥* 2 X ¥*= 2 x wird quadriert

Martin Vogel: Bauinformatik mit Python, WS 2025/26

155

5.14.3 Iterationsschleifen mit , for*

Eine Iterationsschleife wiederholt einen Programmblock fiir jedes einzel-
ne Element einer aus mehreren Elementen bestehenden Sequenz, bei-
spielsweise einer Liste.

a [1, 2, 3, "Hut", "Stock", "Regenschirm"]:
print("e", a)

Ergebnis:

e 1

e 2

e 3

e Hut

Stock
Regenschirm

Iterierbare Objekte begegnen uns in der Datenverarbeitung uberaus hau-
fig. Auch die Buchstaben einer Zeichenkette, die Zeilen einer Textdatei
oder die Dateien eines Verzeichnisses konnen sequenziell mit einer for-
Schleife abgearbeitet werden.

5.14.4 Die Funktion range

Der Ruckgabewert der Funktion range entspricht keinem der uns bereits
bekannten Datentypen. Das erzeugte Bereichsobjekt verhalt sich jedoch
wie ein iterierbares Objekt aus einer Folge ganzzahliger Werte, uber die
wir beispielsweise eine for-Schleife laufen lassen konnen.

Im einfachsten Fall wird range mit der gewunschten Zahl der Folgenele-
mente als einzigem Parameter aufgerufen. Der Aufruf range(Anzahl) er-
zeugt ein Bereichsobjekt, das uns alle ganzen Zahlen von null bis
Anzahl-1 liefert:

a range(5):
print("e", a)

Martin Vogel: Bauinformatik mit Python, WS 2025/26

156

Ergebnis:

°
H» W N R O

Soll die Zahlenfolge nicht bei null beginnen, so geben wir einen Startwert
vor: range(Startwert, Grenzwert).

for a in range(3, 7):
print("e", a)

Ergebnis:

°
(=) IS I~ OV)

Als dritten Parameter konnen wir schliefSlich noch eine ganzzahlige
Schrittweite angeben, um den Startwert um einen anderen Wert als eins
zu erhOhen: range(Startwert, Grenzwert, Schrittweite). Die letzte
erzeugte Zahl ist bei positiver Schrittweite immer kleiner als der Grenz-
wert.

for a in range(5, 11, 2):
print("e", a)

Ergebnis:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 157

5.14.5 Generatoren

Funktionen wie range konnen wir uns leicht selbst schreiben. Anstelle
des Schliisselwortes return, welches iiblicherweise' die Funktion been-
det und einen Wert zuruckgibt, mussen wir lediglich das Schlusselwort
yield verwenden. Solche Funktionen nennen wir Generatorfunktionen
oder kurz Generatoren.

Der Aufruf einer Generatorfunktion erzeugt einen Iterator, uber den wir
eine for-Schleife laufen lassen konnen.

Als einfaches Beispiel diene die folgende Generatorfunktion, die ganz
ahnlich wie range funktioniert, jedoch auch mit Gleitkommazahlen umge-
hen kann.

floatrange(von, bis, schrittweite):
X = von
X < bis:
X
X += schrittweite

Rufen wir diese Generatorfunktion im Kopf einer for-Schleife auf ...

f floatrange(1.5, 4.5, 0.5):
print(f)

... so erhalten wir folgendes Ergebnis:

H W W NINR
©o U1l © U1 o Un

1 Siehe Kapitel 5.17

Martin Vogel: Bauinformatik mit Python, WS 2025/26 158

Generatorausdriucke und Comprehensions

Wir konnen Generatoren auch ohne eine eigene Funktion dadurch erzeu-
gen, dass wir einen Generatorausdruck formulieren. Das ist ein beliebiger
Python-Ausdruck, dem in einer Klammer ein Schleifenausdruck nachge-
stellt ist.

Der Generatorausdruck

(1**2 i range(l, 11))

liefert zum Beispiel einen Generator fur alle Quadratzahlen von 1 bis 100.

Wir konnen die Schreibweise fur Generatorausdrucke unmittelbar zur
Listenerzeugung verwenden, indem wir eckige anstelle runder Klammern
verwenden. Wir sprechen dann von ,Listenbildung durch Abstraktion”
oder kiirzer von List Comprehension.

Entsprechend erhalten wir durch Verwendung geschweifter Klammern
Set Comprehensions oder Dictionary Comprehensions.

(1**2 i range(1l, 11))
<generator object <genexpr> at 0x7f4468ce5a50>

[1**2 i range(1l, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

{1**2 i range(1l, 11)}
{64, 1, 4, 36, 100, 9, 16, 49, 81, 25}

{i: i**2 i range(1l, 11)}
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81,
10: 100}

Pythons Schreibweise bei Comprehensions kommt der mathematischen
Notation von Mengen sehr nahe. In der Mathematik definiert man die
Quadratzahlen der naturlichen Zahlen N beispielsweise mit der Mengen-

Martin Vogel: Bauinformatik mit Python, WS 2025/26

159

abstraktion {x? | x € N} und in Python als {x**2 for x in N} - mit
dem Unterschied, dass N hier nicht unendlich grols sein darf, sondern eine
endliche Menge von Zahlen enthalten muss.

Zusatzlich zur obligatorischen Schleife kann bei Comprehensions noch ei-
ne Auswahlbedingung formuliert werden. Das Ergebnis erhalt dann nur
diejenigen Werte, welche diese Bedingung erfiillen.

Wollen wir beispielsweise eine Liste aller naturlichen Zahlen kleiner als
20 erzeugen, die weder durch 2 noch durch 3 teilbar! sind, so schreiben
wir:

[1 i range(20) 1%2 1%3]

Heraus kommt diese Liste:

[1, 5, 7, 11, 13, 17, 19]

5.14.6 Else und die Schleifen

Schleifen konnen regular oder irregular beendet werden.

For-Schleifen werden regular beendet, nachdem ihre Laufvariable alle
Werte des zu durchlaufenden iterierbaren Objekts angenommen hat. Whi-
le-Schleifen werden regular beendet, nachdem die Schleifenbedingung
den Wert False annimmt.

Der Aussprung mit break beendet eine Schleife dagegen irregular.

Um einen Programmblock nur dann auszufuhren, wenn eine Schleife re-
gular beendet wurde, konnen wir dieser Schleife einen else-Zweig an-
hangen.

1 Den zur Feststellung der Teilbarkeit verwendeten Modulo-Operator % haben wir in
Kapitel 5.6 auf Seite 117 kennengelernt - falls Sie sich nicht mehr an ihn erinnern,
schauen Sie dort schnell nochmal nach.

Wenn Sie sich dariber wundern, dass in der Codezeile nur ,,i%2“ steht, obwohl Sie ei-
gentlich ,i%2 != 0 erwartet haben, finden Sie die Auflosung in Kapitel 5.27.1.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 160

Ein Beispiel: Ein Programm soll ein Passwort abfragen. Wenn das Pass-

wort drei Mal falsch eingegeben wurde, soll eine Meldung ausgegeben
werden.

for i in range(3):

if input("Gib das Passwort ein: ") == "12345":
print("Passwort korrekt!")
break
else:

print("Passwort wurde drei Mal falsch eingegeben.")

Achten Sie auf die Einruckungen! Das Schlusselwort else steht auf der-

selben Einriickungsebene wie for und gehort daher nicht zu dem if dar-
uber.

Je nachdem, ob die Schleife regular oder irregular beendet wird, kommt
der Else-Zweig zur Ausfuhrung oder nicht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

161

Python 3.7.3 Shell - o
File Edit Shell Debug Options Window Help
. : = . - -
Gib das Passwort ein: 12345
Passwort korrekt!
>>> | a
Ln: 36 Col: 4
Python 3.7.3 Shell - o x
File Edit Shell Debug Options Window Help
Gib das Passwort ein: admin =
Gib das Passwort ein: hallo
Gib das Passwort ein: passwortl23
Passwort wurde drei Mal falsch eingegeben.
>>> | o
Ln: 32 Col: 4

Abb. 76: Else-Zweig einer For-Schleife

5.14.7 Verschachtelte Schleifen

Schleifen durfen andere Schleifen enthalten.

Der folgende Vierzeiler verwendet zwei ineinander verschachtelte Schlei-

fen:

for a in range(l, 4):
print(f"Vielfache von {a}:")
for b in range(l, 4):

print(f" {a} mal {b} ergibt {a*b}")

Bei jedem einzelnen Durchlauf der aulSeren Schleife (a) werden samtliche
Durchlaufe der inneren Schleife (b) erneut ausgefuhrt:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

162

1 mal 1 ergibt
1 mal 2 ergibt
1 mal 3 ergibt

2 mal 1 ergibt
2 mal 2 ergibt
2 mal 3 ergibt

3 mal 1 ergibt
3 mal 2 ergibt
3 mal 3 ergibt

Vielfache von 1:

Vielfache von 2:

Vielfache von 3:

Das Struktogramm in Abb. 77 zeigt dieselben beiden verschachtelten

Schleifen wie das Programm oben.

fur a von 1 bis 3:

fur b von 1 bis 3:

A: a, b, a:b

Abb. 77: Verschachtelte Schleifen im Struktogramm

Fur den Algorithmus unwesentliche Details, wie die genaue Formulierung
der Print-Ausgaben, sind in Struktogrammen fehl am Platz.

In Kapitel 4.2 finden Sie eine Ubersicht der Moglichkeiten, mit denen
Struktogramme Thnen helfen konnen, Algorithmen programmiersprachen-
unabhangig darzustellen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

163

5.15 Sequenzen

Sequenzen sind Objekte, die aus mehreren Elementen zusammengesetzt
sind.

Einer Klasse von Sequenzen sind wir bereits kurz begegnet: der Zeichen-
kette. In den folgenden Kapiteln lernen wir zunachst weitere Sequenzty-
pen wie Listen, Tupel, Mengen und Dictionarys kennen, bevor wir uns die
Zeichenketten in Kapitel 5.21 noch einmal etwas naher ansehen.

5.15.1 Listen

Listen sind sehr praktische Datenstrukturen, mit denen wir eine grofSe
Anzahl von Werten in einer einzigen Variable speichern konnen. Die Ele-
mente von Listen durfen beliebige Objekte, wie zum Beispiel Zahlen, Zei-
chenketten, Funktionen oder sogar andere Listen sein.

Eine Liste wird in Python durch eckige Klammern dargestellt, zwischen
denen sich die durch Kommas getrennten Listenelemente befinden.

Zahlen = [1, 5, 3, 2, 3]
Tiere = ["Hund", "Katze", "Maus"]
Mischmasch = [1, "Tisch", 2/3, , Tiere, print]

Listen sind veranderlich. Es ist moglich, nachtraglich Elemente anzuhan-
gen, zu loschen oder auszutauschen.

>>> A = [2, 3, 5]
>>> A
[2, 3, 5]

>>> A.append(7)
>>> A

[2, 3, 5, 7]

Martin Vogel: Bauinformatik mit Python, WS 2025/26

164

>>> A.remove(3)
>>> A
[2, 5, 7]

>>> A[1l] = 6
>>> A
[2, 6, 7]

Listen aus Listen

Wenn Sie eine Liste haben, die auch wieder aus Listen besteht, so konnen
Sie auf jedes einzelne Element sowohl der aulSeren Liste als auch der in-
neren Listen uber Indizes zugreifen.

Angenommen, Sie arbeiten mit einer Liste, die aus Listen mit den Eigen-
schaften Name, Hulle und Lange einzelner Tiere zusammengesetzt ist,

L = [["Hund", "Fell", 75], ["Fisch", "Schuppen", 25],
[“Wal", "Haut", 450]]

so finden Sie in dieser Tierliste demnach die drei Eigenschaftenlisten

L[O0] mit dem Wert ["Hund", "Fell", 75]
L[1] mit dem Wert ["Fisch", "Schuppen", 25]

und
L[2] mit dem Wert ["Wal", "Haut", 450]

und Sie konnen uber Indizes auf alle Eigenschaften jedes einzelnen Tieres
zugreifen.

L[O0][O] hat den Wert "Hund"
L[O0][1] hat den Wert "Fell"
L[1]1[1] hat den Wert "Schuppen™

und

L[2][2] hat den Wert 450.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 165

Sie konnen auch mit einer Schleife auf die Elemente zugreifen:

Tier L:
print("Ein", Tier[0], "hat", Tier[1],
"und ist", Tier[2], "cm lang.")

Dasselbe lasst sich noch kompakter so schreiben:

Name, Hille, Lange L:
print("Ein", Name, "hat", Hille,
"und ist", Lange, "cm lang.")

Gelegentlich kann es auch sinnvoll sein, durch Indizes auf die Listenele-
mente zuzugreifen:

i range(len(L)):
print("Ein", L[i][0], "hat", L[i][1],
"und ist", L[1][2], "cm lang.")

5.15.2 Tupel

Ein Tupel kann grundsatzlich wie eine Liste verwendet werden, ist im Ge-
gensatz zu dieser aber unveranderlich. Geschrieben werden Tupel als
durch Kommas getrennte Werte in runden Klammern.

Liste
Tupel

[1, 5, 3, 2, 3]
(1l 5' 3' 2' 3)

5.15.3 Mengen (Sets)

Mengen sind nahe Verwandte von Listen, zeichnen sich aber dadurch aus,
dass jedes Element nur genau einmal in ihnen vorkommen darf. Geschrie-
ben werden Mengen als durch Kommas getrennte Werte in geschweiften
Klammern.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 166

>>> Menge = {1, 5, 3, 2, 3}
>>> Menge
{1, 2, 3, 5}

Die Reihenfolge der Elemente einer Menge ist nicht bestimmt. Mengen
sind ungeordnete Sequenzen.

Mehrere Mengen konnen verknupft werden, indem wir beispielsweise
Vereinigungsmengen oder Schnittmengen bilden.

>> A = {1, 3, 6, 5, 2}
>>> B = {4; 2' 6! 8' 3}
>>> A | B

{1, 2, 3, 4, 5, 6, 8}

>> A & B

{2, 3, 6}

5.15.4 Dictionarys

Dictionarys sind, wie Mengen, ungeordnete Sequenzen, sie bestehen aber
nicht aus einzelnen Elementen, sondern aus Schlissel-Werte-Paaren. Je-
der Schlussel ist einmalig. IThm konnen wir beliebige Werte zuordnen.
Uber den Schlissel greifen wir auch wieder auf die einzelnen Werte des
Dictionarys zu.

>>> Student = {"Name":"Kevin", "Alter":21}

>>> Student["Name"]
'Kevin'

>>> Student["Alter"]
21

Martin Vogel: Bauinformatik mit Python, WS 2025/26

167

Dictionarys konnen wir jederzeit erweitern, indem wir neuen Schlisseln
Werte zuweisen.

>>> Student["Hobby"] = "Tauchen"

>>> Student
{'Name': 'Kevin', 'Alter': 21, 'Hobby': 'Tauchen'}

Wenn wir versuchen, einen Wert abzufragen, zu dem kein Schlussel exis-
tiert, wirft Python die Fehlermeldung KeyError aus. Wir konnen das ver-
meiden, indem wir den Wert nicht direkt, sondern uber die Methode get
des Dictionarys abfragen. Zu nicht vorhandenen Schlusseln wird dann der
Wert None zuruckgegeben.

>>> print(Student.get("Geld"))
None

5.15.5 Indizes

Jedes Element einer geordneten Sequenz (Liste, Tupel, Zeichenkette)
lasst sich uber seine Position in der Sequenz ansprechen.

Die Indexierung der Elemente beginnt bei null. Besitzt eine Liste L zehn
Elemente, so konnen diese in der Indexschreibweise mit L[0] bis L[9]
adressiert werden.

Zahlen = [1, 2, 3]
Tiere = ["Hund", "Katze", "Maus"]
Mischmasch = [1, "Tisch", 2/3, , Tiere, print]

print(Zahlen[0], Tiere[l], Mischmasch[2])

Ausgabe:

1 Katze 0.6666666666666666

Martin Vogel: Bauinformatik mit Python, WS 2025/26

168

Python erlaubt auch negative Indizes. Sie dienen dazu, auf die hinteren
Elemente einer Sequenz zuzugreifen. L[-1] ist dabei das letzte Element
der Liste L, L[-2] das vorletzte und so weiter.

5.15.6 Schleifen uber Sequenzen

Sequenzen sind iterierbare Objekte. Eine besonders einfache Art, alle
Elemente einer Sequenz zu verarbeiten, besteht darin, eine Schleife uber
die einzelnen Elemente laufen zu lassen. Die Schleifenvariable nimmt da-
bei nacheinander alle Werte der in der Sequenz enthaltenen Elemente an:

Tierliste = ["Hund", "Katze", "Maus"]

Tier Tierliste:

print("e", Tier)

Ausgabe:

¢ Hund
e Katze
e Maus

Eine Besonderheit bilden Dictionarys. Hier lauft die Schleife nicht uber
die Werte, sondern die Schliussel des Dictionarys.

Student = {'Name': 'Kevin', 'Alter': 21, 'Hobby': 'Tauchen'}
Schliissel Student:
print(Schliissel, Student[Schliissel])

Ausgabe:

Name Kevin
Alter 21
Hobby Tauchen

Martin Vogel: Bauinformatik mit Python, WS 2025/26

169

Da wir bei Dictionarys eigentlich immer zwei zusammengehorige Elemen-
te haben, die uns interessieren, namlich den Schlissel und den dazugeho-
rigen Wert, ist es nicht ganz ungeschickt, die Schleife gleich uber beides
laufen zu lassen.

Student = {'Name': 'Kevin', 'Alter': 21, 'Hobby': 'Tauchen'}
Schliissel, Wert Student.items():
print(Schliissel, Wert)

Die Ausgabe ist dieselbe wie vorhin:

Name Kevin
Alter 21
Hobby Tauchen

5.15.7 Sequenzabschnitte (Slices)

Kopien einzelner Abschnitte einer geordneten Sequenz nennen wir ,,Sli-
ces”. Wir erzeugen sie, indem wir anstelle einer einzelnen Indexzahl ei-
nen Bereich [von:bis] angeben.

Die Angabe bis ist dabei der Indexwert des ersten Elementes, das nicht
mehr zum Slice gehort. Wir kennen das ja schon von der Range-Funktion
(Kapitel 5.14.4). Es ist daher mitunter intuitiver, sich die Indizes nicht so
vorzustellen, dass sie auf die einzelnen Elemente zeigen, sondern auf die
Trennlinie dazwischen.

-3 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 2 -1
0 1 2 3 4 5 6 7 8 9 10 11 12

H alUdlo B o c h um'!

| | | | | | | | | | | | | |
0 1 2 3 4 5) 6 7 8 9 10 11 12 13

Abb. 78: Merkhilfe fiir Sequenzabschnitte

Martin Vogel: Bauinformatik mit Python, WS 2025/26

170

Slices enthalten standardmalfSig eine Gruppe direkt aufeinander folgender
Elemente. Es ist aber auch die Angabe einer Schrittweite erlaubt:

L [von : bis : Schrittweite]

Jede der drei Angaben durfen wir weglassen. Anstelle von von wird dann
0 verwendet, anstelle von bis wird len(L) angenommen und die Schritt-
weite ist standardmalSig auf 1 gesetzt. Der Ausdruck L[:] erzeugt eine
vollstandige Kopie der Sequenz L.

Einige Beispiele:

Monat - (IIJanII' IIFebII' IIMérII' IIAprII' IIMaiII' IIJunII'
IIJu'LII' IIAugII' Ilsepll' Iloktll, IINOV", IIDeZII)

print(Monat[3:6])
print(Monat[1:12:2])
print(Monat[::3])

Ergebnis:

('Apr', 'Mai', 'Jun')
(‘Feb', 'Apr', 'Jun', 'Aug', 'Okt', 'Dez')
(‘Jan', 'Apr', 'Jul', 'Okt')

5.15.8 Kopieren einer Sequenz

Im Gegensatz zu einfachen Datentypen wie Ganzzahlen oder Zeichenket-
ten werden Sequenzen wie Listen, Mengen oder Dictionarys intern immer
nur als Verweis auf einen Speicherbereich behandelt, an dem die eigentli-
chen Inhalte liegen.

Das erhoht zwar die Verarbeitungsgeschwindigkeit von Python sehr, fuhrt
aber zu dem unerwarteten Phanomen, dass die Zuweisung einer Sequenz
zu einer Variable keine neue unabhangige Sequenz erzeugt, sondern nur
einen Aliasnamen fiir die bereits vorhandenen Inhalte.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

171

Um wirklich unabhangige Kopien unserer Daten zu erhalten, konnen wir
die im vorigen Kapitel vorgestellten Slices verwenden.

Ein Beispiel: Angenommen, wir haben drei Listen A, B und C. Liste A ent-
halt die drei Zahlen 1, 2 und 3. Liste B ist eine Kopie durch einfache Zu-
weisung und Liste C ist eine Kopie durch Slice-Bildung.

>>> A = [1, 2, 3]
>>> B = A
>>> C = A[:]

Nun weisen wir dem Element an der Indexposition 1 von Liste A einen
neuen Wert zu.

>>> A [1] = "oh!"

Was passiert nun?

>>> A

[1, 'oh!"', 3]

Das haben wir erwartet. An Indexposition 1 befindet sich das zweite Ele-
ment von Liste A. Wir wissen ja, dass die Zahlung bei null beginnt.

>>> B
[1, 'oh!', 3]

Das ist jetzt vielleicht uberraschend. Liste B haben wir schlieRlich gar
nichts explizit zugewiesen. Da sie aber ebenfalls nur auf die Inhalte der
Liste A zeigt, und diese Inhalte von uns verandert wurden, betrifft die An-
derung auch Liste B.

>>> C
[1, 2, 3]

Martin Vogel: Bauinformatik mit Python, WS 2025/26

172

Liste C zeigt sich davon vollig unbeeindruckt. Sie ist eine ,echte Kopie”
der Inhalte von Liste A.

Auf der Website ,Pythontutor” wird das Phanomen grafisch recht an-
schaulich dargestellt:

Write code in [Python36 | Frames Objects
A=1[1, 2, 3] Global frame list
B=A — |0 1 2
a—
C = A[:] S 1 | "oh!" ‘3
.I':'l[l] o “':lh!“ B ./
I . —— list
\hk 1 2
e T
&

Abb. 79: www.pythontutor.com

Kopien verschachtelter Sequenzen

Wenn eine Sequenz wiederum Sequenzen enthalt, genugt es nicht, eine
Kopie der ubergeordneten Sequenz mithilfe von Slices zu erzeugen, denn
die untergeordneten Sequenzen verweisen ja immer noch auf dieselben
Speicherbereiche wie zuvor. Um wirklich sicher zu sein, unabhangige Da-
ten zu erhalten, mussen wir auch alle untergeordneten Sequenzen sorg-
faltig kopieren. Glucklicherweise bleibt es uns erspart, das selbst zu pro-
grammieren. Wir verwenden stattdessen die Funktion deepcopy aus dem
Modul copy.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

173

Write code in [Python36 v ERARIES Birers

Ta=1 Global frame list
B = [a, 2] .l 1
¢ = [B, a] = R 12
D = C[] B - II./
!
from copy import deepcopy c - ||;:|f.-'
E = deepcopy(C) L ElE
D L llll :
imported .
deepcopy L”;;JE"C ke f

Abb. 80: deepcopy

5.15.9 Umwandlung eines Generator-Objektes in
eine Liste

Mit der Funktion list konnen wir nicht nur andere Sequenzen, sondern
auch die von einem Generator (Kapitel 5.14.5) oder der Range-Funktion
(Kapitel 5.14.4) erzeugten Objekte zu einer Liste zusammenfassen.

>>> list(range(10))
[0l 1' 2! 3' 4' 5' 6' 7! 8' 9]

>>> list(floatrange(5.0, 7.1, 0.25))
[5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0]

5.15.10 Sequenzen sprengen

Wenn wir Sequenzen als Parameter an eine Funktion uibergeben, so er-
halt die Funktion die Sequenz ,am Stuck”. Die Print-Funktion beispiels-
weise gibt eine Liste als Ganzes aus.

>>> Motto = ["per", "aspera", "ad", "astra"]

Martin Vogel: Bauinformatik mit Python, WS 2025/26

174

>>> print(Motto)

['per', 'aspera', 'ad', 'astra']

Wir konnen aber auch dem Sequenznamen ein Sternchen ,*“ voranstel-
len, um die Sequenz zu sprengen. Der Funktion werden die einzelnen Se-
quenzelemente dann so ubergeben, als seien sie beim Aufruf der Funkti-
on einzeln, wie mit Kommas getrennte Parameter, geschrieben worden.

>>> print(*Motto)
per aspera ad astra

5.15.11 Das enumerate-Objekt

Wenn wir eine Schleife uber alle Elemente einer Liste laufen lassen, ha-
ben wir oft den Wunsch, neben dem gerade betrachteten Listenelement
auch dessen Indexwert zu kennen.

In vielen Programmiersprachen muss man sich damit behelfen, eine
Schleife uber die Indexwerte laufen zu lassen und mit der Laufvariable
der Schleife wieder auf die Liste zugreifen:

A - [Ila'l-phall’ Ilbetall, Ilgammall]
i range(len(A)):
print(i, A[i])

Das ist in Python eher unublich, denn hier gibt es die einzigartige Mog-
lichkeit, gleichzeitig mehrere Variablen als Laufvariablen zu verwenden.
Das enumerate-Objekt unterstutzt uns zusatzlich, indem es die Elemente
einer vorhandenen Liste gemeinsam mit deren Indexwerten zu Tupeln zu-
sammenfasst.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

175

Nun konnen wir zwei Variablen gleichzeitig uber die von enumerate er-
zeugten Tupel laufen lassen und haben so in jedem Schleifendurchlauf
beide Informationen zur Verfugung:

A - [Ila'l-phall’ Ilbetall, Ilgammall]
i, a enumerate(A):
print(i, a)

Das Resultat beider Programme ist dasselbe:

0 alpha
1 beta
2 gamma

Fur den Fall, dass unser Zahler i nicht bei null beginnen soll, konnen wir
seinen Startwert festlegen:

A - [Ila'l-phall' Ilbetall, Ilgammall]
i, a enumerate(A, start=1l):
print(i, a)

Das Resultat ist nun:

1 alpha
2 beta
3 gamma

5.15.12 ReiBverschlussverfahren: das Zip-Objekt

Wir konnen eine beliebige Zahl von Sequenzen zu einer neuen Sequenz
zusammenschnuren, in der jedes Element aus einem Tupel der korrespon-
dierenden Elemente aller ursprunglichen Sequenzen besteht. Das erste
Tupel besteht also aus den ersten Elementen aller Sequenzen, das zweite
Tupel aus den zweiten Elementen und so weiter.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

176

Obst = ["Kirsche", "Banane", "Apfel"]
Farbe = ["rot", "gelb", "grun"]
Obstfarben = list(zip(Obst, Farbe))

Die Liste , Obstfarben” hat nun den Inhalt:

[('Kirsche', 'rot'), ('Banane', 'gelb'), ('Apfel', 'griin')]

Der Name der Funktion zip leitet sich aus dem englischen Wort fiir Reil-
verschluss (zipper) ab. Genau wie beim ReilSverschluss wird abwechselnd
jeweils ein Element aus der einen und aus der anderen Liste miteinander
kombiniert.

Der Aufruf von zip erzeugt noch keine neue Sequenz, sondern nur ein
Zip-Objekt, das Daten aus den urspriinglichen Listen ausliest. Uber dieses
konnen wir in einer Schleife iterieren oder es durch list in eine neue
Liste umformen.

Vorsicht: dass der alleinige Aufruf von zip noch keine neuen Listen er-
zeugt, hat zur Konsequenz, dass Anderungen in zuvor ,gezippten” Listen
auch in den danach von zip erzeugten Daten zu sehen sind.

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> ¢ = zip(a,b)

>>> a[l] = 999

>>> list(c)
[(1, 4), (999, 5), (3, 6)]

Martin Vogel: Bauinformatik mit Python, WS 2025/26

177

Ein Gegenstiick zu zip in Form eines eigenen Unzip-Objekts gibt es
nicht!. Stattdessen verwenden wir zip auch zum Entpacken:

Obst, Farbe = zip(*Obstfarben)

Die Zip-Funktion ermoglicht es sogar, gleichzeitig zwei getrennte Sequen-
zen zu sortieren, beispielsweise, weil deren jeweilige Elemente einen Be-
zug zueinander haben. Die dritte Zeile im folgenden Beispiel fugt die bei-
den Listen Obst und Farbe zusammen, sortiert das Ergebnis und trennt
die sortierte Liste wieder in zwei einzelne Listen:

Obst = ["Kirsche", "Banane", "Apfel"]
Farbe = ["rot", "gelb", "grin"]
Obst, Farbe = zip(*sorted(zip(Obst, Farbe)))

Das Ergebnis sieht nun so aus:

>>> 0Obst

('Apfel', 'Banane', 'Kirsche')
>>> Farbe

(‘grin', 'gelb', 'rot')

1 Wer unbedingt eine Unzip-Funktion haben will, kann sie sich selbst schreiben:
def unzip(x):
return zip(*x)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 178

5.15.13 Funktionen fur Sequenzen

Auf Sequenzen konnen wir eine Reihe von niitzlichen Standardfunktionen
anwenden. Die in der folgenden Tabelle aufgefithrten Funktionen liefern
die in der rechten Spalte beschriebenen Ruckgabewerte, wenn ihnen als
Argument eine Sequenz (S) ubergeben wird:

Funktion Ruckgabewert
len(S) Anzahl der Elemente in der Sequenz
Summe der Elemente, wenn alle Elemente aus Zahlen-
sum(S)
werten bestehen
min(S) Kleinstes Element
max(S) GrofStes Element
Erzeugt aus den Elementen der Sequenz eine neue Lis-
sorted(S) . .) N
te in sortierter Form, wenn dies moglich ist.
all(s) True, wenn alle Elemente True oder gleichwertig?
any(S) True, wenn irgendein Element True oder gleichwertig

5.15.14 Loschen von Sequenzen

Sequenzen konnen recht grolse Gebilde werden und eine Menge RAM be-
legen. Erzeugen wir zu viele grofSe Objekte, beginnt das Betriebssystem,
Inhalte aus dem RAM auf die Festplatte auszulagern. Dabei wird der
Rechner unter Umstanden bis zur Unbedienbarkeit verlangsamt.

Damit uns das nicht passiert, konnen wir mit dem Schlusselwort del Se-
quenzen oder Teile davon loschen. Ein mit del geloschtes Objekt verliert
auch seinen Namen.

>>> Tiere = ["Hund", "Schnitzel", "FuBball", "Maus"]
>>> Student = {'Name':'Kim', 'Alter':21, 'Hobby':'Tauchen'}
>>> Gigabyte = list(range(111_111_100))

2 Siehe Kapitel 5.27.1

Martin Vogel: Bauinformatik mit Python, WS 2025/26

179

>>> Tiere[l:3]
>>> Tiere
['"Hund', 'Maus']

>>> Student["Hobby"]
>>> Student
{'Name': 'Kim', 'Alter': 21}

>>> Gigabyte
>>> Gigabyte
Traceback (most recent call last):
File "<pyshell#127>", line 1, in <module>
Gigabyte
NameError: name 'Gigabyte' is not defined

In den meisten Fallen wird es niemals notig sein, dass wir uns um das
Ausgehen des freien Speichers Gedanken machen mussen. Objekte, die
tatsachlich Speicher in der Grosenordnung von mehreren Gigabyte bele-
gen, sind in alltaglichen Projekten eher selten.

5.15.15 Methoden von Listen

Es gibt Funktionen in Python, die wir nur auf Listen anwenden konnen.
Solche an bestimmte Objekte gebundene Funktionen nennen wir ,Metho-
den” dieser Objekte. Sie werden mit der Schreibweise Objektname.Me-
thodenname (Argumente) aufgerufen.

In der folgenden Tabelle sind einige Methoden aufgefuhrt, die uns die Ar-
beit mit Listen erleichtern.

Methode und Beschrei- ..
Anwendungsbeispiel
bung
-append (Element) Baustoffe = ["Marmor", "Stein",
"Eisen"]
Hangt ein neues Element Ba?stoffe.append(Holz")
an eine Liste an. print(Baustoffe)

Martin Vogel: Bauinformatik mit Python, WS 2025/26

180

Methode und Beschrei-

Anwendungsbeispiel

bung
l
['Marmor', 'Stein', 'Eisen',
'Holz']
Obst = ["Apfel", "Apfel", "Feige",
"Birne", "Apfel", "Banane"]
.count(Element)

Gibt zuruck, wie oft ein be-
stimmter Elementwert in
einer Liste vorkommt.

print(Obst.count("Apfel"))
print(Obst.count("Zucchini"))

.index(Element)

Gibt die Position der ers-
ten Fundstelle eines Ele-
mentwerts zuruck.

Enthalt die Liste kein pas-
sendes Element, tritt ein
Fehler vom Typ
ValueError auf.

Ziffern = ["null", "eins", "zwel",
"drei", "vier"]
print(Ziffern.index("zwei"))

Martin Vogel: Bauinformatik mit Python, WS 2025/26

181

Methode und Beschrei-
bung

Anwendungsbeispiel

.insert(index, Element)

Flugt ein neues Element an
der Stelle index in die Lis-
te ein. Dahinter liegende
Listenelemente werden um
eine Position verschoben.

Wird eine Indexposition
aulSerhalb der bestehen-
den Liste adressiert, so
wird das neue Element bei
positiven index-Werten an
die Liste angehangt und
bei negativen index-Wer-
ten am Anfang der Liste
eingefugt.

Fische = ["Hering", "Makrele",

"Scholle"]
Fische.insert(2, "Blauwal")
print(Fische)

\)

['Hering', 'Makrele', 'Blauwal’,
'Scholle']

.pop(index)

Gibt das Element an der
Stelle index zurick und
entfernt es aus der Liste.
Dahinter liegende Elemen-
te riucken um eine Position
auf. Wird fiir index kein
Wert ubergeben, entnimmt
.pop() das letzte Element
der Liste.

Ist die Liste leer oder wird
eine nicht vorhandene In-
dexposition adressiert,
tritt ein Fehler vom Typ
IndexError auf.

Fische = ["Hering", "Makrele",
"Blauwal", "Scholle"]

Saugetier = Fische.pop(2)

print(Fische)

print(Saugetier)

\)

‘['Hering', 'Makrele', 'Scholle']
Blauwal

Martin Vogel: Bauinformatik mit Python, WS 2025/26

182

Methode und Beschrei-
bung

Anwendungsbeispiel

.remove(Element)

Loscht das erste Vorkom-
men eines Elementwertes
aus einer Liste.

Fische = ["Hering", "Makrele",

"Blauwal", "Scholle"]
Fische.remove("Blauwal")
print(Fische)

\)

['Hering', 'Makrele', 'Scholle']

.reverse()

Kehrt die Reihenfolge ei-
ner Liste um.

Schlagzeile = ["Hund", "beiRt",
"Mann"]

Schlagzeile.reverse()

print(*Schlagzeile)

Mann beiRft Hund

.sort()

Sortiert die Elemente einer

Liste.

Die Listenelemente mius-
sen alle vom selben Typ
sein.

Zahlen = [3, 1, 72, 21, 0, 20, 34,
2, 12, 96, 44, 61]

Zahlen.sort()

print(Zahlen)

)

[e, 1, 2, 3, 12, 20, 21, 34, 44,
61]

Die Methoden index und count sind hierbei die einzigen, die auch auf Tu-

pel angewendet werden konnen.

5.15.16 Eine fur alle: das map-Objekt

Die Funktion map(f, S) wendet eine Funktion f auf alle Elemente eines

iterierbaren Objekts S an und gibt ein iterierbares map-Objekt zuruck.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

183

Dies konnen wir zum Beispiel dazu nutzen, um sehr einfach eine Liste auf
eine andere Liste abzubilden.

Quadratzahlen = [1, 2, 4, 9, 16, 25, 36, 49, 64, 81, 100]
math sqrt
list(map(sqrt, Quadratzahlen))

(L.e, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 184

5.16 Anwendung von Listen: Vektoren

Vektoren konnen in Python ganz einfach als Listen von Zahlenwerten dar-
gestellt werden.

Anstelle der mathematischen Notation ...

ebl}
I
B WD~

... schreiben wir in Python:

a = [1; 2; 3! 4]

5.16.1 Vektoraddition
C=a+b

Um Vektoren zu addieren, benotigen wir eine Schleife, die nacheinander
alle Elemente zweier Listen (die Summandenvektoren) addiert und dar-
aus eine dritte Liste (den Summenvektor) zusammensetzt.

Angenommen, wir haben die Listen A und B, die jeweils 5 Elemente auf-
weisen.

>
|

[li 2' 3' 4' 5]
[20, 30, 40, 50, 60]

Um eine neue Liste C zu erhalten, konnten wir zunachst eine leere Liste
anlegen ...

C =11

... und anschliefSend schrittweise die Summe der funf Listenelemente
A[O0] + B[0O] bis A[4] + B[4] als neues Listenelement (daher mit ecki-
gen Klammern umschlossen) an die im Verlauf der Abarbeitung immer
langer werdende Liste C anhangen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

185

i range(5):
C.append(A[i]+B[i])

Dies entspricht der klassischen Vorgehensweise in den meisten Program-
miersprachen. In Python geht es eleganter, kurzer und ubersichtlicher,
wenn wir uns die Moglichkeiten der funktionalen Listenerzeugung zunut-
ze machen. Das Zip-Objekt, dem wir gerade in Kapitel 5.15.12 begegnet
sind, hilft uns dabei, indem es Tupel aus den korrespondierenden Elemen-
ten beider Listen A und B erzeugt. Die Summen dieser Tupel bauen wir
nun zu einer neuen Liste zusammen:

C = [a+b a, b zip(A, B)]

5.16.2 Skalarprodukt

Das Skalarprodukt zweier Vektoren ist die Summe der Produkte ihrer kor-
respondierenden Elemente.

Auch diese Berechnung konnen wir entweder als klassische Schleife for-
mulieren, indem eine vor der Schleife auf null gesetzte Summe schritt-
weise um das Produkt der einzelnen Listenelemente erhoht bzw. verrin-
gert wird ...

A = [1; 2; 3: 4: 5]
B = [20, 30, 40, 50, 60]
SP = 0

i range(5):
SP += A[i] * B[i]

. oder wir geben abermals der funktionalen Listenerzeugung den Vor-
zug, indem wir zunachst einen Generatorausdruck fur alle Einzelprodukte
formulieren und anschliefend deren Summe uber Pythons eingebaute
Funktion sum ermitteln:

>
1

[1, 2, 3, 4, 5]
[20, 30, 40, 50, 60]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 186

SP = sum(a*b a, b zip(A, B))

5.16.3 Formatierte Ausgabe eines Vektors

Mit der in Kapitel 5.21.5 auf Seite 217 vorgestellten formatierten Zahlen-
ausgabe mit Platzhaltern konnen wir die einzelnen Zahlenwerte eines
Vektors gut lesbar geordnet untereinander ausgeben.

Die Funktion druckeVektor gibt die Elemente eines als Argument uber-
gebenen Vektors mit jeweils 4 Nachkommastellen und 10 Stellen Gesamt-
breite untereinander aus.

v = [2/7, 3.14, 0, 1000/13]

druckeVektor(v):
X V:
print(f"{x:10.4f}")

druckeVektor(v)

Resultat:

0.2857
3.1400
0.0000
76.9231

Haben wir da gerade eine eigene Funktion definiert? Das sollten wir uns
naher anschauen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 187

5.17 Eigene Funktionen definieren

In einem Programm mehrmals benutzte Formeln oder Programmteile
konnen wir als Funktion definieren. Die Lesbarkeit unseres Programms
erhoht sich dadurch erheblich, und wir vermeiden Redundanz durch sich
mehrfach wiederholenden Programmecode.

Die Funktionsdefinition erfolgt durch das Schlusselwort def, gefolgt vom
Funktionsnamen, einem Klammerpaar und einem Doppelpunkt. Das
Klammerpaar enthalt eine Reihe von nur innerhalb der Funktion sichtba-
ren Variablen, in denen fur die Dauer der Ausfuhrung der Funktion die
der Funktion ubergebenen Eingangswerte gespeichert sind.

Auf die Funktionsdefinition folgt ein eingeruckter Programmblock, der
mit dem Schlusselwort return und dem zuruckzugebenden Wert oder den
zuruckzugebenden Werten abgeschlossen wird.

addiere(a, b):
"Gibt das Ergebnis der Addition von a und b zuriick."
c=a+b

c

print(addiere(17, 4))

Resultat:

21

Die Funktion addiere(a, b) nimmt genau zwei Eingangswerte entgegen,
nennt diese a und b und gibt das Ergebnis der Addition dieser beiden
Werte zuruck.

In Python miussen wir uns keine besonderen Gedanken uber die Typen
der Eingangswerte machen. Solange die mit den ubergebenen Werten
durchgefithrten Operationen gultig sind, konnen wir beliebige Daten-
typen an die Funktion ubergeben.

>>> addiere("super", "klasse")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 188

'superklasse’

Unsere Additionsfunktion funktioniert, wie man sieht, sowohl mit Zahlen-
werten als auch mit Zeichenketten.

Eine einmal definierte Funktion kann immer wieder aufgerufen werden,
indem im Programmtext ihr Name, gefolgt von den jeweiligen Eingangs-
werten in Klammern, verwendet wird.

An der Farbe des Funktionsnamens erkennen wir in IDLE, ob die Funkti-
on zu den eingebauten Funktionen wie print oder sorted gehort, oder
ob sie wie addiere neu definiert wurde. Die Namen eingebauter Funktio-
nen werden purpurfarben dargestellt, die Namen neuer Funktionen in
der Kopfzeile der Definition blau, ansonsten schwarz.

Die Textkonstante in der ersten Zeile unserer Funktion hat eine besonde-
re Bedeutung. Sie ist deren offizieller Hilfetext. Mit der Funktion help
kann der Hilfetext zu einer Funktion abgerufen werden.

>>> help(addiere)
Help on function addiere in module __ main__:

addiere(a, b)
Gibt das Ergebnis der Addition von a und b zuriick.

5.17.1 Eingangswerte (Argumente)

Die Eingangswerte einer Funktion heiSen auch ,Argumente” oder ,Para-
meter” dieser Funktion. Alle Argumente missen beim Aufruf einer Funk-
tion in der richtigen Reihenfolge angegeben werden. Sind sie unvollstan-
dig, gibt Python eine Fehlermeldung aus.

>>> addiere(a, b, c):
a+b+c

>>> addiere(1l, 2, 3)

6

Martin Vogel: Bauinformatik mit Python, WS 2025/26

189

>>> addiere(17, 4)
Traceback (most recent call last):
File "<pyshell#46>", line 1, in <module>
addiere(17, 4)
TypeError: addiere() missing 1 required positional argument:
e

5.17.2 Vorbelegte Eingangswerte

Eingangswerte einer Funktion konnen mit einem Standardwert vorbelegt
werden. Beim Aufruf der Funktion diurfen diese vorbelegten Werte, von
der rechten Seite beginnend, weggelassen werden.

>>> addiere(a=0, b=0, c=0):
a+b+c

>>> addiere(1l, 2, 3)

>>> addiere(1l, 2)

>>> addiere(1l)

\)

>>> addiere()

\)

Im gezeigten Beispiel werden beim ersten Aufruf alle drei Funktionsvaria-
blen verwendet, im zweiten Aufruf nur a und b (c bleibt auf null), im drit-
ten Aufruf nur a und im vierten Aufruf wird tiberhaupt kein Parameter
ubergeben - alle drei Eingangswerte der Funktion bleiben auf ihrer Vor-
einstellung null.

5.17.3 Beliebig viele Argumente

Wenn wir dem letzten (oder einzigen) Argumentnamen in der Funktions-
definition ein Sternchen * voranstellen, so wird der Funktion ein Tupel
mit beliebig vielen Werten ubergeben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

190

Innerhalb der Funktion kann dieses Tupel beispielsweise durch eine
Schleife Element fur Element abgearbeitet werden

>>> addiere(*args):
summe = 0
zahl args:
summe += zahl
summe

>>> addiere()
0

>>> addiere(1,2,3)
6

>>> addiere(100, 231, 675, 76234, 11384)
88624

>>> addiere(*range(101))
5050

Das der Funktion range vorangestellte Sternchen beim letzten Aufruf der
Funktion ist das Gegenstick zum Sternchen innerhalb der Funktion.
Beim Aufruf zerlegt es eine Sequenz in einzelne Werte, wogegen es inner-
halb der Funktion Einzelparameter zu einem Tupel vereint.

5.17.4 Reihenfolge von Funktionsargumenten

Beim Aufruf einer Funktion mussen wir ihre Argumente ublicherweise ge-
nau in der Reihenfolge angeben, die bei der Definition der Funktion fest-
gelegt wurde.

Ein Abweichen von dieser Regel ist moglich; dann mussen wir aber expli-
zit die Namen der Funktionsargumente angeben.

>>> dividiere(zahler, nenner):

zahler/nenner

Martin Vogel: Bauinformatik mit Python, WS 2025/26

191

>>> dividiere(3, 4)
0.75

>>> dividiere(4, 3)
1.3333333333333333

>>> dividiere(nenner=4, zahler=3)
0.75

Auch solche Schlussel-Werte-Paare konnen wir gesammelt verarbeiten.
Dazu stellen wir bei der Funktionsdefinition dem , Sammelargument” ein
doppeltes Sternchen voran. In der Funktion kommt dann ein Dictionary
an:

>>> test(**kwargs):
print(kwargs)

>>> test(a=1l, b=2, c=3)
{'a': 1, 'b': 2, 'c': 3}

Eine Funktion kann auch beide Arten von Argumenten verarbeiten:

>>> test(*args, **kwargs):
print(args)
print(kwargs)

>>> test(18, 20, 2, 0, 4, a=1, b=2, c=3)
(18, 20, 2, 0, 4)
{'a': 1, 'b': 2, 'c': 3}

Martin Vogel: Bauinformatik mit Python, WS 2025/26 192

5.18 Sichtbarkeit von Variablen

Auf Variablen, die innerhalb einer Funktion eingefihrt wurden, kann von
aulSen nicht zugegriffen werden. Wir sprechen davon, dass der Namens-
raum dieser Variablen auf die Funktion begrenzt ist. Wenn solche lokalen
Variablen dieselben Namen tragen wie Variablen, die vor Ausfuhrung der
Funktion bereits aulSerhalb dieser Funktion angelegt wurden, so bleiben
die aullerhalb der Funktion verwendeten Variablen unverandert.

>>> Demo(A, B):
C=A+8B
A = 22
B = 33
A, B, C

>>> A =B =C = 123
>>> A, B, C
(123, 123, 123)

>>> Demo (10, 20)
(22, 33, 30)

>>> A, B, C

(123, 123, 123)

Das Programmbeispiel zeigt eine Funktion namens Demo, die drei lokale
Variablen A, B und C verwendet. Diese Variablen sind vollig unabhangig
von den namensgleichen Variablen A, B und C aulSserhalb der Funktion. De-
ren Wert (123) bleibt auch nach dem Aufruf der Funktion unverandert.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

193

5.19 Klassen und Objekte

Wir sind bereits einer ganzen Menge unterschiedlicher Objekte begegnet
und erinnern uns zum Beispiel an Listen, Tupel oder Zeichenketten. Jedes
dieser Objekte gehort einer bestimmten Klasse an. Objekte einer Klasse
verfugen uber gemeinsame Attribute und Methoden.

Wie konnen in Python eigene Klassen definieren und von diesen anschlie-
Bend einzelne Objekte ableiten.

R

Lange

maxM

Abb. 81: Vorbild fiir ein Objekt: Ein Einfeldtrdger

Angenommen, wir wollen ein Programm schreiben, das mit verschiede-
nen Einfeldtragern umgehen soll. Jeder dieser Einfeldtrager soll uiber
zwei Attribute verfigen: Lange und Last. Weiterhin sollen unsere Ein-
feldtrager-Objekte in der Lage sein, Auskunft uber ihr Biegemoment
maxM zu geben.

Mit dem Schlusselwort class definieren wir die neue Klasse
Einfeldtrager und legen darin die beiden Attribute Lange und Last
an.

Einfeldtrager:
Lange = 0
Last = 0

Martin Vogel: Bauinformatik mit Python, WS 2025/26 194

Schon sind wir in der Lage, durch Aufruf von Einfeldtrager() neue Ob-
jekte der Klasse Einfeldtrager zu erzeugen und diese einer Variable
zuweisen. So eine Variable bezeichnen wir als ,Instanz” dieser Klasse.

Die offentlich sichtbaren Attribute des neuen Objektes konnen wir mit der
Konstruktion Objektname.Attributname wie gewohnliche Variablen an-
sprechen.

T = Einfeldtrager()
T.Lange = 5
T.Last = 2.5

Bevor wir unseren Einfeldtrager dazu bringen, sein eigenes Biegemoment
auszurechnen, schauen wir uns die Attribute eines Objektes noch etwas
genauer an.

5.19.1 Attribute von Objekten

Als Attribute bezeichnen wir die innerhalb eines Objektes verwendeten
Variablen. Bei unserem Einfeldtrager wurden die Attribute Last und
Lange zweckmaldsigerweise zwei Gleitkommavariablen sein.

Viele Informatiker vertreten die Ansicht, dass in der objektorientierten
Programmierung niemals direkt auf die Attribute eines Objektes zuge-
griffen werden durfe, sondern dies ausschliefSlich uber die Methoden ei-
ner Klasse zu erfolgen habe. Es gibt viele gute Griinde?, sich bei umfang-
reichen Projekten streng an dieses Geheimnisprinzip der Datenkapselung
zu halten.

In Python sind Attribute zunachst einmal offentlich. Wir konnen aber
durch Voranstellen eines Unterstrichs vor den Attributnamen zum Aus-
druck bringen, dass der direkte Zugriff zumindest unerwunscht ist. Las-
sen wir einem Attributnamen gar mit einem zweifachen Unterstrich be-
ginnen, so ist das so benannte Attribut tatsachlich von aullen unter
diesem Namen unerreichbar.

1 Siehe http://de.wikipedia.org/wiki/Datenkapselung (Programmierung)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 195

>>> class Geheimnistrager:
erstes_Attribut = "6ffentlich"
_zweites Attribut = "mit Vorsicht zu behandeln"
__drittes_Attribut = "streng geheim"

>>> Geheimnistrager.erstes Attribut
'offentlich’

>>> Geheimnistrager._ zweites_Attribut
‘mit Vorsicht zu behandeln’

>>> Geheimnistrager. drittes Attribut
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
Geheimnistrager. _drittes_Attribut
AttributeError: type object 'Geheimnistrager' has no
attribute '__drittes_Attribut'

Offentliche Attribute kénnen einem Objekt und sogar einer Klasse auch
nachtraglich noch hinzugefugt werden. Wir konnten ohne weiteres fur un-
seren Einfeldtrager noch ein Attribut Farbe einfuhren und dies entweder
an ein bestehendes Objekt oder an die ganze Klasse binden. Mit T.Farbe
= "grun" wurden wir das konkrete Objekt T um das Attribut Farbe be-
reichern und mit Einfeldtrager.Farbe = "rot" wirden wir allen neu-
en und bereits existierenden Objekten der Klasse Einfeldtrager das At-
tribut Farbe hinzufiigen, falls sie es noch nicht besitzen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

196

>>> T = Einfeldtrager()
>>> T.Farbe = "grun"

>>> T2 = Einfeldtréager()

>>> Einfeldtrager.Farbe = "rot"

>>> T3 = Einfeldtrager()

>>> T.Farbe
‘grin'
>>> T2.Farbe
'rot'
>>> T3.Farbe
'rot'

Wegen der Moglichkeit, damit auf einfache Weise ein schwer nachvoll-
ziehbares Chaos anzurichten, sollten Sie auf das nachtragliche Hinzufii-
gen von Attributen zu Objektklassen weitestgehend verzichten.

5.19.2 Methoden von Objekten

Als ,Methoden” bezeichnen wir die Funktionen einer Objektklasse. Sie
werden gemeinsam mit der Klasse definiert.

Damit eine Methode auf die Attribute eines Objektes zugreifen kann,
muss sie wissen, um welches konkrete Objekt es sich handelt. In Python
wird dazu traditionell der Bezeichner self gewahlt, wenn es sich um die
Attribute desselben Objektes handelt, zu dem auch die jeweilige Methode
gehort.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

197

Schauen wir uns dazu einmal noch einmal unseren Einfeldtrager an:

>>> Einfeldtrager:
Lange = 0
Last = 0
maxM(self):
self.Last * self.Lange ** 2 / 8

Wenn wir einem aus dieser Klasse abgeleiteten Objekt die Attribute Lange
und Last zuweisen, gibt die Methode maxM uns das maximale Biegemo-
ment zuruck:

>>> T = Einfeldtrager()
>>> T.Lange = 5

>>> T.Last = 2.5

>>> T.maxM()

7.8125

Anfangs ist es bestimmt etwas gewohnungsbedurftig, dass der Bezeich-
ner self nur innerhalb einer Klassendefinition aufgefiuhrt wird, nach au-
Ben aber nicht in Erscheinung tritt.

Der Sinn des ,self-Bezuges” wird uns vielleicht ein wenig klarer, wenn wir
uns vorstellen, die Funktion maxM sei keine Methode der Objektklasse
Einfeldtrager, sondern unabhangig von dieser definiert. Dann miissten
wir bei jedem Aufruf explizit sagen, auf welches Objekt die Funktion an-
zuwenden sei:

>>> maxM(Objekt):
Objekt.Last * Objekt.Lange ** 2 / 8

>>> T = Einfeldtrager()
>>> T.Lange = 5

>>> T.Last = 2.5

>>> maxM(T)

7.8125

Martin Vogel: Bauinformatik mit Python, WS 2025/26

198

5.19.3 Die Methode _init__

Wenn in einer Klassendefinition eine Methode auftaucht, die den Namen
__init__ mit jeweils zwei Unterstrichen vorn und hinten tragt, so wird
diese Initialisierungsfunktion direkt nach dem Erzeugen eines neuen Ob-
jekts dieser Klasse aufgerufen.

Diese spezielle Methode dient dazu, an das Objekt ubergebene Argumen-
te anzunehmen und das neue Objekt in einen definierten Zustand zu ver-
setzen. Wie bei allen Methoden einer Objektklasse wird das Objekt selbst
wieder mit self referenziert.

Da die Funktion __init__ das neue Objekt gewissermafen ,konstruiert”,
wird sie ,Konstruktor” der Klasse genannt. Die erzeugten Objekte nennen
wir ,Instanzen” der Klasse.

>>> Einfeldtrager:
__init__ (self, Lange, Last):
self.Lange = Lange
self.Last = Last
maxM(self):
self.Last*self.Lange**2/8

>>> T = Einfeldtrager(5, 2.5)
>>> T.maxM()
7.8125

Methoden mit zwei Unterstrichen am Anfang und Ende des Namens ha-
ben in Python eine spezielle Bedeutung. Sie gelten als sogenannte ,magi-
sche Methoden”, mit denen das Verhalten von Objekten bis tief in die
Sprachsyntax hinein beeinflusst werden kann.

5.19.4 Vererbung

Wir konnen neue Klassen von bereits vorhandenen Klassen ableiten, um
sie beispielsweise um neue Methoden zu erweitern, ohne dabei den gan-
zen schon vorhandenen Code noch einmal schreiben zu mussen. Bei der
Definition unserer neuen Klasse geben wir dazu an, welche vorhandene

Martin Vogel: Bauinformatik mit Python, WS 2025/26

199

Klasse wir ,beerben” wollen. Unsere neue Klasse , Deckentrager” soll bei-
spielsweise alles konnen, was auch die schon weiter oben definierte Klas-
se ,Einfeldtrager” vermag und soll zusatzlich noch die Auflagerkrafte A,
und B, zuruckgeben.

Um eine Klasse von einer anderen Klasse abzuleiten, ubergeben wir den
Namen der ubergeordneten Klasse als Argument:

Deckentrager (Einfeldtrager):

Unsere ,magische” Initialisierungsfunktion hat nun allerdings noch die
Aufgabe, alle Argumente, die bei der Objekterzeugung mitgegeben wer-
den (im Beispiel sind das die beiden Argumente Last und Lange) an die
ubergeordnete Funktion durchzureichen.

Wir bauen uns eine Durchreiche

Hierzu hat sich eine Schreibweise etabliert, die sicherstellt, dass ganz un-
abhangig von der Zahl der ibergebenen Argumente und ganz unabhangig
davon, ob diese mit oder ohne Schlusselworte angegeben wurden, alle Ar-
gumente unverandert weitergereicht werden. Unsere Initialisierungsme-
thode leiten wir dazu so ein:

__init_ (self, *args, **kwargs):

Das Tupel args enthalt dabei alle einzelnen Argumente, beispielsweise
(5, 2.5), und das Dictionary kwargs enthalt alle ubergebenen Schlissel-
Werte-Paare, beispielsweise {Lange: 5, Last: 2.5}. Welche Inhalte ge-
nau in den beiden Sequenzen enthalten sind, mussen wir zum Gluck gar
nicht untersuchen; wir reichen beides einfach an die ubergeordnete Klas-
se weiter. Deren Namen brauchen wir auch nicht explizit anzugeben, son-
dern wir verwenden dazu die Funktion super®.

Der folgende Aufruf sieht daher komplizierter aus, als er in Wirklichkeit
ist. Tatsachlich bedeutet er nur, dass alle unserer Klasse ubergebenen Ar-
gumente unverandert an die ubergeordnete Klasse durchgereicht wer-

1 Das lateinische Wort ,super” heilst soviel wie ,iber” oder , oberhalb”. Die Super-
Funktion ist also lediglich die ibergeordnete Funktion und besitzt nicht notwendiger-
weise besonders atemberaubende Fahigkeiten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

200

den:

super().__init__ (*args, **kwargs)

Nachdem diese Formalien erledigt sind, konnen wir uns um unsere eige-
ne Klasse kimmern. Diese soll ja schlielSlich noch die Auflagerkrafte lie-
fern. Das konnen wir nun mit einer einzigen Codezeile erreichen:

self.Av = self.Bv = self.Lange * self.Last / 2

Die gesamte Klassendefinition sieht nun also so aus:

Deckentrager (Einfeldtrager):
__init__ (self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.Av = self.Bv = self.Lange*self.Last/2

In der IDLE-Shell konnen wir die neue Klasse gleich ausprobieren:

>>> D = Deckentrager(10, 5)
>>> D.Av

25.0

>>> D.Bv

25.0

>>> D.maxM()

62.5

Wie sollten nun noch dariber nachdenken, welche Konsequenzen es hat,
dass maxM als Methode formuliert wurde und Av sowie Bv als Attribute.
Was passiert bei einer Anderung der Attribute Lange und Last? Bauen Sie
die Klassendefinitionen doch mal so um, dass die Auflagerkrafte mit zwei
Methodenaufrufen Av() und Bv() abgefragt werden konnen ...

Martin Vogel: Bauinformatik mit Python, WS 2025/26 201

5.20 Eigene Module

Wollen wir unsere selbstgeschriebenen Funktionen und Objektklassen in
verschiedenen Programmen einsetzen, so ist es nicht notig, deren Defini-
tionen immer wieder in den Quelltext neuer Programme hineinzukopie-
ren. Stattdessen binden wir die Python-Datei, in der sich die gewunschte
Funktionsdefinition befindet, als Modul in unser neues Programm ein.

Angenommen, wir haben soviel Gefallen an unserer Funktion addiere aus
Kapitel 5.17 gefunden, dass wir sie zukunftig immer wieder verwenden
wollen. Zusatzlich sollen auflerdem noch die Funktionen subtrahiere,
multipliziere und dividiere zur standigen Verfiigung stehen.

Wir schreiben dann einfach alle Funktionsdefinitionen hintereinander in
eine Datei, die wir zum Beispiel labermath.py nennen konnen.

Fortan stehen uns in allen neuen Programmen die Funktionen unseres
ersten selbstgeschriebenen Python-Moduls zur Verfugung, sobald wir die
Zeile from labermath import * in unser Programm aufgenommen ha-
ben.

Wenn wir die Funktionen immer sorgfaltig mit Doc-Strings versehen, das
sind Zeichenketten unmittelbar in der ersten Zeile einer Funktionsdefini-
tion, dann stellt die Funktion help sogar einen eigenen Hilfstext fir unser
Modul zusammen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

202

File Edit Format Run Options Window Help
f labermath 1 t * Wy

3
4

X
Y

print(f"{x} + {y}

{addiere(x,y)}")

File Edit Format Run Options Window Help pri“}g;"}x% ; ?"% = }SufiraTlere(xEy)};;)
print(f"{x y} = {multipliziere(x,y)}"
Modul labermath ; " Fpd A .
t(f = {divid
"Arithmetik fir Geschwatzige" print(f"{x} / {y} {dividiere(x,y)}") o
ef addiere(a, b): Python 3.7.3 Shell - o x
"Gibt die’Summe von a und b zuriick." File Edit Shell Debug Options Window Help
et a+b P o/ Wl cuaiigeil Gilu WU te o] cupel A el teo s Py =
3+4=7
ef subtrahiere(a, b): 3 ; 4=-1
"Gibt die Differenz von a und b zuriick." 3*4=12
eturn a - b 3/4=0.75

>>> help("labermath")

ef multipliziere(a, b): Help on module labermath:

"Gibt das Produkt von a und b zuriick."
t a*hb NAME

labermath - Arithmetik fir Geschwatzige
ef dividiere(a, b):
"""Gibt den Quotienten von a und b zurick. FUNCTIONS

Riickgabewert fiir b == @ ist nan (not a number addiere(a, b))
win Gibt die Summe von a und b zuriick.

if b == 0:
et float("nan") dividiere(a, b) _
else Gibt den Quotienten von a und b zuriick.
et a/b Riickgabewert fir b == 0 ist nan (not a number).
Ln:18 Col:3 multipliziere(a, b)

Gibt das Produkt von a und b zuriick.

subtrahiere(a, b) -
Gibt die Differenz von a und b zurick.

=]
Ln: 64 Col: 4

Abb. 82: Das Arithmetikmodul ,labermath”

Damit das Betriebssystem unser Modul findet, ist es am einfachsten, es
im selben Verzeichnis wie unsere anderen Pythonprogramme abzulegen.

Wenn Module in anderen Verzeichnissen liegen, miissen diese Verzeich-
nisse der Liste der von Python zu durchsuchenden Modulpfade hinzuge-
fugt werden; siehe Kapitel 5.20.1.

Obwohl Importanweisungen an nahezu jeder beliebigen Stelle eines Pro-
gramms stehen diirfen, ist es im Interesse der Lesbarkeit und Ubersicht-
lichkeit des Quelltextes eine gute Idee, sie gesammelt an den Anfang zu
setzen.

Ubrigens koénnen wir jedes beliebige Pythonprogramm einfach dadurch
zu einem Modul machen, indem wir es in einem anderen Programm im-
portieren. Allerdings wiirde das Programm dabei auch gleich gestartet®.
Wenn wir jedoch nicht wollen, dass beim Import mehr passiert als dass

1 Berithmtes Beispiel: import antigravity

Martin Vogel: Bauinformatik mit Python, WS 2025/26

203

Python die Funktionsdefinitionen ,lernt”, konnen wir dem Ausfiihrungs-
teil eine Abfrage voranstellen, die sicherstellt, dass die dort aufgefuhrten
Programmbefehle beim Importieren des Moduls nicht ausgefuhrt werden.

Um Programmcode in einer Pythondatei nur dann auszufuhren, wenn die-
se als Hauptprogramm direkt gestartet wird, nicht aber, wenn diese Datei
als Modul eingebunden wird, konnen wir den betroffenen Programmbe-
fehlen die Abfrage

__name__ == "_main__":

voranstellen. Innerhalb eines Moduls enthalt die Variable __name__ stets
den Namen des jeweiligen Moduls. Nur im Hauptprogramm lautet dieser
Wert "__main__".

5.20.1 Modulpfade

Ein Python-Interpreter, der einer import-Anweisung begegnet, durch-
sucht der Reihe nach bestimmte Verzeichnisse:

1. das Verzeichnis des aktuell laufenden Python-Programms
2. alle Modulverzeichnisse der Python-Installation
3. weitere an die Liste sys.path angehangte Verzeichnisse

Punkt 1 ist der Grund, warum es eine schlechte Idee ist, ein eigenes Py-
thon-Programm etwa math.py zu nennen. Alle anderen Pythonprogramme
im selben Verzeichnis werden dann vermutlich ein Problem mit Sinus und
Kosinus bekommen.

Die Liste der Modulverzeichnisse einer Python-Installation erhalten wir,
indem wir uns die Variable path im Modul sys anschauen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

204

Python She i |

Python 3.2 (r32:55445, Feb 20 2011, 21:29:02) [MSC v.1500 32 bit (Intel)] on win *|

32

Type "copyright®, MTocredits™ or "license ()" for more informstion.

T SES=s==s==sS=s=S======sS============= RESTART e E R E L
ES-0-1

C:/Dokumente und Einstellungen/Admwinistrator/Desktop
CiyPython3zy LibY idlelih

oW WINDOWSY system3z' python3z . zip

'si C:4yPython3zy DLLs
CryPychon3 2y lik
PythorePath.py B .4 Python3z

CiZPython3zh likhYsitce-packages
=

e

Python-Path. py - C:/Dokumente und EinstellungenfAdministrator/Desktop/Python-Path. py |Z||E|E|
&M Edit Format Run Options Windows Help

lmport sys
for i in sys.path:
printii)

Ln: 5|Col: 0 J

| Lr: 12 Cal: 4

Abb. 83: Anzeige der Modulverzeichnisse unter Windows XP

5.20.2 Funktionsuberschreibungen

Die in Kapitel 5.7.1 angesprochenen Funktionsuberschreibungen konnen
wir auch gezielt einsetzen. Angenommen, wir schreiben gerade ein Be-
rechnungsprogramm, in dem sehr viele trigonometrische Berechnungen
in Altgrad ausgefuhrt werden sollen.

Anstatt immer wieder in die fur die Funktionen des Moduls math erforder-
liche Einheit Bogenmals umzurechnen, definieren wir einfach einen Satz
trigonometrischer Funktionen, die diese Umrechnung bereits eingebaut
haben und verwenden diese stattdessen. Dazu schreiben wir alle Definiti-
onen in ein neues Modul altgrad. py.

import math

def sin(x):
return math.sin(math.radians(x))

def cos(x):
return math.cos(math.radians(x))

Martin Vogel: Bauinformatik mit Python, WS 2025/26

205

def tan(x):
return math.tan(math.radians(x))

def asin(x):
return math.degrees(math.asin(x))

def acos(x):
return math.degrees(math.acos(x))

def atan(x):
return math.degrees(math.atan(x))

def atan2(dy,dx):
return math.degrees(math.atan2(dy,dx))

Bei der Verwendung unserer neuen Altgradfunktionen mussen wir ledig-
lich darauf achten, dass wir unser neues Modul altgrad erst nach dem
Modul math importieren, damit die Uberschreibungen wirksam werden.

from math import *
from altgrad import *

print("Trigonometrie")

print("Der Sinus von 30° ist",sin(30))

print("Der Kosinus von 0° ist",cos(0))

print("Der Tangens von 45° ist",tan(45))

print("Ein Sinuswert von 1 tritt bei",asin(1l),"Grad auf.")
print("Bei 10% Steigung ist der Winkel",atan(0.1),"Grad.")
print("Eine Steigung von 1:2 entspricht",atan2(1,2),"Grad.")

Der Programmlauf zeigt, dass nun tatsachlich alle Winkelfunktionen mit
Altgrad anstelle von Bogenmals berechnet werden:

Trigonometrie

Martin Vogel: Bauinformatik mit Python, WS 2025/26 206

Der Sinus von 30° ist 0.49999999999999994

Der Kosinus von 0° ist 1.0

Der Tangens von 45° ist 0.9999999999999999

Ein Sinuswert von 1 tritt bei 90.0 Grad auf.

Bei 10% Steigung ist der Winkel 5.710593137499643 Grad.
Eine Steigung von 1:2 entspricht 26.56505117707799 Grad.

Wie man die vielen Nachkommastellen am einfachsten los wird, steht ub-
rigens in Kapitel 5.21.5.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 207

5.21 Zeichenketten

Zeichenketten sind Sequenzen von Buchstaben, Ziffern, Satz- und Son-
derzeichen sowie Steuerzeichen von nahezu beliebiger Lange. Seit Py-
thon 3 konnen Zeichenketten alle weltweit verwendeten Unicode-Schrift-
zeichen enthalten.

5.21.1 Anfuhrungszeichen in Zeichenketten

Zeichenkettenkonstanten durfen wir wahlweise mit '‘einzelnen' oder "dop-
pelten" Anfuhrungszeichen umgeben.

Den jeweils anderen Anfuhrungszeichentyp konnen wir als gewohnliches
Zeichen im auszugebenden Text verwenden:

print("Conny's Frittenranch")
print('Sprich "Freund" und tritt ein!')

Wenn derselbe Typ von Anfuhrungszeichen, der auch zur Umgrenzung
verwendet wird, in der Zeichenkette enthalten sein soll, dann ist diesen
Anfuhrungszeichen jeweils ein Ruckwartsschragstrich \ voranzustellen:

print("Man kann auch \"Backslash\" dazu sagen.")

Eine Besonderheit sind Anfithrungszeichen innerhalb der geschweiften
Klammern von f-Strings. Diese durfen seit Python 3.12 ohne Rucksicht
auf die Anfuhrungszeichen aulSerhalb der geschweiften Klammer verwen-
det werden'.

print(f"Die Syntaxhervorhebung der meisten Editoren hat damit
jedoch haufig noch {int("1")} Problem.")

Es ist daher wohl keine schlechte Idee, zugunsten der Lesbarkeit mog-
lichst einen anderen Anfuhrungszeichentyp innerhalb als auflerhalb der
geschweiften Klammern von f-Strings zu verwenden.

1 https://peps.python.org/pep-0701/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

208

https://peps.python.org/pep-0701/

5.21.2 Der Ruckwartsschragstrich

Das Zeichen ,\“ hat in Zeichenketten eine besondere Bedeutung.

Steht es vor den Kleinbuchstaben ,t“, ,n“ oder ,r“, so werden ,\t“, ,\n“
und ,\r“ durch Tabulatorzeichen, Zeilenumbruch und Wagenrucklaufzei-
chen ersetzt.

Die Kombinationen von ,\x“ gefolgt von einer zweistelligen Hexadezimal-
zahl, ,\u” gefolgt von einer vierstelligen Hexadezimalzahl und ,\U“ ge-
folgt von einer achtstelligen Hexadezimalzahl stehen fur das Unicodezei-
chen mit der entsprechenden Codeposition.

Der GrolSbuchstabe ,N“ hinter einem Ruckwartsschragstrich erlaubt es,
jedes Unicodezeichen iuiber seinen genormten Namen'! azusprechen. Das
Eurozeichen € wird beispielsweise als ,\N{EURO SIGN}“ umschrieben.

Um einen auszugebenden Ruckwartsschragstrich oder ein Anfuhrungszei-
chen innerhalb einer Zeichenkettenkonstante zu verwenden, stellen wir
diesen Zeichen einen weiteren Ruckwartsschragstrich voran.

>>> print("Die Zeichen \xe4, \xf6 und \xfc kann man "
"auch\nals \"\\xe4\", \"\\xf6\" und \"\\xfc\" "
"schreiben.")

Die Zeichen a, 6 und ii kann man auch

als "\xe4", "\xf6" und "\xfc" schreiben.

Der Ruckwartsschragstrich wird gelegentlich auch im Deutschen mit sei-
nem englischsprachigen Namen ,Backslash” bezeichnet.

5.21.3 Mehrzeilige Ausgabe

UmschlieSen wir eine Textkonstante mit jeweils drei Anfuhrungszeichen,
so darf der Text sich iber mehrere Zeilen erstrecken und sowohl 'einzel-
ne' als auch "doppelte" Anfuhrungszeichen enthalten.

1 Eine umfassende Liste von Unicode-Zeichen, ihrer Codepositionen und Namen findet
sich unter anderem auf https://www.unicode.org/charts/nameslist/.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

209

https://www.unicode.org/charts/nameslist/

print(
SI-MafR: 1,12 m
US-MaB: 3'8"
IIIIII)

Innerhalb der Anfuhrungszeichen muss (darf) keine Rucksicht auf Py-
thons Einruckungen genommen werden. Dies macht Programmabschnit-
te, die mehrzeilige Zeichenkettenkonstanten innerhalb von Schleifen,
Funktionsdefinitionen oder Fallunterscheidungen enthalten, mitunter
schwer lesbar, sodass wir abwagen sollten, ob wir hier lieber der Einfach-
heit oder besser doch der Ubersichtlichkeit den Vorzug geben.

>S5 print (mia

Python
ist
klasse!

|
_/) 11
(s xe)|]
/ ®)

")

ist

|

| Python
| .

| klasse!

_/) 11
(e xe)]]
/ D

>>> http://knowyourmeme.com/memes/sign-bunny

Martin Vogel: Bauinformatik mit Python, WS 2025/26

210

http://knowyourmeme.com/memes/sign-bunny

5.21.4 Zeichenketten-Methoden

Es gibt Funktionen in Python, die wir nur auf Zeichenketten anwenden
konnen. Solche an bestimmte Objekte gebundene Funktionen nennen wir
~Methoden” dieser Objekte. Sie werden mit der Schreibweise Objektna-
me.Methodenname (Argumente) aufgerufen.

Einige haufig verwendete Zeichenkettenmethoden sind im Folgenden auf-
gefuhrt.

.count(Suchtext)

gibt an, wie oft ein Suchtext in der zu durchsuchenden Zeichenket-
te vorkommt. Die einzelnen Fundstellen dirfen sich nicht uberlap-
pen.

A = "Elefantentanten"

A.count("nt")
3

.encode(Kodierung, Fehlerbehandiung)

wandelt eine Zeichenkette in eine Bytefolge um. Wenn Sie keine Ko-
dierung angeben, verwendet Python die Standardkodierung UTF-8.

A = "Der Winkel a betragt 45°."

A.encode()
b'Der Winkel \xce\xbl betr\xc3\xad4gt 45\xc2\xh0.'

Wenn die Zeichenkette in der gewahlten Kodierung nicht darstellbar ist
(die in Mitteleuropa unter Windows ubliche Kodierung ,Windows-1252"
kennt beispielsweise kein ,,a”), muss festgelegt werden, wie auf den Feh-
ler reagiert werden soll. Das Standardverfahren ist strict, dabei bricht
das Programm mit einer Fehlermeldung ab. Andere Verfahren sind
ignore, replace und xmlcharrefreplace.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

211

A.encode("windows-1252", errors="ignore")
b'Der Winkel betr\xed4gt 45\xbh0.'

A.encode("windows-1252", errors="replace")
b'Der Winkel ? betr\xedgt 45\xb0.'

A.encode("windows-1252", errors="xmlcharrefreplace")
b'Der Winkel α betr\xed4gt 45\xb0.’

.endswith(Suchtext)

gibt an, ob die Zeichenkette mit dem Suchtext endet.

A = "Dateiname.csv"

A.endswith(".csv")
True

.find(Suchtext)

gibt an, an welcher Stelle ein Suchtext in der zu durchsuchenden
Zeichenkette erstmalig vorkommt. Wird der Suchtext nicht gefun-
den, lautet der Ruckgabewert -1.

Soll nicht die erste, sondern die letzte Fundstelle zurickgegeben
werden, verwenden wir die Methode rfind.

A = "Elefantentanten"

A.find("nt")
5

A.find("xy")
-1

Martin Vogel: Bauinformatik mit Python, WS 2025/26

212

A.rfind("nt")
11

.isalnum()

gibt an, ob die Zeichenkette alphanumerisch ist, also nur aus Zif-
fern und Buchstaben besteht.

A = "123Test"

A.isalnum()
True

A = "123 Test"

A.isalnum()
False

.isalpha()

gibt an, ob die Zeichenkette nur aus Buchstaben besteht.

A = "Dortmund"

A.isalpha()
True

A = "Schalke04"

A.isalpha()
False

.isascii()
gibt an, ob die Zeichenkette nur aus ASCII-Zeichen besteht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

213

A = "Krefeld, Bochum, Alabama"

A.isascii()
True

A = "Minster, A0AQva, MockBa"

A.isascii()
False

.isdecimal()

gibt an, ob die Zeichenkette nur aus den Ziffern von 0-9 besteht.

A = "12345"

A.isdecimal()
True

A = "12.345"

A.isdecimal()
False

.join(iterierbares Objekt)

verwendet eine Zeichenkette, um damit die Elemente eines iterier-
baren Objekts, beispielsweise einer Liste, zu verbinden. Die Ele-
mente des iterierbaren Objektes mussen ebenfalls Zeichenketten

sein.

A = ["Hund", "Katze", "Maus"]

", ".join(A)
'Hund, Katze, Maus'

Martin Vogel: Bauinformatik mit Python, WS 2025/26

214

Jower()

wandelt Buchstaben einer Zeichenkette in Kleinbuchstaben um.

A = "99 GRUNE LuftBallons"

A.lower()
'99 griine luftballons'

.replace(alt, neu)

erzeugt eine neue Zeichenkette, in der die Zeichenfolge alt gegen
die Zeichenfolge neu ersetzt wurde.

A = "12,345 $"

A.replace("$", "€")
'12,345 €'

A.replace("'", II.II)
'12.345 $'

A.I"eplaCE(",", ||.||).rep1ace(|| ||' ||€||)
'12.345 €'

.split(Trennzeichen)

wandelt eine lange Zeichenkette in eine Liste aus kurzeren Zeichen-
ketten um, wobei die erzeugten Listenelemente in der ursprungli-
chen Zeichenkette durch ein Trennzeichen oder eine bestimmte Zei-
chenfolge getrennt sein mussen.

A = "Hund;Katze;Maus"

A.split(";")
["Hund', 'Katze', 'Maus']

Martin Vogel: Bauinformatik mit Python, WS 2025/26

215

Wenn wir kein Trennzeichen angeben, trennt .split() die zugeho-
rige Zeichenkette an allen Leerzeichen, Tabulatorzeichen \t und
Zeilenwechseln \n, dem sogenannten ,Leerraum” oder ,White-
space“!.

.startswith(Suchtext)

gibt an, ob die Zeichenkette mit dem Suchtext anfangt.

A = "IPE-400-Stahltrager"

A.startswith("IPE-")
True

.strip(abzustreifende Zeichen)

entfernt Zeichen am Anfang und Ende einer Zeichenkette. Wenn
keine Zeichenkette aus abzustreifenden Zeichen ubergeben wird,
werden standardmalsig Leerzeichen, Tabulatorzeichen und Zeilen-
umbriiche? entfernt.

A = "/t/t# Inhalt/n"

A.strip()
'# Inhalt’

A.strip("/t/n #")
'Inhalt’

.upper()

wandelt Buchstaben einer Zeichenkette im GrolSbuchstaben um.

1 Streng genommen gehoren auch die historischen Steuerzeichen ,,Wagenricklauf” \r
und , Seitenvorschub” \f zu den Whitespace-Zeichen. Seitdem Drucker nicht mehr
wie Schreibmaschinen funktionieren, sind diese Zeichen praktisch bedeutungslos.
Das halt Microsoft Windows allerdings auch heute noch nicht davon ab, Textzeilen
nicht nur wie andere Betriebssysteme mit einem Zeilenwechsel abzuschlieSen, son-
dern es stellt diesem immer auch noch einen Wagenricklauf voran.

2 ... und alle anderen Whitespace-Zeichen ...

Martin Vogel: Bauinformatik mit Python, WS 2025/26 2 16

A = "99 grine Luftballons”

A.upper()
'99 GRUNE LUFTBALLONS'

5.21.5 Formatierung mit Platzhaltern

Bei der Ausgabe von FlielSkommazahlen stellen wir gelegentlich fest, dass
15 Nachkommastellen zwar ganz schon fur die Rechengenauigkeit sind,
aber nicht unbedingt zur Lesbarkeit von numerischen Ergebnissen beitra-
gen. Zwei oder drei Nachkommastellen reichen in der Praxis meistens
aus.

Wenn wir mehrere Werte mit einem Aufruf der print-Funktion ausgeben
wollen, geben wir sie ublicherweise als kommagetrennte Parameterliste
an. Dabei konnen wir verschiedene Typen von Variablen, Konstanten oder
ganzen Python-Ausdrucken beliebig mischen. Jedes Komma der Parame-
terliste wird standardmalig durch ein Leerzeichen ersetzt.

a "Lange"
b =11/7
print("Die", a, "betragt", b, "Meter.")

Die Lange betragt 1.5714285714285714 Meter.

Die oben zu sehende Zahl hat 16 Nachkommastellen. Wir konnten sie
zwar durch Aufruf der Funktion round(Zahlenwert, Stellenzahl) auf
die gewunschte Stellenzahl runden, aber jeden einzelnen auszugebenden
Zahlenwert in einem Programm durch Aufruf dieser Funktion zu runden,
ware viel zu umstandlich. Python besitzt eine viel elegantere und vielseiti-
gere Moglichkeit, Zahlenwerte mit fester Nachkommastellenzahl auszu-
geben: die Formatierung durch Platzhalter.

Ungewohnlicherweise gibt es hier in Python zwei verschiedene Verfah-
ren. Die altere, zur Funktion printf in der Programmiersprache C kompa-
tible, Formatierung ist sehr einfach aufgebaut, soll aber in kommenden
Python-Versionen nicht mehr unterstutzt werden. Sie wird in einem spate-

Martin Vogel: Bauinformatik mit Python, WS 2025/26

217

ren Kapitel (5.21.9) nur noch der Vollstandigkeit halber beschrieben.
Stattdessen sollten wir F-Strings einsetzen, die eine mit Python 3.6 neu
eingefuhrte Verbesserung der Zeichenkettenmethode .format() darstel-
len.

5.21.6 F-Strings

F-Strings sind Zeichenkettenkonstanten, die Platzhalter fur andere Kon-
stanten, Variablen oder zusammengesetzte Python-Ausdrucke enthalten.
Als Kennzeichnung fur solche Platzhalter werden geschweifte Klammern
verwendet. Thren Namen haben F-Strings von dem ihnen vorangestellten
Buchstaben ,f*.

a "Lange"

b =11/7

print("Die", a, "betragt", b, "Meter.")
print(f"Die {a} betragt {b} Meter.")

Die Lange betragt 1.5714285714285714 Meter.
Die Lange betragt 1.5714285714285714 Meter.

Die Rundung der Zahlenwerte konnen wir einfach dadurch festlegen,
dass wir innerhalb der geschweiften Klammern, hinter dem auszugeben-
den Wert, die gewunschte Stellenzahl angeben. Wollen wir beispielsweise
die in der Variable a enthaltene Gleitkommazahl (float) mit drei Nachkom-
mastellen anzeigen, so schreiben wir {a:.3f}. Um anstelle der Nachkom-
mastellen die Zahl der signifikanten Stellen auf drei festzulegen, lassen
wir das ,f“ innerhalb der geschweiften Klammer fort und schreiben:

{a:.3}.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

218

Wir konnen auch die Gesamtbreite der Zahl angeben. Das ist ganz prak-
tisch, wenn wir in einer mehrzeiligen Ausgabe alle Dezimalpunkte ordent-
lich untereinander sehen wollen. Diese Breite tragen wir direkt hinter
dem Doppelpunkt ein:

i range(7):
a = 10%*1
b =a/7

print(f"{a:8}/7 = {b:10.3f}")

1/7 = 0.143

10/7 = 1.429
100/7 = 14.286
1000/7 = 142.857
10000/7 = 1428.571
100000/7 = 14285.714
1000000/7 = 142857.143

Der Dezimalpunkt und ein eventuell vorhandenes Vorzeichen werden da-
bei als eigenstandige Zeichen mitgezahlt.

Falls wir innerhalb eines f-Strings geschweifte Klammern verwenden
mochten, die nicht als Platzhalter dienen, so schreiben wir sie doppelt: {{
fur eine offnende und }} fur eine schlielsende geschweifte Klammer.

Ein besonders fur Kontrollausgaben sehr brauchbares Feature von f-
Strings ist die Moglichkeit, gleichzeitig Namen und Werte von Variablen
anzeigen zu lassen. Dazu schreiben wir den Variablennamen gefolgt von
einem Gleichheitszeichen zwischen die geschweiften Klammern.

a, b, c = "Test", 123, 4.56
print(f"{a=}; {b=}; {c=}")

a='Test'; b=123; c=4.56

Martin Vogel: Bauinformatik mit Python, WS 2025/26 2 19

5.21.7 Die Methode .format()

Ganz ahnlich wie bei den F-Strings funktioniert die Formatierung durch
die bereits vor Python 3.6 verfugbare Format-Methode von Zeichenket-
ten. Hier geben wir die Variablennamen und Werte jedoch nicht direkt an,
sondern hangen sie in Form einer Parameterliste an. Ob das ubersichtli-
cher oder umstandlicher als die Formatierung durch F-Strings ist, mogen
Sie fur sich entscheiden.

a "Lange"

b =11/7

print(f"Die {a} betragt {b:.2f} Meter.")

print("Die {0} betragt {1:.2f} Meter.".format(a,b))

Die Lange betragt 1.57 Meter.
Die Lange betragt 1.57 Meter.

Die Positionsangaben (hier 0 und 1) durfen weggelassen werden, wenn je-
de Variable nur einmal in die Zeichenkette eingesetzt wird und die Rei-
henfolge der Verwendung dieselbe ist wie in der Parameterliste:

print("Die {} betragt {:.2f} Meter.".format(a,b))

Die Lange betragt 1.57 Meter.

5.21.8 Die Formatierungs-Mini-Sprache

Die Formatierungsmoglichkeiten von F-Strings und der .format-Methode
gehen weit uber die simple Festlegung von Nachkommastellen hinaus.
Die Moglichkeiten sind so vielfaltig, dass sie gelegentlich als ,Mini-Spra-
che” bezeichnet werden'.

1 Format Specification Mini-Language: https://docs.python.org/3/library/
string.html#format-specification-mini-language

Martin Vogel: Bauinformatik mit Python, WS 2025/26 220

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language

Einige Beispiele

Linksbundige, rechtsbundige, vorzeichengetrennte und zentrierte Aus-
richtung mit ,<“, ,>“, ,=“und ,”“ in einem acht Zeichen breiten Feld:

for x in [-10**(i-3) for i in range(10)]:
print(f"{x:<8} | {x:>8} | {x:=8} | {x:78}")

-0.001 | -0.001 | - ©0.001 | -0.001
-0.01 | -0.01 | - 0.01 | -0.01
-0.1 | -0.1 | - 0.1 | -0.1
-1 | -1 - 1| -1
-10 | -10 | - 10 | -10
-100 | -100 | - 100 | -100
-1000 | -1000 | - 1000 | -1000
-10000 | -10000 | - 10000 | -10000
-100000 | -100000 | - 100000 | -100000
-1000000 | -1000000 | -1000000 | -1000000

Angabe eines Fullzeichens vor dem Ausrichtungszeichen:

for x in [-10**(i-3) for i in range(10)]:
print(f"{x:~<8} | {x:+>8} | {x:0=8} | {x:*78}")
-0.001~~ | ++-0.001 | -000.001 | *-0.001*
-0.01~~~ | +++-0.01 | -0000.01 | *-0.01**
-0.1 | =-0.1 | -00000.1 | **-@,1%*
-1 | ++++++-1 | -0000001 | ***-1x*x*
-10 | +++++-10 | -0000010 | **-1@***
-100 | ++++-100 | -0000100 | **-100**
-1000~~~ | +++-1000 | -0001000 | *-1000**
-10000~~ | ++-10000 | -0010000 | *-10000%*
-100000~ | +-100000 | -0100000 | -100000%*
-1000000 | -1000000 | -1000000 | -1000000

Vorangestellte Nullen, Vorzeichen und Leerzeichen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

221

for x in [(1-5)*10**(i-4) for i in range(10)]:
print(f"{x: 08} | {x:-08} | {x:+08}")
-00.0005 | -00.0005 | -00.0005
-000.004 | -000.004 | -000.004
-0000.03 | -0000.03 | -0000.03
-00000.2 | -00000.2 | -00000.2
-0000001 | -0000001 | -0000001
0000000 | 00000000 | +0000000
0000100 | 00000100 | +0000100
0002000 | 00002000 | +0002000
0030000 | 00030000 | +0030000
0400000 | 00400000 | +0400000

Tausendergruppierung mit Unterstrich, Komma oder gemals der aktuellen
Landereinstellung des Betriebssystems (achten Sie in der rechten Spalte
auf das Dezimalkomma!):

import locale
locale.setlocale(locale.LC_ALL, '"')

for x in [10**(i-2) for i in range(10)]:
print(f"{x:10} | {x:10_} | {x:10,} | {x:10n}")

0.01 | 0.01 | 0.01 | 0,01

0.1 | 0.1 | 0.1 | 0,1

1| 1| 1| 1

10 | 10 | 10 | 10

100 | 100 | 100 | 100

1000 | 1 000 | 1,000 | 1.000
10000 | 10_000 | 10,000 | 10.000
100000 | 160 0600 | 160,000 | 100.000
1000000 | 1_000 000 | 1,000,000 | 1.000.000
10000000 | 10_000_000 | 10,000,000 | 10.000.000

Martin Vogel: Bauinformatik mit Python, WS 2025/26 222

Ganze Zahlen konnen wir nicht nur im Dezimalsystem (Basis 10), im Bi-
narsystem (Basis 2), Oktalsystem (Basis 8) oder Hexadezimalsystem (Ba-
sis 16) ausgeben, sondern wir konnen auch angeben, dass fiir den Platz-
halter eines ganzzahligen Wertes das dem Wert entsprechende
Unicodezeichen eingesetzt werden soll. All dies geben wir mit einem
Buchstaben ganz am Ende des Platzhaltercodes an. Dabei steht der Buch-
stabe ,b” fur eine Darstellung im Binarsystem, ,0“ fur eine Oktalzahl, ,d“
(oder nichts) fur eine Zahl im Dezimalsystem, ,x“ fur eine Hexadezimal-
zahl mit kleinen Buchstaben fur die Ziffern jenseits der 9, ,X“ fur eine
Hexadezimalzahl mit grolfen Buchstaben und ,c” fur ein Unicodezeichen
mit der entsprechenden Codeposition.

Das Gruppierungszeichen , “ ordnet Zahlen des Binarsystems in Vierer-
gruppen an. Der Modifikator , #“ sorgt dafir, dass Hexadezimalzahlen ein
,0x“ und Binarzahlen ein , 0b“ vorangestellt wird.

i in (65, 66, 67, 216, 8730, 8734):
print(f*{i:5d} | {i:019 b} | {i:04x} | {i:#e6x} | {i:c}")

65 | 0000 0000 0100 0001 | 0041 | 0x0041 | A
66 | 0000 _0000 0100 0010 | 0042 | 0x0042 | B
67 | 0000 0000 0100 0011 | 0043 | 0x0043 | C
216 | 0000 0000 1101 1000 | 00d8 | 0x00d8 | O
8730 | 0010_0010 0001 1010 | 221a | 6x22la | ¥
8734 | 0010 _0010 0001 1110 | 22le | 0x22le | »

Fur Gleitkommazahlen gibt es ahnlich umfangreiche Darstellungsmog-
lichkeiten. Mit ,e“ oder ,E“ geben wir an, dass wir eine Darstellung in
Exponentialschreibweise winschen. Ein ,f“ sorgt fur eine feste
Nachkommastellenzahl; ohne weitere Angabe erhalten wir sechs Nach-
kommastellen. Der Kennbuchstabe ,,g“ wahlt je nach Zahlenwert und ge-
wunschter Stellenzahl die Dezimal- oder die Exponentialschreibweise. Mit
»%"“ sehen wir Prozentwerte, bei denen der Zahlenwert mit 100 multipli-
ziert wird und ,n“ sorgt wieder fur die schon bekannten nationalen Dezi-
mal- und Tausendertrennzeichen.

Feste Nachkommastellen konnen wir nur bei den Darstellungsarten ,f*,
,e“ und ,%“ wahlen. Die Zahl nach dem Punkt im Platzhalter steht bei
den Darstellungsarten ,,g“ und ,n“ fur die Gesamtstellenzahl.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

223

import locale
locale.setlocale(locale.LC_ALL, '"')

for x in [10.0**(i-3) for i in range(10)]:
print(f"{x:10.2f} | {x:8.2e} | {x:6.59} | {x:6.5n} | "
f'{x:13.2%}")

0.00 | 1.00e-03 | 0.001 | 0,001 | 0.10%

0.01 | 1.00e-02 | 0.01 | 0,01 | 1.00%

0.10 | 1.00e-01 | 0.1 | 0,1 | 10.00%

1.00 | 1.00e+00 | 1| 1 | 100.00%

10.00 | 1.00e+01 | 10 | 10 | 1000.00%
100.00 | 1.00e+02 | 100 | 100 | 10000.00%
1000.00 | 1.00e+03 | 1600 | 1.000 | 100000.00%
10000.00 | 1.00e+04 | 10000 | 10.000 | 1000000.00%
100000.00 | 1.00e+05 | 1le+05 | 1e+05 | 10000000.00%
1000000.00 | 1.00e+06 | le+06 | 1le+06 | 100000000.00%

Platzhalter durfen sogar verschachtelt werden. In unserem letzten Bei-
spiel verandern wir in einer Schleife die Nachkommastellenzahl i bei der
Ausgabe des Zahlenwertes ¥7:

for 1 in range(1,7):
print(f"{1/7:.{i}f}")

.1

.14
.143
.1429
.14286
.142857

Martin Vogel: Bauinformatik mit Python, WS 2025/26 224

5.21.9 Die alte printf-kompatible Formatierung

In alteren Python-Quelltexten finden wir haufig eine andere Art der for-
matierten Ausgabe. Diese orientiert sich an der bereits 1972 mit der
Sprache C vorgestellten printf-Funktion. Thre Platzhalter bestehen im ein-
fachsten Fall aus einem Kennbuchstaben mit vorangestelltem Prozentzei-
chen. Der Kennbuchstabe zeigt an, welcher Inhaltstyp eingesetzt werden
kann. Ubliche Werte sind ,i“ fiir ganze Zahlen (int), ,f“ fur Gleitkomma-
zahlen (float) und ,s“ fur Zeichenketten (str).

Zwischen Prozentzeichen und Kennbuchstabe kann noch die Breite des zu
reservierenden Textbereichs angegeben werden, die Ausrichtung (links
oder rechts; mit oder ohne fuhrende Nullen) sowie bei Gleitkommazahlen
die Anzahl der Nachkommastellen.

Die tatsachlich anstelle der Platzhalter einzusetzenden Werte fuhren wir
in einem Tupel' auf, das von der Zeichenkette, welche die Formatangaben
enthalt, wiederum mit einem Prozentzeichen abgesetzt wird.

a=2/3
b=5/7
c=a+b

print("%.3f plus %.3f ergibt %.3f." % (a, b, c))

0.667 plus 0.714 ergibt 1.381.

Vergleich mit C

In der Sprache C wird die formatierte Ausgabe mithilfe der printf-Funkti-
on vorgenommen, die sich mit Python ganz leicht nachbilden lasst:

printf(Maske, *Werte):
print(Maske%(Werte))

Aufrufen lasst diese sich beispielsweise wie folgt:

1 Ein ,Tupel” ist in Python eine Gruppe von durch Kommas getrennten Werten, die von
runden Klammern umschlossen ist - siehe Kapitel 5.15.2 auf Seite 166.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 225

printf("%.3f plus %.3f ergibt %.3f.", a, b, c)

0.667 plus 0.714 ergibt 1.381.

Vergleich mit Java

Wer das zu einfach findet, kann sich auch eine zu Java ahnliche Ausgabe-
funktion zusammenschrauben:

System:
out:
format (Maske, *Werte):

print(Maske % Werte)

Ergebnis:

System.out.format("In %s ist das ahnlich.", "Java")

In Java ist das ahnlich.

Ubersicht

Die folgende Tabelle zeigt einige Moglichkeiten der Formatierung mithilfe
printf-kompatibler Platzhalter auf. Die einzusetzenden Werte sind hier
weggelassen worden, um die Darstellung ubersichtlich zu halten.

Platz- .. .

halter Anwendung Beispiele Ergebnis
"|%i]" |42

oi o : " %41 " | 42|

51, %0 Ganzzahlen (int) " |%-4d " 142 |
" %041 " |0042 |
"% |" |1.234568 |

o f Gleitkommazahlen "1%.2F|" [1.23]

° (float) "|%6.2F|" | 1.23]
"1%06.2f|" |001.23|

Martin Vogel: Bauinformatik mit Python, WS 2025/26

226

Platz- L]
halter Anwendung Beispiele Ergebnis
|||o/°SI|| IabCI
%S Zeichenkette (str) "|%6s | " | abc|
"|°/o'65|" |abC |
Ganzzahlen als Hexa- X coaf
X, %X dezimalzahlen X" COAF
"#%02X%02X%02X" | #0707FF
o Reduzierung auf AS- 5" GroBe
%a _
CII-Zeichen nogn LGr\\xf6\\xdfe"
o c Unicode-Zeichen aus 1" 65
° Ganzzahl ot A
se SE Exponential- %e" 1.234568e+08
°' "% darstellung no, SEM 1.23E+08

5.21.10 Kodierung und Dekodierung

Was wir gemeinhin als Zeichenketten wahrnehmen, besteht im Computer
nur aus einer Folge von Zahlenwerten. Jedem Buchstaben wird dabei ein
bestimmter Zahlenwert zugeordnet. Leider gibt es weltweit dutzende ver-
schiedene Arten, diese Zuordnung vorzunehmen. Python und die meisten
modernen Betriebssysteme verwenden die zum Unicode kompatible
UTF-8-Kodierung. Manchmal jedoch geraten wir an Daten, die in einer
falschen Kodierung vorliegen. Diese mussen wir ubersetzen, um sie sinn-
voll verwenden zu konnen. Wir verwenden dazu die Zeichenkettenmetho-
den encode und decode. Die Methode decode entschlusselt dabei eine
Bytefolge zu einer (hoffentlich) lesbaren Zeichenkette und die Methode
encode verschlusselt eine Zeichenkette zu einer Bytefolge.

Python zeigt Bytefolgen als Zeichenketten mit vorangestelltem ,b“ an.
Bytewerte zwischen 32 und 126 werden darin als ASCII-Zeichen darge-
stellt, die Werte 9, 10 und 13 als Tabulator \t, Zeilenumbruch \n und Wa-
genrucklauf \r und alle anderen Bytewerte in einer mit \x beginnenden
Hexadezimal-Ersatzdarstellung.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

227

>>> b = bytes([65, 66, 67, 32, 195, 182, 195, 164, 195,
188, 32, 195, 159])

>>> b
b'ABC \xc3\xb6\xc3\xad4\xc3\xbc \xc3\x9f"'

>>> b.decode("utf-8")
'ABC oaii B'

>>> b.decode("windows-1252")
'ABC AfAxAYL AY'

>>> "ABC AYA=AL AY".encode("windows-1252").decode("utf-8")
'ABC o6au R’

Der 1963 eingefuhrte und 1968 erweiterte Zeichensatz des ASCII (Ameri-
can standard code for information interchange) enthalt als druckbare Zei-
chen lediglich die wenigen in Abb. 84 dargestellten Zeichen.

&
S5 6
EF
ALY,
e f
u v

Ewo E Q-

Abb. 84: ASCII-Zeichen

Mehr dazu in Kapitel 6.2, ,Zeichenkodierung - von ASCII bis Unicode”.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 228

5.21.11 Komprimierung und Verschliusselung

In Pythons Modul , codecs” finden wir weitere Kodierungsarten, die recht
praktisch sind. Wenn wir beispielsweise ein grolses Datenpaket speichern
wollen, das viele sich wiederholende Abschnitte aufweist, so konnen wir
dieses mit den Kompressionsverfahren ,zip“ oder ,bz2“ verlustfrei in sei-
ner GrolSe reduzieren.

Wir bauen uns zum Ausprobieren mal eine 10 Megabyte grolse Bytefolge,
die immer wieder aus den aufsteigenden Zahlenwerten von 0 bis 255 be-
steht:

>>> B = bytes([i%256 i range(10_000 _000)1])
>>> len(B)
10000000

Nun laden wir das Modul ,,codecs” und komprimieren die Bytefolge:

>>> codecs encode, decode
>>> B_zip = encode(B, "zip")
>>> B_bz2 = encode(B, "bz2")

Die Komprimierung mit dem zweiten Verfahren dauert erkennbar langer.
Was haben wir gewonnen?

>>> len(B_zip)
39119
>>> len(B_bz2)
12489

Die Komprimierung mit dem ZIP-Algorithmus reduziert die Grofle um
96 % und das BZ2-Verfahren spart sogar 99 % ein. Nicht schlecht.

Ist wirklich nichts verloren gegangen? Wir packen die komprimierten
Bytefolgen wieder aus und vergleichen ihre Inhalte:

>>> B_unzip = decode(B_zip, "zip")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 229

>>> B _unbz2 = decode(B_bz2, "bz2")
>>> len(B_unzip)

10000000

>>> len(B_unbz2)

10000000

>>> B_unzip == B_unbz2 ==

True

... sehr schon!

Falls wir einmal etwas anderes als Bytefolgen komprimieren wollen, zum
Beispiel eine Liste oder ein Dictionary, so mussen wir diese Objekte zu-
erst in Bytefolgen umformen. Das Modul , pickle” besitzt dafiir die beiden
Funktionen dumps und loads.

>>> codecs encode, decode
>>> pickle dumps, loads

>>> Riesenliste = ["Test", 1, 2, 3] * 10_000_000

>>

\"

Bytefolge = dumps(Riesenliste)

>>> len(Bytefolge)
80080015

Das sind rund 80 Megabyte. Geht das nicht ein bisschen kompakter?

>>> Komprimiert = encode(Bytefolge, "bz2")

>>> len(Komprimiert)
5491

Die Bytefolge wurde gerade auf 0,7% ihrer Lange eingedampft. Wir
schauen wieder, ob auch diesmal nichts verloren gegangen ist:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 230

>>> ausgepackte Liste = loads(decode(Komprimiert, "bhz2"))

>>> ausgepackte_Liste == Riesenliste
True

Die Kompression um 99,3% war also tatsachlich verlustfrei.

Simple Verschlusselung

Manchmal ist es angebracht, Informationen vor allzu einfachem Zugriff
zu schitzen. Geocaching-Fans beispielsweise verschleiern Hinweise auf
Ratsellosungen gern mit dem Rot-13-Verfahren. Dabei wird jeder Buch-
stabe von ,A” bis ,,Z“ sowie jeder Buchstabe von ,a“ bis ,z“ durch sein 13
Stellen im Alphabet versetzt liegendes Gegenstuck ersetzt. Alle anderen
Zeichen bleiben unverandert. Wenden wir diese ,Verschlusselung” ein
zweites Mal an, gelangen wir wieder zum Originaltext. Kodierung und De-
kodierung bewirken also in diesem Fall dasselbe.

>>> encode("Das soll nicht jeder lesen konnen.", "rotl3")
'Qnf fbyy avpug wrqre yrfra xoaara.'

>>> encode("Qnf fbyy avpug wrqre yrfra xoéaara.", "rotl3")
'Das soll nicht jeder lesen konnen.'
>>> decode("Qnf fbyy avpug wrqre yrfra xoéaara.", "rotl3")

'Das soll nicht jeder lesen konnen.'

5.21.12 Sonderformen von Zeichenketten

B-Strings

StandardmalSsig sind Zeichenketten in Python 3 Sequenzen aus Unicode-
Zeichen in der Kodierung UTF-8. Gelegentlich ist es jedoch sinnvoll, die
Bytes einer Zeichenkette ohne textuelle Interpretation zu verarbeiten. In
Python 3 kennzeichnen wir solche undekodierten Byteketten mit einem
vorangestellten ,b“. In ihnen sind alle 256 moglichen Bytewerte erlaubt,
unabhangig davon, ob sie als Zeichen dargestellt werden konnen oder
nicht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

231

S = "Grinanlage\tAntonin Dvorak\nFlache: 2500 m2"
print(S)

Griunanlage Antonin Dvorak
Flache: 2500 m?2

S.encode("utf-8")

b'Gr\xc3\xbcnanlage\tAnton\xc3\xadn
Dvo\xc5\x99\xc3\xalk\nFl\xc3\xadche: 2500 m\xc2\xb2'

Die Zeichenkombination ,\x“ zeigt dabei an, dass die folgenden zwei Zei-
chen den Hexadezimalcode des Bytes bilden, das sich an dieser Stelle des
B-Strings befindet. ,\xc3\xbc“ steht also fur die Hexadezimalzahlen c3
und bc (dezimal 195 und 188), dem UTF-8-Code fur das Zeichen ,u”“.

B-Strings verwenden wir auch, wenn wir reine Binardaten verarbeiten, al-
so Daten, die nicht in einem menschenlesbaren Textformat vorliegen, wie
beispielsweise Bilder, Audiodateien, ZIP-Archive oder Videos.

U-Strings

In Python 2 war die im vorigen Kapitel beschriebene Zuordnung umge-
dreht. Zeichenketten waren standardmaflig Bytefolgen und Unicode-Zei-
chenketten musste ein ,u”“ vorangestellt werden. Falls Sie in alten Bu-
chern oder in den Tiefen des Internets Codeschnipsel finden, in denen
solche U-Strings vorkommen, handelt es sich um historischen Python-2-
Code.

In Python 3 wird ein vorangestelltes ,,u” ignoriert.

"Botchen" == u"Botchen"

True

Martin Vogel: Bauinformatik mit Python, WS 2025/26 232

R-Strings

In ,rohen” R-Zeichenketten findet keine Zeichenersetzung durch den
Ruckwartsschragstrich ,\“ statt. Der Ruckwartsschragstrich und das auf
ihn folgende Zeichen werden wie zwei gewohnliche Zeichen behandelt.

S = "Griinanlage\tAntonin Dvorak\nFlache: 2500m2"
R = r"Griinanlage\tAntonin Dvorak\nFlache: 2500m2"
print(S)

Griinanlage Antonin Dvorak

Flache: 2500m>2

print(R)

Griinanlage\tAntonin Dvorak\nFlache: 2500m?

Es gibt bei der Verwendung von R-Strings eine Einschrankung: Da der
Ruckwartsschragstrich und das auf ihn folgende Zeichen als gewohnliche
Zeichen ubernommen werden, darf ein R-String niemals mit einem Ruck-
wartsschragstrich enden, da dieser ihm sein schlieRendes Anfuhrungszei-
chen ,klaut”.

R-Strings sind besonders bei der Textmusterbeschreibung durch die
machtigen Regularen Ausdrucke hilfreich, in denen haufig Ruckwarts-
schragstriche vorkommen.

Regulare Ausdrucke werden aufgrund der ihnen innewohnenden Komple-
xitat in diesem Kurs nicht behandelt.

F-Strings

F-Strings wurden mit Python 3.6 eingefuhrt und erlauben eine besonders
einfache Ausgabe formatierter Zahlenwerte. Sie werden in Kapitel 5.21.6
ausfuhrlich behandelt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 233

5.22 Dateien lesen und schreiben

5.22.1 Textdateien lesen

Textdateien sind Dateien, deren Inhalt vorzugsweise aus ASCII-Zeichen
oder UTF-8-kodierten Unicodezeichen besteht.

Das Offnen einer Datei mit der Funktion open erzeugt ein iterierbares Ob-
jekt, das Dateihandle.

Der Funktion open muss immer eine Zeichenkette ubergeben werden, in
der sich der Name der zu offnenden Datei befindet. Python sucht dann in
demselben Verzeichnis nach der Datei, in dem sich auch das gerade aus-
gefuhrte Programm befindet. Wenn wir dem Dateinamen einen Verzeich-
nisnamen voranstellen, dann sucht unser Pythonprogramm die Datei in
dem entsprechenden Unterverzeichnis seines Programmverzeichnisses.
Dieser Verzeichnisname wird auch in Windows mit einem gewohnlichen
Schragstrich vom Dateinamen abgesetzt. Siehe auch Kapitel 2.3.

Nach dem Lesen einer Datei sollte diese wieder geschlossen werden. Das
geschieht entweder explizit durch Aufruf der Dateihandle-Methode
.close() oder implizit, indem wir iiber das Schliisselwort with einen
Kontextblock einrichten, dessen Verlassen die Datei automatisch schlielst.

Dateizugriff mit explizitem SchlieBen
datei = open("Test.txt"™, "r")
print(datei.read())

datei.close()

Dateizugriff mit implizitem SchlieRen
open("Test.txt", "r") datei:
print(datei.read())

Martin Vogel: Bauinformatik mit Python, WS 2025/26

234

Python kennt vier grundlegende Arten, eine Textdatei zu lesen:

Python-Code Resultat

Liest Zeile fur Zeile bis zum Dateiende
nacheinander in die Variable zeile ein.

zeile datei:

Liest genau eine Zeile aus der Datei in

zeile = datei.readline
0 eine Zeichenkette.

Liest alle Zeilen einer Datei in eine Liste

zeilen = datei.readlines
0 aus Zeichenketten.

Liest die gesamte Datei in eine einzige

1les = datei. d
alles atei.read() Zeichenkette.

Beim zeilenweisen Lesen einer Datei werden die Zeilen einschliefSlich des
Zeilenendezeichens \n gelesen. Unter Umstanden befinden sich auch
noch Leerzeichen und Tabulatoren am Zeilenende. Der Methodenaufruf
.rstrip() entfernt die meistens unerwiinschten Leer- und Steuerzeichen
vom Zeilenende.

open("Liste.txt"™, "r") meine Datei:
zeile meine_Datei:
print(zeile.rstrip())

Gelegentlich haben wir Dateien zu verarbeiten, die in den ersten Zeilen
Kommentare oder andere fur uns unwichtige Texte enthalten und deren
eigentliche Daten erst danach beginnen. Diese Zeilen konnen wir einfach
mit der Funktion next uberspringen.

open("Liste.txt") meine_Datei:
vier unwichtige Zeilen iiberspringen
n range(4):

next(meine_Datei)

den ganzen Rest der Datei einlesen
zeile meine_Datei:
print(zeile.rstrip())

Martin Vogel: Bauinformatik mit Python, WS 2025/26

235

Textdateien, die nicht in der Standardzeichenkodierung des Betriebssys-
tems vorliegen, mussen beim Lesen umkodiert werden, damit Umlaute
und Sonderzeichen korrekt dargestellt werden.

Ublicherweise verwenden heutige Betriebssysteme die Zeichenkodierung
UTF-8. Unter Microsoft Windows treten jedoch trotz der Empfehlung Mi-
crosofts!, UTF-8 zu verwenden, immer wieder die veralteten Einzelbyte-
Kodierungen auf. Hier muss die Zeichenkodierung grundsatzlich immer
angegeben werden, um kompatibel zum Rest der Welt zu sein.

open("Liste.txt", "r", encoding="utf-8") meine Datei:
zeile meine_Datei:
print(zeile.rstrip())

Falls das Lesen der Textdatei trotz dieser Angabe mit einer Fehlermel-
dung vom Typ UnicodeDecodeError abbricht, so liegt die Datei nicht im
UTF-8-Format vor. Probieren Sie in dem Fall der Reihe nach einige der
vielen weltweit immer noch verwendeten Zeichenkodierungen des vori-
gen Jahrhunderts aus: "windows-1252", "windows-1251", "windows-
-1254", "is0-8859-15", "is0-8859-1", "cp850" oder "cp437". Achten Sie be-
sonders auf Umlaute und andere nicht-ASCII-Sonderzeichen.

Irrefuhrenderweise heilst die auf einem beliebigen Windows-PC gerade
eingestellte Zeichenkodierung dort immer , ANSI“. Bitte vermeiden Sie
diese sinnleere Kodierungsbezeichnung, da sie keiner eindeutigen Kodie-
rung entspricht und Python-Programme, die diese Kodierungsangabe ver-
wenden, nicht auf macOS oder Linux lauffahig sind.

Wenn alle Versuche scheitern, die richtige Kodierung zu finden, ist die
Datei moglicherweise gar keine Textdatei, sondern eine Binardatei (Kapi-
tel 5.22.4).

Wir konnen Python zwar anweisen, Kodierungsfehler zu ignorieren und
trotz fehlerhafter Kodierung zu versuchen, die Datei zu lesen, wir sollten
uns dann aber bewusst sein, dass uns damit Informationen aus der Datei
verloren gehen.

1 Microsoft: Code Page Identifiers, https://docs.microsoft.com/en-us/windows/win32/
intl/code-page-identifiers.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

236

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers
https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers

open("Defekte Datei.txt", errors="ignore")

5.22.2 Textdateien schreiben

Um eine zum Schreiben geoffnete Textdatei zeilenweise zu beschreiben,
konnen wir der Print-Funktion das Handle der geoffneten Datei mit dem
Parameter file iibergeben.

with open("Liste.txt", "w", encoding="utf-8") as meine Datei:
print("Hallo Datei!", file=meine_Datei)

Jede zum Schreiben geoffnete Datei verfugt aber auch uber eine Methode
write. Diese schreibt genau eine Zeichenkette ohne darauf folgendes Zei-
lenwechselzeichen in eine Datei.

with open("Liste.txt"™, "w", encoding="utf-8") as meine_Datei:
meine Datei.write("Hallo Datei!")

Das Schreiben von Dateien ist eine der wenigen Gelegenheiten, mithilfe
von Python Schaden auf Threm Rechner anzurichten. Beachten Sie die
Warnung:

Vorsicht!

Das Offnen einer existierenden Datei zum Schreiben vernichtet
auf der Stelle samtliche zuvor in der Datei vorhandenen Inhalte.
Es gibt keine Riickgangig-Funktion!

5.22.3 Textdateien fortsetzen

Wenn wir Zeichenketten an bereits vorhandene Textdateien anhangen
wollen, so offnen wir diese nicht im Modus ,w” (wie ,write”), sondern im
Modus ,a“ (wie ,, append”).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 237

open("Liste.txt", "a", encoding="utf-8") meine_Datei:
meine_Datei.write("Dies wird an die Datei angehangt.™)

5.22.4 Binardateien

Als Binardateien bezeichnen wir alle Dateien, deren Inhalt etwas anderes
als lesbarer Text ist. Das konnen beispielsweise Bilddateien, Videos, ZIP-
Archive, ,Worddateien” (also Textverarbeitungsdateien) oder Tonauf-
zeichnungen sein. Auch komplette Python-Objekte wie Listen oder Dictio-
narys konnen wir in Binardateien speichern.

Binardateien konnen wie Textdateien mit dem Methoden read und write
gelesen und beschrieben werden. Beim Offnen der Dateien miissen wir le-
diglich den Modus (,,r“, ,w“ oder ,a“) noch um den Buchstaben ,b“ ergan-
zen, um Python mitzuteilen, dass die Inhalte keiner Zeichenkodierung
entsprechen und aus der Datei daher ,nackte” Bytefolgen gelesen und in
sie geschrieben werden.

5.22.5 Pickle

Um Python-Objekte als Ganzes in Dateien zu schreiben oder aus ihnen zu
lesen, verwenden wir das Modul pickle!. Dieses enthalt die beiden Funk-
tionen dump und load, mit denen komplette Python-Objekte in Binardatei-
en geschrieben und aus ihnen gelesen werden konnen.

pickle
meinelListe = [1, 2, 3, "Test"]

open("Datei.dat","wbh") datei:
pickle.dump(meineListe, datei)

1 Wenn Python eine deutschsprachige Entwicklung ware, hielse diese Funktion jetzt
moglicherweise ,,einmachen”. Das gedankliche Bild, ein Objekt durch ,Einmachen”
haltbar aufbewahren zu konnen, ist jedenfalls recht anschaulich. Es gibt sogar ein
weiteres Python-Modul, das dieses Bild noch weiter strapaziert und den Einmachgla-
sern ein Regal spendiert. Es heil3t ... shelve.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 238

open("Datei.dat","rb") datei:
neuelListe = pickle.load(datei)

>>> neuelListe
[1, 2, 3, 'Test']

Das Lesen und Schreiben durch Pickle ist extrem schnell und die Ge-
schwindigkeit wird in der Regel nur durch die Festplattenhardware be-
schrankt.

StandardmalSig kann die Funktion dump Objekte bis zu einer Grofse von
rund 4,3 Gigabyte in eine Datei schreiben. Wenn grofere Objekte ge-
schrieben werden sollen, ist der Parameter protocol auf den Wert 4
(oder einen negativen Wert) zu setzen.

Protokoll-

. Besonderheit
version

Das Format der ersten Python-Versionen.
0 Die von dump geschriebene Datei ist hier noch eine men-
schenlesbare Textdatei.

1, 2 Binarformate der alten Python-2-Versionen.
3 Standard-Binarformat seit Python 3.
Unterstiitzt Objekte bis 4 GiB (232 Byte) Grofle.
Verbessertes Format seit Python 3.4.
4 Erlaubt schnellere Zugriffe und sehr grofSe Objekte

(2% Byte).

Das folgende Programm erzeugt ein 5 Gigabyte grofRes Objekt, schreibt
es in eine Datei und liest diese Datei wieder ein. Dazwischen merkt es
sich die jeweils aktuelle Systemzeit in den Variablen t0, t1 und t2. Die
Differenzen zwischen den gemessenen Zeiten zeigen, wie lang die Aus-
fuhrung der einzelnen Befehle dauerte.

pickle load, dump
time time

dickesding = b"x" * 5 000 _000_000

Martin Vogel: Bauinformatik mit Python, WS 2025/26 239

print("Geschwindigkeitstest mit", len(dickesding), "Bytes")

t0 = time()
open("Speedtest.dat", "wbh") datei:
dump(dickesding, datei, protocol=4)

tl = time()
open("Speedtest.dat", "rb") datei:
dickesding = load(datei)

t2 = time()

print(f"{t1-t0:7.3f} Sekunden, um zu schreiben")
print(f"{t2-t1:7.3f} Sekunden, um wieder zu lesen")

Das Ergebnis lasst erstaunliche Festplattengeschwindigkeiten vermuten.

Geschwindigkeitstest mit 5000000000 Bytes
13.794 Sekunden, um zu schreiben
4.340 Sekunden, um wieder zu lesen

Der Trick des Betriebssystems (hier: Linux) besteht darin, das Schreiben
schon fur vollzogen zu erklaren, wenn es tatsachlich erst alle zu sichern-
den Daten von unserem Programm entgegengenommen hat und eigent-
lich noch fleiBig dabei ist, diese im Hintergrund zur Festplatte zu schi-
cken. Auch beim Lesen wird es nicht den tatsachlichen Inhalt der
Festplatte ausgeben, solange es noch ,gecachte” Daten der letzten
Schreib- oder Lesezugriffe im RAM weils. Bei Rechnern mit wenig RAM
dauern Dateizugriffe daher oft viel langer als auf Rechnern mit ausrei-
chend grolsem Speicher, der sich vom Betriebssystem als Festplattenca-
che nutzen lasst.

5.22.6 Das aktuelle Arbeitsverzeichnis

In den vorangegangenen Beispielen haben wir beim Offnen der Dateien
lediglich einen Dateinamen ohne Angabe eines Laufwerksbuchstabens
oder Verzeichnisnamens verwendet. Python sucht die zu lesenden Dateien
dann in demselben Verzeichnis, in dem sich auch das gerade ausgefuhrte
Programm befindet und legt neue Dateien in ebendiesem Verzeichnis an.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

240

Nachdem in IDLE ein Python-Programm ausgefihrt wurde, entspricht das
Arbeitsverzeichnis der IDLE-Shell ebenfalls dem Verzeichnis, in dem die-
ses Programm zuvor gespeichert wurde.

Wenn Sie Dateibefehle nicht aus einem Programm heraus aufrufen, son-
dern direkt in die IDLE-Shell eintippen, so ist das aktuelle Arbeitsver-
zeichnis je nach Betriebssystem oder Installation unterschiedlich. Unter
Linux wird in der Regel das Home-Verzeichnis des aktuell angemeldeten
Useraccounts als Arbeitsverzeichnis verwendet, unter Windows dagegen
oft ein Unterverzeichnis von ,C:\PROGRAM FILES\“ oder ,C:\WIND-
OWS\SYSTEM32\“, fur das Sie vermutlich keine Schreibrechte besitzen
und darauf mit der Fehlermeldung ,PermissionError” hingewiesen wer-
den (Abb. 85).

¢ |DLE Shell 3.10.0 - (| X

File Edit 5Shell Debug Options Window Help

Pvthon 3.10.0 (tags/w3.10.0:b494f59, Cct 4 2021, 19:00:1%8)
[M5C +.19229 64 bit (AMD&E4)] on win3z

Type "help"™, "copyvright™, "credits" or "license ()™ for more
information.
i os

x| os.getowd ()
"C:\\Program Files‘\“Python3l0"®

il open("test.txt"™, "w") Txt:
txt.write ("Test"™)
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <modulel
with open("test.txt"™, "w") as txt:
PermizzionError: [Errno 13] Permis=sion denied: "test.txt’
il

Lm: 14 Cok 0

Abb. 85: Schreibrechte unter Windows

Um das aktuelle Arbeitsverzeichnis der IDLE-Shell herauszufinden, kon-
nen Sie dort folgende zwei Zeilen eingeben:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

241

import os
os.getcwd()

Mithilfe der Funktion os.chdir lasst sich das aktuelle Arbeitsverzeichnis
auch wechseln. Unabhangig vom Betriebssystem verwendet Python als
Trennzeichen zwischen Verzeichnisnamen den gewohnlichen Schrag-
strich ,/“. Falls Sie den windowstypischen Ruckwartsschragstrich bevor-
zugen, mussen Sie ihn jeweils doppelt schreiben: ,\\".

Mit dem Befehl

os.chdir("/home/meinname/Desktop")

wechseln Sie beispielsweise unter Linux auf den Desktop der Anwenderin
oder des Anwenders ,meinname” und

0s.chdir("C:\\USERS\\meinname\\DESKTOP")

macht dasselbe unter Microsoft Windows.

Um unabhangig vom Betriebssystem den Desktop zum aktuellen Arbeits-
verzeichnis zu erklaren, konnen Sie folgende Konstruktion verwenden:

os.chdir(os.path.expanduser("~/Desktop"))

Martin Vogel: Bauinformatik mit Python, WS 2025/26 242

5.23 Diagramme mit Matplotlib

Mit der Bibliothek matplotlib konnen wir auf einfache Weise anspre-
chende Diagramme erzeugen.

Matplotlib' gehort nicht zum Standardumfang von Python, kann jedoch
schnell mit dem Konsolenbefehl ,pip3 install matplotlib“ nachinstal-
liert werden. Tipps zur Installation finden Sie in Kapitel 5.1.1.

5.23.1 Ein schnelles x-y-Diagramm

Im einfachsten Fall brauchen wir nur ein paar x- und y-Werte in einer Lis-
te, um ein Diagramm zu erzeugen:

matplotlib.pyplot plt

e, 1, 2, 3, 4, 5]
[0, 1, 4, 9, 16, 25]

X
y

plt.plot(x, y)
plt.show()

Ohne weiteren Aufwand entsteht so schon ein ansehnliches Diagramm
(Abb. 86).

Dass das Modul matplotlib.pyplot beim Import traditionell in plt um-
benannt wird, hat den einfachen Grund, dass plt schneller zu tippen und
zu lesen ist.

1 Der Name steht fur ,matrix plot library” und wird deshalb nicht mit ,th“ geschrieben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

243

Figure 1 = =

25

20

15 -

10

A €2 Q=B

Abb. 86: Eines der einfachsten Matplotlib-Diagramme

Am unteren Rand des Matplotlib-Fenster sehen wir sieben Icons.

Mit dem Diskettensymbol ganz rechts in der Icon-Leiste kann
die aktuelle Ansicht in verschiedenen Grafikformaten, zum Bei-
spiel PDF, PNG oder SVG gespeichert werden, um beispielswei-
se in Textverarbeitungsdateien eingebunden zu werden.

Das Schiebereglersymbol erlaubt es, die Rander und, bei meh-
===gg= | reren Diagrammen pro Fenster, die Abstande zwischen den Dia-
== | grammen nachtraglich zu verandern. Die Angaben sind relativ
zur aktuellen Fensterhohe und -breite.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 244

Maustaste ein Rechteck in der Diagrammflache aufziehen, wel-
ches anschlielfend den enthaltenen Ausschnitt auf die gesamte
Diagrammflache vergroflSert (Zoom-Funktion).

q Nach Anklicken des Lupensymbols konnen wir mit der linken

Ziehen wir das Rechteck dagegen mit der rechten Maustaste auf, so wird
die gesamte sichtbare Diagrammflache auf das Rechteck verkleinert.

Durch Festhalten der Tasten und |y | wird das Rechteck auf die gesam-
te Hohe oder Breite der Diagrammflache erweitert, sodass sich die Gro-
Benanderung nur auf die ausgewahlte Achse auswirkt.

Nach Anklicken des Pfeilkreuz-Icons konnen wir das Diagramm
mit der linken Maustaste innerhalb der Diagrammflache ver-
schieben (Pan-Funktion).

Mit der rechten Maustaste konnen wir die Grof3e des Diagramms frei in x-
und y-Richtung verandern. Der beim Klicken unter dem Mauszeiger be-
findliche Punkt des Diagramms wird zum Fixpunkt, um den herum die
GroRenanderung stattfindet. Durch Festhalten der Taste fixieren
wir das Seitenverhaltnis, um die Grafik nicht zu verzerren.

2>

Ein Klick auf das Hauschen setzt das Diagramm wieder auf sei-
ne Anfangsdarstellung zuruck.

Jede Zoom- oder Verschiebeaktion erzeugt eine neue
Ansicht. Mit dem Pfeil-Icons konnen wir zwischen den
verschiedenen Ansichten vor- und zuruckblattern.

V2

3

Zusatzliche Funktionen konnen wir uiber die Tastatur aufrufen.

Taste Funktion

Schaltet die Vollbilddarstellung ein/aus.

Schaltet die Gitterdarstellung zwischen vertikalen, horizonta-
len, allen und keinen Gitterlinien um.

(2

Wechselt zwischen logarithmischen und linearen x-Werten.

o=

Wechselt zwischen logarithmischen und linearen y-Werten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

245

Taste Funktion

O] Ruft die Zoom-Funktion auf.

[P] Ruft die Pan-Funktion auf.

Q] SchlieRt das Diagramm.

Speichert das Diagramm als Datei.

Wechselt zwischen den bisher erfolgten Zoom- und Pan-Dar-
stellungen

5.23.2 Ein schones x-y-Diagramm

Die Moglichkeit, das Aussehen von Diagrammen wiederholbar zu beein-
flussen, hilft uns, wenn wir Texte mit zahlreichen Diagrammen, wie zum
Beispiel Forschungsberichte, Gutachten oder Bachelorarbeiten verfassen.
In einer Tabellenkalkulationen kann man zwar auch nach einigem Herum-
probieren das eine oder andere hubsche Diagramm erzeugen, diese Ar-
beit dann jedoch dutzende oder hunderte Male exakt wiederholen zu
mussen, ist menschenunwurdig.

In einem Pythonprogramm definieren wir dagegen einmalig das Aussehen
eines Matplotlib-Diagramms und konnen anschlieSend in einer Schleife
hunderte Diagramme derselben Grof3e und Gestalt als Grafikdatei auf die
Festplatte schreiben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

246

Fenstertitel = o X

Diagrammititel

—:f:xz /

25 1

y-Achsen-Bezeichnung

x-Achsen-Bezeichnung

€ $Q/=

Abb. 87: Verbessertes Matplotlib-Diagramm

Wir werfen einen Blick in das erzeugende Programm zu Abb. 87. Zu-
nachst werden die Listen mit den darzustellenden Daten gefullt. Im Bei-
spiel sind das feste Werte. Tatsachlich wirde unser Programm die Werte
zuvor berechnen.

Da wir zwei Graphen darstellen wollen, benotigen wir neben der Liste mit
den x-Werten zwei Listen mit y-Werten:

matplotlib.pyplot plt

x =1[0, 1, 2, 3, 4, 5]
yl =[0, 1, 4, 9, 16, 25]
y2 = [1, 2, 5, 10, 17, 26]

Martin Vogel: Bauinformatik mit Python, WS 2025/26

247

Die Werte aus der Liste yl sollen mit einer blauen Linie, die 2 Einheiten
breit und durchgezogen ist, gezeichnet werden. Der Linie wird der Le-
gendentext ,y = x2“ zugeordnet:

plt.plot(x, yl,
color="blue", linewidth=2, linestyle="-",
label="y = x2")

Die Einheit fur die Linienbreiten in Matplotlib ist der typographische
Punkt, dieser entspricht 1/72 Zoll oder rund 0,35 mm. Auf alten Rohren-
monitoren entspricht das ziemlich genau einem Bildschirmpixel.

Fur die Werte aus der Liste y2 wahlen wir eine rote Linie, die 2 Einheiten
breit und strichpunktiert ist. Dieser Linie wird der Legendentext ,y =
x2+1“ zugeordnet:

plt.plot(x, y2,
color="red", linewidth=2, linestyle="dashdot",
label="y = x2+1")

Eine Liste von englischsprachigen Farbnamen finden Sie im Anhang die-
ses Skripts in Kapitel 7.2. Anstelle der Farbnamen konnen Sie fir den Pa-
rameter color auch den RGB-Code der jeweiligen Farbwerte verwenden,
also beispielsweise "#0000FF" anstelle von "blue" oder "#F5F5DC" an-
stelle von "beige".

Die verfigbaren Linienstile fiir den Parameter linestyle sind "solid"
oder "-" fur durchgezogene Linien, "dashed" oder "--" fur gestrichelte
Linien, "dotted" oder ":" fur gepunktete Linien und "dashdot" oder
"-." fur strichpunktierte Linien.

In der Diagrammflache soll ein hellgraues Raster angezeigt werden:

plt.grid(color="1lightgrey")

Die Legende mit den beiden zuvor festgelegten Legendentexten (label)
soll an einer passenden Stelle angezeigt werden:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

248

plt.legend()

Oberhalb des Diagramms soll eine Uberschrift angezeigt werden. Auch
die beiden Achsen erhalten passende Bezeichnungen:

plt.title("Diagrammtitel™)
plt.ylabel("y-Achsen-Bezeichnung")

plt.xlabel("x-Achsen-Bezeichnung")

Wer unbedingt mochte, kann auch dem Bildschirmfenster des Diagramms
einen neuen Fenstertitel geben:

plt.gcf().canvas.set window title("Fenstertitel")

Nachdem wir alle gewunschten Einstellungen am Diagramm vorgenom-
men haben, schreiben wir es in eine Grafikdatei im besonders vorteilhaf-
ten SVG-Format:

plt.savefig("Diagramm.svg")

Zum Schluss stellen wir das fertige Diagramm auf dem Bildschirm dar:

plt.show()

Wenn wir in einem Programm nacheinander mehrere Diagrammdateien
durch savefig anlegen, so kann es storend sein, danach jedes Mal das
durch plt.show() erzeugte Bildschirmfenster zu schliefSen, damit das
Programm weiterlauft. Manche Programme erzeugen hunderte von Grafi-
ken. Wenn wir den Aufruf aber einfach fortlassen, wird der Zeichenbe-
reich nicht zuruckgesetzt und alle folgenden Diagramme werden eben-
falls in die bestehende Zeichenflache hineingezeichnet. Wenn wir
plt.show() jedoch einfach durch plt.close() ersetzen, so setzt dieses
nach dem Exportieren die Grafik zuruck, ohne dazu das Programm anzu-
halten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

249

5.23.3 Streudiagramme

Streudiagramme (Scatterplots) stellen die x-y-Koordinaten zweier uberge-
bener Listen als einzelne Punkte dar.

Einfache Streudiagramme konnen wir mit der uns schon bekannten Funk-
tion plt.plot umsetzen, indem wir dieser die beiden zusatzlichen Para-
meter marker und markersize iibergeben.

Dem Parameter marker weisen wir eines der folgenden Zeichen zur Mar-
kierung der Datenpunkte zu: "o" fur Kreise, "v", "*", "<" und ">" fur
Dreiecke mit einer Ecke nach unten, oben, links und rechts, "8" fur Acht-
ecke, "s" fur Quadrate, "p" fur Funfecke, "*" fur Sterne, "h" und "H" fur
auf einer Spitze oder einer Seite stehende Sechsecke, "D" und "d" fur
breite oder schmale Rauten, "P" fur Pluszeichen und "X" fur Kreuzchen.

Die Einheit fir die GroBenangabe markersize ist wie oben bei linewidth
der typographische Punkt. 28 typographische Punkte entsprechen rund
einem Zentimeter.

Wenn wir keine Linien zwischen den Markern zeichnen mochten, setzen
wir den Parameter linestyle auf eine leere Zeichenkette.

matplotlib.pyplot plt

[op 0; 1, 2, 2]
[o, 2, 4, 2, 0]

X
y

plt.plot(x, y, marker="o", markersize=28, linestyle="")
plt.grid()
plt.show()

Der damit erzeugte Scatterplot sollte so aussehen wie in Abb. 88 gezeigt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

250

1 @ o

o+ @ o

0.0 0.5 1.0 1.5 2.0
Abb. 88: Plot mit Markern

Noch leistungsfahiger ist die speziell fur Streudiagramme gedachte Funk-
tion plt.scatter, denn bei dieser mussen wir die PunktgrofSe und Punkt-
farbe nicht fur alle Punkte einheitlich vorgeben, sondern konnen sie fur
jeden einzelnen Punkt mithilfe einer weiteren Liste festlegen.

import matplotlib.pyplot as plt

X [6, 0, 1, 2, 2]

y [0, 2, 4, 2, 0]

flache = [4000, 3000, 2000, 5000, 6500]

farbe = ["red", "green", "blue", "brown", "magenta"]

plt.scatter(x, y, s=flache, c=farbe)
plt.grid()
plt.show()

Das Mal fur die PunktgrofSe in Abb. 89 ist hier nicht der Durchmesser
der Marker, sondern die von ihnen ausgefillte Flache in Vielfachen von
0,1244 mm? bzw. 1/5184 Quadratzoll, weshalb die Zahlenwerte in der Lis-
te flache ungewohnlich grofs erscheinen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 25 1

Y

D.IO D.I5 l.ll‘.}
Abb. 89: Scatterplot mit Fldchen- und Farblisten

.0

T
15 2

5.23.4 Text

Mit plt.text(x, y, s) positionieren wir einen einzelnen Text s auf der
Diagrammflache am Einfugepunkt (x,y). StandardmalSsig bezeichnen x und
y die Koordinaten der unteren linken Ecke des darzustellenden Textes.

Mithilfe zahlreicher Parameter konnen wir die Formatierung des Textes
beeinflussen. Nach dem Matplotlib-Import erhalten wir die komplette Lis-
te durch den Funktionsaufruf help(plt.text)!. Hier eine kleine Auswahl:

rotate=w dreht den Text im Gegenuhrzeigersinn im Winkel w [Grad] um
den Einfuigepunkt.

color=f oder c=f weist dem Text die Farbe f zu.

size=g weist dem Text eine relative GréoRenangabe zu. Erlaubt sind fir g
die Werte "small", "medium" und "large", wobei small und large noch
die Verstarker x- und xx- vorangestellt werden konnen.

1 Ausfihrlich erklart werden die Einstellungen auf https://matplotlib.org/stable/api/
as gen/matplotlib.pyplot.text.html

Martin Vogel: Bauinformatik mit Python, WS 2025/26 252

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html

ha=crl und va=tbcb legen die horizontale und vertikale Ausrichtung rela-
tiv zum Einfligepunkt fest. Fir ha sind die Werte "left", "right" und
"center" erlaubt und va konnen wir die Werte "top", "bottom",
"center" und "baseline" zuweisen. Der Wert "bottom" bezieht sich da-
bei auf die Unterkante des Textes einschlieBlich Unterlangen und
"baseline" auf die Grundlinie des Textes, also in der Regel die Unterkan-
te der GrofSbuchstaben.

ha=left, va=top ha=center, va=top ha=right, va=top’
ha=left, va=center ha=centersva=center ha=right, va=center
ha=left, va=baseline ha=center, ya=baseline ha=right, va=baseline,

ha=left, va=bottom ha=center, va=bottom ha=right, va=bottom,

Abb. 90: Textausrichtung mit Matplotlib

5.23.5 gefullte Flachen

Ausgefiillte Flachen erzeugen wir durch plt.fill, indem wir dieser
Funktion Listen umlaufender Randpunktkoordinaten ubergeben, welche
die auszufullende Flache aufspannen (Abb. 91).

matplotlib.pyplot plt

b
I

= [0, 0, 1, 2, 2]
= [0, 2, 4, 2, 0]

<
|

plt.fill(x, y, color="firebrick")
plt.grid()
plt.show()

Martin Vogel: Bauinformatik mit Python, WS 2025/26

253

4.0

3.5 1

3.0 +

2.5

2.0

1.5

1.0

0.0 A

0.60 O.ZIES 0.|50 0.1.-’5 l.lIJO 1.1'25 l._lr)O l.lf'5 2.b0
Abb. 91: Flachenfiillung mit plt.fill(...)

5.23.6 Zeichenreihenfolge

Alle Grafikelemente in Matplotlib werden nach einem festen Schema
ubereinander angeordnet. Wenn wir die dadurch festgelegte Zeichenrei-
henfolge andern wollen, mussen wir den Wert des Parameters zorder der
erzeugten Grafikobjekte andern. Je hoher dieser Wert ist, desto weiter
oben (oder vorne) werden die Elemente angeordnet.

Standardmalsig besteht folgende Ordnung: Ganz oben, uber allen ande-
ren Elementen, werden Legenden angeordnet (zorder=5), darunter Text
(zorder=3), gefolgt von Linienelementen (zorder=2) und Flachen
(zorder=1). Zuunterst finden wir schlielSlich eingebundene Bilder
(zorder=0).

import matplotlib.pyplot as plt

x = 1[0, 0, 1, 2, 2]

y = [0, 2, 4, 2, 0]

plt.grid()

plt.plot(x, y, marker="o0", markersize=28, linestyle=" ")

Martin Vogel: Bauinformatik mit Python, WS 2025/26

254

plt.plot(x, y, color="black", linewidth=5)
plt.fill(x, y, color="firebrick")
plt.show()

4.0 A

3.5 1

3.0 1

2.5 1

2.0 A

1.5 4

1.0+

0.5 A

0.0 A

T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Abb. 92: Unbeeinflusste Anzeigereihenfolge

In dem Codebeispiel oben ist es ziemlich egal, in welcher Reihenfolge die
Zeichenfunktionen aufgerufen werden, das Ergebnis sieht immer aus wie
in Abb. 92.

Um die rote Flache uber das Gitter zu heben, die schwarze Umrandung
daruber zu zeichnen und die blauen Marker ganz nach oben zu legen, er-
ganzen wir das Programm um mehrere zorder-Parameter und erhalten
die Grafik in Abb. 93.

import matplotlib.pyplot as plt

b
1

= [0, 0, 1, 2, 2]
= [0, 2, 4, 2, 0]

<
I

plt.grid()
plt.plot(x, vy,
marker="0", markersize=28, linestyle=" ", zorder=9)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 255

plt.plot(x, y, color="black", linewidth=5, zorder=8)
plt.fill(x, y, color="firebrick", zorder=7)
plt.show()

4.0

3.5 7

3.0 1

2.5 7

2.0+

1.5 A

1.0 A

0.5 ~

0.0

T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Abb. 93: Einfluss von zorder

5.23.7 3D-Diagramme

Nur wenig komplizierter ist es, 3D-Daten darzustellen, beispielsweise ei-
ne Gelandeoberflache, die durch eine ,Wolke” aus 3D-Punkten festgelegt
werden soll.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 256

Figure 1

A €I Q=

Abb. 94: x-y-z-Oberfldche mit Terrain-Farbgebung

Die 3D-Koordinaten wiirden wir tiblicherweise aus Vermessungsdaten' le-
sen. Wir berechnen fiir unser Beispiel stattdessen einen kleinen ,Eierkar-

ton” mit der Kosinusfunktion.

from math import cos

x =[]
y = [1
z =[]

for xi in range(-10,11):
for yi in range(-10,11):

X .append (xi)
y.append(yi)
z.append(zi)

zi = cos(xi/2) * cos(yi/2)

1 Ein Beispiel finden Sie auf https://bauforum.wirklichewelt.de/index.php?id=11643

Martin Vogel: Bauinformatik mit Python, WS 2025/26

257

https://bauforum.wirklichewelt.de/index.php?id=11643

Wir importieren wieder Matplotlib und danach(!) zusatzlich das Modul
Axes3D. Die Reihenfolge ist wichtig, da beim Laden von Axes3D einige
Voreinstellungen von Matplotlib uberschrieben werden.

matplotlib.pyplot plt
mpl_toolkits.mplot3d Axes3D

Zunachst erzeugen wir ein leeres 3D-Achsen-Objekt, das uns als , Lein-
wand“ dient.

ax = plt.axes(projection="3d")

Diesem ubergeben wir die zuvor erzeugten 3D-Koordinaten. Wir konnen
die zu erzeugende Flache auf unterschiedliche Arten einfarben'®. Fiir un-
ser Beispiel wahlen wir die Farbpalette ,terrain“, die Farben ahnlich ei-
ner Landkarte verwendet.

ax.plot_trisurf(x, y, z, cmap="terrain")

Das war schon alles. Wir stellen das Diagramm auf dem Bildschirm dar.

plt.show()

Die Grafik ist interaktiv. Durch Klicken und Ziehen mit der linken Maus-
taste konnen wir sie raumlich drehen und von allen Seiten betrachten.
Vertikale Bewegungen mit gedruckter rechter Maustaste vergrofsern und
verkleinern die Darstellung.

1 Eine Liste der verfugbaren Farbpaletten finden Sie auf https://matplotlib.org/stable/
tutorials/colors/colormaps.html

Martin Vogel: Bauinformatik mit Python, WS 2025/26 258

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html

5.24 Grafik mit Tkinter

Mit dem Modul tkinter besitzt Python vielfaltige Moglichkeiten, Grafi-
ken auf dem Bildschirm auszugeben.

Tkinter ist dabei keine speziell fur Python entwickelte Grafiklosung, viel-
mehr basiert es auf der schon 1988 von John Ousterhout an der Berkeley-
Universitat in Kalifornien entwickelten Grafik-Befehlssprache TCL (tool
command language) und einer darauf aufbauenden Werkzeugsammlung
(engl. toolkit), fur die in vielen Programmiersprachen Schnittstellen
(engl. interfaces) existieren. Tkinter ist dementsprechend das ,toolkit in-
terface” fur Python. Die von uns verwendeten Python-Funktionen werden
vom Modul tkinter in TCL-Befehle umgewandelt und an den TCL-Inter-
preter geschickt, welcher dann fur die Erzeugung der Grafik sorgt.

Im Rahmen dieses Textes konnen wir nur einen kleinen Streifzug durch
die Welt der Grafikprogrammierung unternehmen, um zumindest die
Grundlagen dieses interessanten Themenbereiches kennenzulernen.

Es ist jedoch durchaus moglich, auch ganze Anwendungsprogramme mit
interaktiven grafischen Benutzungsoberflachen (graphical user interface,
GUI) in Python zu programmieren.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

259

Einfeldtriger mit Streckenlast - o X
Informatikhausaufgabe WS 14/15, Max Mustermann, Elvira Exempel

g = 5.25 kN/m

Y ¥ ¥ ¥y ¥ Y ¥¥ ¥ YYryYyYTryryYyyYyyYyYyYyrYrTYTryYyr

A

3
[A =8.75 kN B=17.50kN

a=250m c=500m
| =7.50m

A
Y

Y
¥

A
A

X0 =417 m

r
¥

max M = 29.17 kNm

g=|5.25 kN/m
| =|7.50 m
a=|2.50 m berechne und zeichne!

Abb. 95: GUI-Programm aus dem ersten Semester 2014/2015

Eines der ambitioniertesten Projekte dieser Art ist wahrscheinlich das
Projekt PythonCAD!, welches ein zu AutoCAD kompatibles CAD-Pro-
gramm in Python realisiert, das unter Windows, Linux und macOS lauft.

5.24.1 Das Hauptfenster

Mit dem Aufruf Tk() laden wir den TCL-Interpreter und erzeugen ein
leeres Bildschirmfenster, in dem wir anschlieSend alle anderen Grafikob-
jekte anordnen konnen.

1 http://sourceforge.net/projects/pythoncad/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

260

http://sourceforge.net/projects/pythoncad/

Die Funktion mainloop() ist die ,Hauptschleife“ des Programms. Hier
werden im Hintergrund standig Tastatureingaben und Mausaktionen ab-
gefragt und an die Objekte im Hauptfenster weitergereicht, damit diese
dazu passende Aktionen auslosen konnen. Siehe dazu auch Kapitel 5.25.1
(,EVA und die Events”).

tkinter Tk, mainloop
Hauptfenster = Tk()
mainloop()

Abb. 96: Das Tk-Hauptfenster

StandardmalSig tragt das Fenster den Titel ,tk“. Wir konnen diese Vorein-
stellung mit der Tk-Methode .title auf einen informativeren Wert &n-
dern.

Das Fenster passt seine Grolse automatisch an den Inhalt an, darum mus-
sen uns nicht darum kummern, welche genauen Abmessungen es haben
muss. Falls wir uns jedoch ganz sicher sind, dass es unbedingt notig ist,
die FenstergrofSe zu fixieren, konnen wir direkt nach der Erzeugung des
Fensters mithilfe seiner Methode .geometry eine GrofSe festlegen.

Da Python die Grollenangabe nicht selbst auswertet, sondern diese ein-
fach als Zeichenkette an den TCL-Interpreter durchreicht, sieht der Funk-
tionsparameter auf den ersten Blick etwas seltsam aus. Um ein 400 Pixel
breites und 200 Pixel hohes Fenster zu erschaffen, schreiben wir namlich
nicht .geometry(400,200), sondern .geometry("400x200").

Martin Vogel: Bauinformatik mit Python, WS 2025/26

261

tkinter Tk, mainloop
Hauptfenster = Tk()
Hauptfenster.title("Mein Statikprogramm")
Hauptfenster.geometry(“400x200")
mainloop()

In Abb. 97 ist das Ergebnis zu sehen. Die darubergelegten MalSbander ei-
nes Bildschirmlinealprogramms zeigen, dass sich die GroSenangaben auf
die innere Fensterflache beziehen, nicht auf das gesamte Fenster mit
Rahmen und Titelleiste.

Mein Statikprogramm =|3|X

Abb. 97: Tk-Fenster mit festgelegter Gréf3e und Uberschrift.

5.24.2 untergeordnete Fenster

Ein Python-Programm kann gleichzeitig mit mehreren Fenstern arbeiten.

Zusatzliche Fenster erzeugen wir mit der Tk-Funktion Toplevel. Im Ge-
gensatz zu Tk() startet der Aufruf Toplevel() keinen eigenen TCL-Inter-
preter.

Jedes Fenster wird sinnvollerweise einer Variable zugeordnet. Sowohl der
Aufruf Tk () als auch der Aufruf Toplevel() geben dazu eine Referenz auf
das erzeugte Fenster zuruck. Beim Erzeugen von Grafikobjekten geben
wir diese Variable als ersten Parameter an, um das neue Objekt eindeutig
einem bestimmten Fenster zuzuordnen. In dem folgenden Beispielpro-
gramm greifen die beiden Textfelder (Label) gezielt auf das Hauptfenster
und das Unterfenster zu.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

262

from tkinter
Hauptfenster
Hauptfenster
Unterfenster
Unterfenster

text="

+"Dies

) .pack

text="
+"Dies

mainloop()

import Tk, Toplevel, Label, mainloop
= Tk()

.title("Hauptfenster")

= Toplevel()

.title("Unterfenster")

Label (Hauptfenster,
- II*50+II\nII

ist das Hauptfenster"+"\n"

+"unseres Programms"+"\n"
+II - II*50

()

Label (Unterfenster,
- II*50+II\nII

ist ein Unterfenster"+"\n"

+"unseres Programms"+"\n"
+II - II*50
) . pack()

Hauptfenster — o b4

Dies ist das Hauptfenster
unseres Programms

Unterfenster — o b 4

Dies ist ein Unterfenster
unseres Programms

Abb. 98: Hauptfenster und Unterfenster

Solange ein Python-Programm nur ein einziges Grafikfenster verwendet,
ist die Angabe eines Zielfensters nicht notwendig. In den folgenden Kapi-

teln wird daher nicht mehr weiter darauf eingegangen.

Der Rahmen des Bildschirmfensters und die Gestaltung der Knopfe zum
Minimieren, Maximieren und SchliefSen des Fensters werden vom Be-
triebssystem geliefert. Auf das Aussehen dieser Komponenten haben un-
sere Programme keinen Einfluss. Auch die Standardschriftarten werden

Martin Vogel: Bauinformatik mit Python, WS 2025/26

263

in der Regel vom Betriebssystem vorgegeben, daher kann es bei unter-
schiedlichen Betriebssystemversionen stets zu leichten Abweichungen in
der Bildschirmdarstellung kommen.

Abb. 99 zeigt dasselbe Programm unter sechs verschiedenen Betriebssys-
temversionen. Oben ist Ubuntu Linux mit verschiedenen Desktopkonfigu-
rationen zu sehen und unten wurden die Microsoft-Windows-Versionen
Windows XP, Windows 2000 und Windows 7 verwendet.

Einfeldtriger mit Einzellast Einfeldtrager mit Einzellast [H[m]4

Einfeldtrdger mit Einz... - O X
A A : i :
— ta B
S —
P=[24 kN]
1= |8 m P= 24 kN
-~ B - a= IEﬂ I m 1= 8 m
e berechnen! ‘ a= 3 | m
A= 15.00 kN A= 15.00 kN berechnen! ‘
B = 0.00 kN B = 9.00 kN A =15.00 kN
b= 500m b= 500m B =9.00 kN
b=5.00m
Einfeldtrager mit Einzellast 9((=1(E3] _(0f x| | 7 Einfeldtrager mit Einzellast =@
a | 3 3 I' I a | Iz
fa te fa fB ta tB
S —| P — b
[T I
p= 24 kN P=24 kN P= 24 kN
I= |8 m 1= 1|8 m = m
a= 4 m = m a= 9 m
berechnen! berechnen! berechnen!
A= 15.00kN A= 15.00kN A= 1500 kN [}
B= 9.00kN B= 9.00kN Te Ere
b= 5.00m b= 500m
b= 500m

Abb. 99: Fensterdekorationen

5.24.3 Canvas - die Leinwand

In den folgenden Kapiteln werden wir einige Grafikfunktionen kennenler-
nen. Als ,Leinwand” (englisch: canvas) fur unsere Grafiken dient uns ein
rechteckiger Bereich auf dem Bildschirm, das Canvas-Objekt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 264

=0

Abb. 100: Die leere Leinwand

Um ein Canvas-Objekt zu erzeugen, rufen wir die Tkinter-Funktion
Canvas auf und speichern das von ihr zuruckgegebene Objekt in einer Va-
riable.

Als Argumente der erzeugenden Funktion konnen wir angeben, wie hoch
(height) und wie breit (width) die Leinwand sein soll, welche Hinter-
grundfarbe (bg) gewunscht ist und, falls notwendig, in welchem Bild-
schirmfenster sie angeordnet werden soll.

Grafikbibliothek importieren
from tkinter import Canvas, mainloop

Zeichenflache einrichten
C = Canvas(width=400, height=200, bg="white")

Zeichenflache im Programmfenster anordnen
C.pack()

Auf Eingaben warten
mainloop()

Die Methode .pack ordnet die Zeichenflache dabei in einem zuvor defi-
nierten Bildschirmfenster an. Wenn noch kein Tk-Fenster existiert, wird

automatisch ein neues erzeugt, in das die Leinwand genau hineinpasst
(Abb. 100).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 265

Die ,Hauptschleife“ mainloop verwenden wir hier vorlaufig nur, damit
sich das Grafikfenster nicht sofort wieder schlief3t. In Programmen mit
grafischen Oberflachen wird hier auf Aktionen der Benutzerin oder des
Benutzers gewartet, die dann gegebenenfalls bestimmte Funktionen aus-
losen. Siehe dazu auch Kapitel 5.25.1 (,EVA und die Events”).

5.24.4 Koordinaten der Canvas

X
=

(0,0)

mx)y)

max

max’
Abb. 101: Das tk-Koordinatensystem

Die Canvas verwendet ein ebenes Koordinatensystem mit dem Nullpunkt
in der oberen linken Ecke. Die Standardmalfeinheit ist das Pixel, also der
einzelne Bildpunkt auf dem Monitor.

Je nach Auflosung des Bildschirms ist ein Pixel etwa zwischen 0,08 und
0,35 Millimetern grofs. Nach Pixelzahl skalierte Grafiken konnen daher
stark in der Grolse variieren. Um Grafiken unabhangig von der Monitor-
auflosung darzustellen, konnen Grollenangaben auch in Zentimetern, Mil-
limetern, Zoll (25,4 mm) oder typografischen Punkten (1/72 Zoll, rund
0,35 mm) erfolgen. Den Malszahlen wird dazu einer der Buchstaben ,c“
(cm), ,m"“ (mm), ,i” (Zoll) oder ,p“ (Punkt) angehangt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 266

Damit die Skalierung stimmt, muss das Betriebssystem genau wissen, wie
grols die Bildschirmflache des an den Rechner angeschlossenen Monitors
ist. Haufig weils es das jedoch entweder gar nicht oder nur in sehr grober
Naherung, sodass es zu Abweichungen bei Langenangaben kommen
kann.

5.24.5 Koordinatentransformationen

Funktionsgraphen, Karteninformationen und technische Zeichnungen
mussen wir in aller Regel skalieren, damit sie auf dem Bildschirm in an-
gemessener GrofSe wiedergegeben werden. Die Aufgabe ist es, einen
rechteckigen Bereich eines x-y-Koordinatensystems, bei dem eine Achse
nach rechts und die andere Achse nach oben zeigt, auf ein Bildschirmko-
ordinatensystem abzubilden, bei dem eine Achse nach rechts und die an-
dere Achse nach unten zeigt.

Wenn wir, um Verwechslungen zu vermeiden, die Bildschirmkoordinaten
u und v nennen, ergibt sich folgender Zusammenhang:

(X_Xmin>'<umax_umin)

u=u._. +
min
Xmax o Xmin
und
_ +(y_ymax)'(vmax_vmin>
— Ymin
ymin o ymax
u
o m >
(max’ymax) (umin' mi.n)
Vv
|
y P P
y (x,y) (u,v)
(Xmi.n'ymi.n) L—
_ (max max) .

X
Abb. 102: Koordinatentransformation

Martin Vogel: Bauinformatik mit Python, WS 2025/26

267

Wir konnen diese Formeln ein wenig vereinfachen, wenn wir davon aus-
gehen, dass die obere linke Ecke des Zielkoordinatensystems (unsere
Leinwand) immer die Koordinate (0,0) hat. Dann gilt:

u:(X_Xmin)'umax und V:<y_ymax>'vmax

Xmax o Xmin y'min o ymax

5.24.6 Linien und Linienzuge

Mit der Methode .create line des Canvas-Objektes erzeugen wir Lini-
en und Linienzuge. Als Argumente geben wir eine beliebige Zahl von Ko-
ordinatenpaaren an. Im einfachsten Fall rufen wir die Methode mit zwei
Koordinatenpaaren auf.

Heilst unser Canvas-Objekt beispielsweise C, so erzeugt

C.create_1line(100,150,250,300)

eine Linie von Punkt (100,150) zu Punkt (250,300). Die Linie ist schwarz
und ein Pixel breit.

Um andere Farben und Breiten zu erhalten, verwenden wir die Attribute
width und fill, denen wir eine Breite in Pixeln und eine Farbe zuord-
nen. Die Farbe definieren wir entweder uber ihren (englischen) Farbna-
men oder uber einen RGB-Code.

Eine rote Linie mit funf Pixeln Dicke wird beispielsweise durch den Be-
fehl

C.create_1line(100,150, 250,300, width=5, fill="red")

erzeugt.
Eine Liste von gultigen Farbnamen finden Sie in Kapitel 7.2 im Anhang.

Anstatt die Koordinaten als einzelne Argumente zu ubergeben, konnen
wir sie auch in eine Liste oder ein Tupel schreiben. Die Anzahl der Koor-
dinatenpaare ist beliebig, solange mindestens ein Start- und ein End-
punkt vorhanden sind.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 268

Punkte = (100,150, 250,300, 100,300, 250,150)
C.create_line(Punkte,width=5, fill="red")

Die Canvas-ID

Wenn wir die Befehle zum Erzeugen von Grafikobjekten direkt in der Py-
thon-Shell verwenden, stellen wir fest, dass jeder Aufruf
von .create_line(..) eine fortlaufende Zahl erzeugt. Diese Zahl ist die
Identifikationsnummer der Linie, oder kurz: ihre ,ID“.

Die Canvas verwaltet eine Liste aller durch ihre Methoden erzeugten Ob-
jekte und erlaubt es, diese nachtraglich einzeln oder in Gruppen unter an-
derem zu loschen, zu verschieben oder zu skalieren.

>>> tkinter Canvas

>>>

>>> C = Canvas(width=400,height=400,bg="white")
>>> C.pack()

>>> Punkte = (100,150, 250,300, 100,300, 250,150)
>>> C.create_line(Punkte,width=5,fill="red")

tk -0

>>> C.update()
>>> |

Abb. 103: Linienzug mit Breite und Farbe

Falls die verwendete Python-3-Version die eingetippten Zeichenbefehle
scheinbar nicht ausgefuhrt, kann die Canvas-Methode .update aufgeru-
fen werden, um die Leinwand zu aktualisieren.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 269

5.24.7 Pfeilspitzen

Wir konnen sowohl den Anfangs- als auch den Endpunkt einer Linie oder
eines Linienzuges mit einer Pfeilspitze versehen. Je nachdem, ob der ers-
te, der letzte oder beide Endpunkte als Pfeilspitze dargestellt werden sol-
len, weisen wir dem Attribut arrow den Text "first", "last" oder "both"
zu. Wahlweise konnen wir auch eine der drei vordefinierten Konstanten
FIRST, LAST oder BOTH verwenden.

C.create_line(50,50,150,150, arrow="first")
C.create 1line(100,50,200,150, arrow="last")
C.create_line(150,50,250,150, arrow="both")

Abb. 104: Pfeilspitzen am Anfang und/oder am Ende von Linien

5.24.8 Gestrichelte Linien

Das Attribut dash erlaubt es uns, Linien auf genau definierte Art zu stri-
cheln. Es besteht aus einer Liste von Zahlen, die abwechselnd fur ge-
zeichnete und leere Linienabschnitte einer Sequenz stehen. Die Liste
(10,5,3,5) steht beispielsweise fur eine strichpunktierte Linie, bei der
immer wieder auf eine 10 Pixel lange Linie eine 5 Pixel breite Lucke folgt,
danach eine 3 Pixel lange Linie (der , Punkt”) und zum Abschluss wieder
eine 5 Pixel breite Lucke.

tkinter Canvas
C = Canvas(width=400, height=200, bg="white")
C.pack()

C.create_line(20,20, 380,20, width=3)
C.create _line(20,60, 380,60, width=3, dash=(3,7))
C.create_line(20,100, 380,100, width=3, dash=(10,))

Martin Vogel: Bauinformatik mit Python, WS 2025/26

270

C.create _line(20,140, 380,140, width=3, dash=(10,5,3,5))

Abb. 105: Gestrichelte Linien

Bei einfachen gestrichelten Linien, deren Lucken zwischen den Strichen
genauso lang sind wie die Teilstriche selbst, kann die Angabe der Lucken-
grolse entfallen.

5.24.9 Splines (Kurvenlinien)

Splines sind Kurvenzuge, deren Teilstucke aus Parabeln bestehen. Sie las-
sen sich ahnlich wie Linienzuge uber eine Liste von Punkten definieren.
Dabei werden jedoch nur der erste und letzte Punkt tatsachlich vom Spli-
ne beruhrt, alle anderen Punkte sind nur Tangentenschnittpunkte der ein-
zelnen Parabeln, deren Anfangs- und Endpunkte jeweils in der Mitte der
einzelnen Abschnitte des ursprunglichen Linienzuges liegen.

Einen Linienzug konnen wir in ein Spline umwandeln, indem wir dem At-
tribut smooth den Wert 1 oder True zuweisen.

punkte = (20,20, 100,20, 20,100, 250,150,

150,20, 380,20, 250,180, 380,180) # Eckpunkte
C.create_line(punkte, width=3, fill="tomato") # Linienzug
C.create_line(punkte, width=3, smooth =) # Spline

Martin Vogel: Bauinformatik mit Python, WS 2025/26 27 1

Abb. 106: Linienzug und Spline

5.24.10 Geschlossene Polygone

Geschlossene Linienzuge (Polygone) werden ganz ahnlich wie die offenen
Linienzuge erzeugt. Der Unterschied besteht darin, dass wir die um-
schlossene Flache mit einer Farbe fullen konnen.

Diese Farbe weisen wir in der Methode .create_polygon dem Attribut
fill zu. Die Linienfarbe des Polygonzugs wird iiber das Attribut
outline definiert und durch width koénnen wir ihm eine Breite zuwei-
sen.

tk —og |

Abb. 107: Dreieck als geschlossenes Polygon

Das folgende Codebeispiel erzeugt das Dreieck in Abbildung 107.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

272

tkinter Canvas, mainloop
C = Canvas(width=250, height=250, bg="white")
C.pack()
punkte = (50,200, 200,200, 125,50)
C.create_polygon(punkte,
fill="1light grey", outline="red",
width=5)

mainloop()

Wenn wir das Attribut outline fiir die Randfarbe nicht angeben, wird

kein Rand um das Polygon gezeichnet. Eine eventuell vorhandene
Breitenangabe width wird dann ignoriert.

5.24.11 Rechtecke und Ellipsen

Mit nur zwei Punkten konnen wir sowohl Rechtecke als auch Ellipsen de-
finieren.

tk — O

FERN
N~

Abb. 108: Rechteck und Ellipse

Beim Rechteck sind zwei diagonal gegenuberliegende Punkte anzugeben,
zwischen denen das (stets achsenparallele) Rechteck aufgespannt wird.

C.create_rectangle(25,50, 225,200, outline="red", width=5)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 273

Ellipsen (sie heisen hier Ovale) werden durch das sie umhiillende Recht-
eck festgelegt.

C.create oval(25,50, 225,200, fill="light grey")

Wenn die Randfarbe und -breite nicht angegeben werden, wird ein
schwarzer Rand mit einem Pixel Breite um das Rechteck oder die Ellipse
gezeichnet.

5.24.12 Kreise

Eine eigene Methode zum Zeichnen von Kreisen ist im Canvas-Objekt
nicht vorhanden. Kreise sind auch nur Ovale, deren umhillendes Recht-
eck zufallig ein Quadrat ist.

Wenn wir nicht fur jeden neuen Kreis die Eckpunkte des umhullenden
Quadrats angeben wollen, sondern diesen lieber ganz klassisch uber Mit-
telpunkt und Radius konstruieren, konnen wir dazu diese selbstgeschrie-
bene Funktion verwenden:

Kreis(C, x, y, r, width= , fill= , outline=):
C.create oval(x-r, y-r, x+r, y+r,
width=width,
fill=Ffill,
outline=outline)

C ist dabei die zuvor definierte Canvas, x und y sind die Koordinaten
des Mittelpunktes und r ist der Radius des Kreises. Zusatzlich konnen
noch die Attribute width, fill und outline an die erzeugende Metho-
de create_oval durchgereicht werden.

5.24.13 Text

Text konnen wir mit der Canvas-Methode create_text in beliebiger Gro-
Be, Farbe und Schriftart an jeder Stelle der Canvas ausgeben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

274

Im einfachsten Fall benotigen wir nur eine Koordinate und eine Zeichen-
kette. Der Text der Zeichenkette wird dann in Hohe und Breite zentriert
am Einfugepunkt ausgegeben.

C.create_text(100, 150, text="Hallo Welt!"™)

Soll der Einfiiggepunkt nicht mittig im Text liegen, sondern beispielsweise
unten links, so ist der untere linke Punkt des Textes als Ankerpunkt zu de-
finieren.

nw ne

w se
Abb. 109: Die Ankerpunkte eines Canvas-Textes

Diese Ankerpunkte orientieren sich an den Himmelsrichtungen. Anstelle
von ,unten links” sagen wir dann , Sudwest” beziehungsweise ,sw*:

C.create_text(100, 150, text="Hallo Welt!", anchor="sw")

Schriftart, Auszeichnung und SchriftgrofRe

Wenn uns die standardmalSig verwendete Schriftart zu klein oder zu
freudlos ist, konnen wir den zu erzeugenden Text typografisch gestalten.
Dazu weisen wir dem Attribut font ein Tupel zu, welches den Namen ei-
ner Schriftart, die SchriftgrofSe (in typografischen Punkten) und gegebe-
nenfalls die gewunschten Auszeichnungen wie fett (bold) oder kursiv (it-
alic) enthalt.

Die Textfarbe wird iiber das Attribut fill geandert.

C.create_text(100, 150,
text="Hallo Welt!",
anchor="sw",
font=("Arial", 24, "bold"),
fill="red")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 275

Dass die SchriftgrofSe nicht wie alle anderen Koordinatenangaben bisher
in Pixeln, sondern in typografischen Punkten (1/72 Zoll) angegebenen
wird, ist der Konvention geschuldet, dass in dieser Einheit die gesamte
Typografiebranche arbeitet. Wer unbedingt mochte, kann die Schriftgro-
Be auch in Pixeln angegeben. Der GrofSenangabe ist dann ein Minuszei-
chen voranzustellen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

276

5.25 GUI - Grafische Benutzungsoberflachen

Wollen wir menschenfreundliche Programme schreiben, die komplett
uber die grafische Benutzungsoberflache (graphical user interface, GUI)
eines eigenen Applikationsfensters bedienbar sind, benotigen wir ver-
schiedene Arten von Ein- und Ausgabefeldern sowie Aktionsknopfe (But-
tons). Diese GUI-Objekte werden auch ,Widgets” genannt.

5.25.1 EVA und die Events

Hatten unsere Programme bisher den klassischen EVA-Aufbau ,Eingabe -
Verarbeitung - Ausgabe”, so betreten wir mit grafischen Benutzungsober-
flachen eine ganz neue Welt. Nun arbeiten unsere Programme nicht mehr
von Anfang bis Ende in einer zuvor festgelegten Reihenfolge, sondern sie
reagieren auf aulSere Ereignisse (engl. events). Das konnen Mausklicks
sein, Tastatureingaben, das Bewegen von Schiebereglern, die Auswahl
aus einem Menu und viele weitere Aktionen.

Fur jede Aktion, auf die wir reagieren wollen, schreiben wir dazu eine
kleine Funktion, die sich um dieses Ereignis kummert. Diese Ereignis-
kuimmerer werden auch im Deutschen meistens mit dem englischsprachi-
gen Ausdruck event handler (Eventhandler) bezeichnet. An dieser Stelle
kommt auch die von uns schon verwendete Tkinter-Funktion mainloop
wieder ins Spiel. In ihr wartet die Applikation geduldig auf Events und
ruft bei deren Eintreten die passenden Eventhandler auf.

Beispiel fur einen Eventhandler

Wir bauen uns unseren ersten eigenen Eventhandler und verbinden dazu
einmal das Ereignis ,linke Maustaste wurde gedruckt”, das in Tk den Na-
men "<Button-1>" tragt, mit einer Funktion, der wir den Namen
wo_ist_die_Maus geben.

Als erklartem Eventhandler wird dieser Funktion beim Aufruf ein Objekt
ubergeben, in dessen Attributen einige Informationen uber das Ereignis
enthalten sind. Traditionell gibt man diesem Objekt den Namen event.
Die aktuellen Mauskoordinaten befinden sich dann in den Attributen
event.x und event.y.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

277

Unser Eventhandler soll nun nichts weiter machen, als diese Mauskoordi-
naten durch Aufruf der Funktion print auszugeben.

T = Tk()

mainloop()

from tkinter import Tk, mainloop

def wo_ist die Maus(event):
print("Maus geklickt bei Koordinate", event.x, event.y)

T.bind("<Button-1>", wo_ist die Maus)

Bitte achten Sie darauf, dass in der vorletzten Zeile nur der Funktionsna-
me wo_ist die Maus ganz ohne Klammern steht, nicht der Funktions-
aufruf wo_ist_die_ Maus() mit Klammern!

Ein Programmlauf sieht dann beispielsweise so aus:

Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus
Maus

geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt
geklickt

Abb. 110: Wo ist die Maus?

Martin Vogel: Bauinformatik mit Python, WS 2025/26

bei Koordinate 46 38

tk — O x 81
41
1

38
9

34
31
B5
155

OO T oo oTUoOoTUoToTUT
>

be1l Koorainate 160 94
bei Koordinate 105 59
bei Koordinate 56 80

278

Die folgende Tabelle zahlt einige Beispiele fur Eventnamen auf, mit denen
durch die Methode .bind(Eventname) eigene Eventhandler an ein Wid-

get oder Tk-Fenster gebunden werden konnen.

Eventname Bedeutung
<Button-1> Linke Maustaste gedruckt (event.x, event.y)
<Button-2> Mittlere Maustaste gedruckt (event.x, event.y)
<Button-3> Rechte Maustaste gedruckt (event.x, event.y)
<Motion> Bewegung der Maus (event.x, event.y)

<Bl-Motion>

Bewegung mit gedruckter linker Maustaste
(event.x, event.y)

<ButtonRelease-1>

Linke Maustaste losgelassen (event.x, event.y)

<Double-Button-1>

Linker Doppelklick (event.x, event.y)

<Enter> Mauszeiger betritt Widget
<Leave> Mauszeiger verlasst Widget
<Return> Die Eingabetaste wurde gedruckt.
<KP_Enter> Die Entertaste im Zehnerblock wurde gedruckt.
<Key> Irgendeine Taste wurde gedruckt (event.char).
j Die Taste ,j“ wurde gedrickt.
Die Pfeiltaste ,nach oben” wurde gedruckt. Die
<Up> anderen Pfeiltastenereignisse heilSen entspre-
chend <Down>, <Left> und <Right>.
Die Shifttaste und die Pfeiltaste ,nach oben”
wurden gemeinsam gedruckt.
Der Modifikator ,Shift“ kann auch Mausereig-
<Shift-Up> nissen vorangestellt werden. <Shift-Button-3>

ist dann ein Rechtsklick bei gedruckter Um-
schalttaste | 0 |.

Andere Modifikatoren sind beispielsweise , Alt“

und ,Control” (| Strg).

Martin Vogel: Bauinformatik mit Python, WS 2025/26

279

Eventname

Bedeutung

<Prior>

Die Taste ,Bild T “ wurde gedruckt.
Das Gegenstuck fur ,Bild | “ heist <Next>.

Andere Sondertasten sind beispielsweise <Es-
cape> (Esc), <F1> ... <F12>, <Insert> (Einfg),
<Delete> (Entf), <BackSpace> (Ruckschrittas-
te/Loschtaste), <Tab>, <Home> (Posl) oder
<End> (Ende).

<Configure>

Dieses Ereignis wird ausgelost, wenn sich die
GrofSe eines Widgets verandert hat, beispiels-
weise, weil das Fenster, in dem sich das Widget
befindet, maximiert wurde. Eine Canvas konnte
nun beispielsweise die auf ihr enthaltenen Gra-
fikobjekte an die neue Grolse anpassen. Diese
wird in den Event-Attributen event.width und
event.height ubergeben.

<FocusIn>

Das Widget hat den Eingabefokus erhalten. In
grafischen Oberflachen wird das aktive Einga-
befeld ublicherweise durch ein Rahmchen oder
eine andere Hervorhebungsart gekennzeichnet.
Das Gegenstuck dazu ist <FocusOut>.

Je nachdem, welcher Ereignistyp ausgelost wurde, enthalt das Event-Ob-

jekt eine Auswahl der folgenden Attribute:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

280

Event-Attribut

Ereignistyp

Bedeutung

widget

alle

Instanz des auslosenden Widget-Ob-
jekts

Maus,

Configure

Bei Mausevents: aktuelle Mauskoordi-
naten relativ zur linken oberen Widget-
Ecke

Bei Configure-Events: Koordinaten der
linken oberen Widget-Ecke relativ zur
linken oberen Bildschirmecke

Xx_root,
y_root

Maus

Die aktuellen Mauskoordinaten relativ
zur linken oberen Bildschirmecke

char

Tastatur

Die gedruckte Taste als Zeichen (z. B.
Ilall)

keysym

Tastatur

Der Name der gedruckten Taste (z. B.
"Return")

keysym_num

Tastatur

Die Codeposition des erzeugten Zei-
chens im ASCII bzw. Unicode, z. B. 65
fur das Zeichen "A".

keycode

Tastatur

Der Tastencode der gedruckten Taste.
Dieser ist unabhangig von der Tasten-
beschriftung. Die Taste "y" liegt bei-
spielsweise auf deutschen Tastaturen
links vom "x" und hat dort den Tasten-

code 52. Auf englischen Tastaturen liegt

das "y" zwischen "t" und "u" und hat
den Tastencode 29.

num

Maus

Die gedriickte Maustaste (1, 2, 3). Wei-
tere Maustasten werden uneinheitlich
gezahlt. Unter Linux werden Scrollrad-
bewegungen beispielsweise als Maus-
tasten 4 und 5 behandelt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

281

Event-Attribut

Ereignistyp

Bedeutung

delta

Maus

In einer perfekten Welt wurde dieser
Wert angeben, wie weit das Scrollrad
der Maus gedreht wurde. Tatsachlich
ist dieser Wert unter Linux immer null
(siehe num), unter macOS gibt er an,
um wie viele Rastschritte das Scrollrad
gedreht wurde und unter Windows den
120-fachen Wert davon.

width, height

Configure

Neue Breite und Hohe des Widgets

type

alle

Der Ereignistyp, z.B. "ButtonPress",
"KeyPress" oder "Configure"

serial

alle

laufende Nummer des Events

state

Maus,

Tastatur

Integerzahl, deren einzelne Bits ange-

ben, welche Taste beim Auslosen eines
Ereignisses bereits gedruckt (oder ak-
tiv) war. Lasst sich als Summe folgen-

der Werte interpretieren:

: Shifttaste (,Umschalttaste)
: Feststelltaste aktiv
: Strg-Taste
: Linke Alt-Taste
16: Num aktiv (Ziffernblock)
128: Rechte Alt-Taste
256: Linke Maustaste
512: Mittlere Maustaste
1024: Rechte Maustaste

0 A~ NK

Bei Mausereignissen enthalt state
nicht den aktuellen Mausknopfdruck.
Dadurch lasst sich zum Beispiel heraus-
finden, ob ein Doppelklick der linken
Maustaste bei gedruckter rechter
Maustaste erfolgte.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

282

Event-Attribut Ereignistyp Bedeutung

Zahler fur fortlaufende Millisekunden.
Damit lasst sich beispielsweise die Ge-
time alle schwindigkeit eines Doppelklicks oder
die zeitliche Exaktheit eines rhythmi-
schen Tastenanschlags messen.

Dieses Attribut hat ublicherweise den

send_event alle Wert False.

5.25.2 Anordnung der GUI-Elemente

Alle Widgets, also alle Buttons, Ein- und Ausgabetextfelder, die Canvas
und alle weiteren GUI-Elemente, sollten wir moglichst so im Programm-
fenster anordnen, dass Anwenderinnen und Anwender unseres Pro-
gramms dessen wesentliche Funktionen muhelos und moglichst intuitiv
aufrufen konnen.

Fur Entwicklerinnen und Entwickler komplexer Programmoberflachen
lohnt sich die Einarbeitung in ein GUI-Design-Programm wie beispiels-
weise Glade (Abb. 111), mit dem sich Tkinter-Benutzungsoberflachen ge-
stalten und als Datei speichern lassen. Allerdings gibt es durchaus leis-
tungsfahigere grafische Oberflachen als das mit Python mitgelieferte
Tkinter. Wenn Sie wirklich ernsthafte Anwendungsentwicklung im Sinn
haben, ware dies der richtige Zeitpunkt, auf https://wiki.python.org/
moin/GuiProgramming Ausschau nach passenden Werkzeugen zu halten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

283

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming

Testoberflache.glade - o x.

Datei Bearbeiten Ansicht Projekte Hilfe

BB S -e - X e BB
+ Oberste Ebenen < Widgets suchen > &
—_— Februar 2018 x
O O DI Mi Do Fr Sa < m
— = 1 W B Y.
EI EI = 567 89%101n
121314 15 16 17 18 ¢
192021222324 25 -
~ Container 2628 8 ot
g @ E‘ D » * GtkDrawingArea
S 3 [0 = @ i k4 BR Zeichenbereich Eigenschaften - GtkDrawingArea
=[] e [l button button Allgemein Packen Gemeinsam Signale (5]
= icati Widget-Attribute
§ p- [. \5 GtkApplicationWindow ‘
_ Widget-Name:
Yo =00
P 5 Hi

25
~ Steuerung und Anzeige Stilklassen:
H- @—

fec] [
m L Minihilfe:

(B E] B b [_] Benutzerdefiniert B
- [=] @ [&] label rﬁeschrewhungssprache
~ verwenden
my ¥ = g —
o . Transparenz des Widgets: 1,00 -
&n 3 B
Tastenkiirzel: E]

= |

R B Ereignisse: Struktur 2

Abb. 111: Glade

Fur einfache Layouts kleiner Programme, wie wir sie ublicherweise
schreiben, schielSen diese Losungen jedoch ubers Ziel hinaus. Mit weni-
gen Zeilen Quelltext kommen wir bei der Gestaltung unserer Programm-
oberflachen ublicherweise aus.

5.25.3 Die drei Geometriemanager

Tkinter bietet drei verschiedene Geometriemanager an, um Widgets in ei-
nem Bildschirmfenster anzuordnen. Sie werden uber die Metho-
den .pack, .place und .grid angesprochen.

Pack

Mit dem Methodenaufruf .pack(..) werden neue Elemente mittig an eine
der vier Seiten der verfiigbaren Flache ,gepackt”. Das Attribut side gibt
an, an welchem Rand des noch unbenutzten Bereichs das neue Widget
Platz fiir sich reservieren soll (Left, right, top oder bottom). Fehlt die
Angabe, wird side="top" angenommen. Widgets, die spater dazukom-
men, werden dann darunter angeordnet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

284

An ,seinem” Rand kann das Widget iiber das Attribut align zusatzlich
ausgerichtet werden. Wie an vielen Stellen in Tkinter werden hier die
Himmelsrichtungen (n, s, e und w) zu Hilfe genommen.

Der horizontale und vertikale Abstand des Widgets zu anderen Elementen
lasst sich mit den Attributen padx und pady festlegen. Der Abstand des
Widgetrands zu seinem Inhalt wird durch ipadx und ipady definiert.

Standardmalsig belegt jedes Widget nur soviel Platz, wie es unbedingt be-
notigt. Wir konnen jedoch angeben, dass es samtlichen verfugbaren Platz
in horizontaler, vertikaler oder beiden Richtungen ausfullen soll. Dazu
setzen wir das Attribut fill auf den Wert "x", "y" oder "both". Setzen
wir zusatzlich das Attribut expand auf den Wert True, so wird bei GrofSen-
anderungen des Applikationsfenster der entstehende Platz gleichmalig
auf alle Widgets mit diesem Attribut verteilt.

Die Vordergrundfarbe (Textfarbe) und die Hintergrundfarbe des Widgets
konnen wir mit den Attributen foreground und background beeinflussen.
Hier sind sowohl die englischsprachigen Farbnamen aus dem Anhang
(Kapitel 7.2) als auch hexadezimale Farbcodes moglich.

Durch die Moglichkeit, Widgets durch Rahmen zu Gruppen zusammenzu-
fassen, die dann gemeinsam angeordnet werden konnen, lassen sich auch
komplexe hierarchische Layoutvorstellungen mit uberschaubarem Auf-
wand realisieren. Der besondere Charme der Pack-Methode besteht aller-
dings gerade darin, diese ganzen Angaben gar nicht machen zu mussen,
sondern mal eben schnell ein paar Widgets in ein Applikationsfenster pa-
cken zu konnen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

285

Eine Leinwand und zwei Buttons ™ [=]E4

zeichne einen Baum |

losche den Baum | b

Abb. 112: Pack

C = Canvas(width=400, height=200, bg="white")
C.pack()

Bl = Button(text="zeichne einen Baum")
Bl.pack()

B2 = Button(text="1losche den Baum")

B2.pack()

Place

Die Methode .place erlaubt es Ul-Designern, Widgets millimetergenau
(oder pixelgenau) zu platzieren. Damit lassen sich theoretisch sehr an-
spruchsvolle Layouts realisieren; allerdings ist die damit verbundene Pi-
xelzahlerei enorm aufwendig, solange man nicht spezielle Layoutsoftware
verwendet. Die Freude uber ein gelungenes Layout wahrt bei dieser Me-
thode zudem oft nur kurz. Da unterschiedliche Betriebssysteme und un-
terschiedliche Bildschirmauflosungen ublicherweise auch unterschiedli-
che SchriftgrofSen mit sich bringen, ist ein pixelgenaues Layout eine
hinterhaltige Falle, die man moglicherweise erst bemerkt, wenn man sein
in langer Nachtschicht feinjustiertes Designerschmuckstuck voller Stolz
weitergibt und nur betretene Blicke erntet. Wir vermeiden diese Gestal-
tungsmethode.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

286

Grid

Ein gutes Verhaltnis von Aufwand und Ergebnis erzielen wir mit der drit-
ten Methode, die uns Tkinter zur Verfiigung stellt. Mithilfe von .grid(..)
weisen wir jedem Widget eine Zeilen- und Spaltenposition in einer flexi-
blen Tabelle zu, die sich automatisch an die GrofSe der in ihr plazierten
Elemente anpasst. Mit wenigen Programmzeilen konnen wir so anspre-
chende Layouts realisieren.

column = 0 column = 1 column = 2
Einfeldtrdger mit Einzellast Re=N |
- L J
a b :

P=12255 kN row = 1
I=237s m | row =2
..... e=375 om | row=3
berechnen! E row = 4

| ‘A=189.80kN . row = 5
o B=dseL T row = 6
=7

b =20.00m 5 row

Abb. 113: Grid

Ein paar Auszuge aus dem Quelltext der in Abb. 113 gezeigten Applikati-
on sollen die Verwendung der Grid-Methode zur Anordnung von Widgets
deutlich machen:

Die Grafik stammt aus einer Datei.

bild = PhotoImage(file = "Einfeldtrager.gif")

Sie wird einem Label zugeordnet.

B = Label(image=bild)

Dieses Bild-Label belegt drei Spalten im Grid.
B.grid(row=0, column=0, columnspan=3)

Martin Vogel: Bauinformatik mit Python, WS 2025/26

287

Der Text ,P = “ wird ebenfalls einem Label zugeordnet.

L1 = Label(text="P = ")

Dieses wird rechtsbiindig in Zeile 1, Spalte 0 plaziert.
Ll.grid(row=1, column=0, sticky="e")

Rechts daneben ist ein Eingabefeld, das Spalte 1 ausfiillt.
Eingabefeld P = Entry()

Eingabefeld P.grid(row=1, column=1, sticky="we")

Der Button soll, wie die Grafik, dreispaltig sein.

Bl = Button(text="berechnen!")

Bl.grid(row=4, column=0, columnspan=3, sticky="nsew")

Mit dem Parameter sticky legen wir fest, wie ein Widget in seinem Ras-
terfeld ausgerichtet wird. Die vier Buchstaben "n", "s", "e" und "w" ste-
hen dabei fur die vier Himmelsrichtungen auf einer Landkarte. Sie kon-
nen beliebig kombiniert werden.

Ausrichtung mit sticky sticky = "nsew"

(ohne sticky-Attribut:
:W Anordnung mittig) e ! nsew

..

sticky = "w" sticky = "e"

...

Martin Vogel: Bauinformatik mit Python, WS 2025/26

288

sticky = "we" sticky = "ns"

we ns

...

Die verschiedenen Geometriemanager sollten nicht gemeinsam in einem
Programmfenster verwendet werden. Vor allem die Kombination von pack
und grid fuhrt dazu, dass Tkinter daran verzweifelt, gleichzeitig die Wiin-
sche beider Manager zu erfullen und sich ,aufhangt”.

5.25.4 GUI-Widgets

Tkinter verfugt uber eine Vielzahl von Widget-Typen, von denen hier nur
eine Auswahl vorgestellt wird. Mit den in den folgenden Abschnitten be-
schriebenen Tkinter-Widgets kommen wir jedoch fur die meisten einfa-
chen GUI-Anwendungen recht gut aus’.

Die in diesem Kapitel beschriebenen Beispiele setzen voraus, dass zuvor
die verwendeten Funktionen aus dem Modul tkinter geladen wurden. Da
wir recht viele dieser Funktionen einbinden, importieren wir sie der Ein-
fachheit halber gleich alle.

tkinter *

Taste: Button

Der Button ist wohl das wichtigste Element einer grafischen Benutzungs-
oberflache. Er enthalt einen Beschriftungstext und beim Anklicken mit
der Maus oder beim Aktivieren mit der Tastatur wird eine frei wahlbare
argumentlose Funktion aufgerufen.

1 Wer sich tiefer mit der Materie beschéaftigen mochte, findet auf http://effbot.org/tkin-
terbook/tkinter-classes.htm und https://docs.python.org/3.6/library/tkinter.ttk.html ei-
ne ausfihrliche Beschreibung aller von Tkinter gebotenen Moglichkeiten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 289

https://docs.python.org/3.6/library/tkinter.ttk.html
http://effbot.org/tkinterbook/tkinter-classes.htm
http://effbot.org/tkinterbook/tkinter-classes.htm

Der Button wurde gedriickt.
Der Button wurde gedriickt.
Der Butl t« o x |gedriickt.
Der Butt gedriickt.
Der Butt gedriickt.
Der Button wurde gedriickt.

Der Button wurde gedriickt.

Abb. 114: Button

tkinter *

meine_Funktion():
print("Der Button wurde gedriickt.")

T = Tk()
B = Button(text="Klick mich an!", command=meine_Funktion)
B.pack()

mainloop()

Beschriftung: Label

Ein Label ist ein Widget, das einen kurzen Text und/oder oder ein Bild
enthalt. Das Bild wird als Objekt der Klasse tkinter.Photolmage erwartet
und kann beispielsweise den Inhalt einer GIF-Datei aufnehmen.

Falls sowohl ein Text als auch ein Bild angegeben werden, wird der Text
standardmalfig nur dann ausgegeben, wenn das Bildobjekt nicht darstell-
bar ist.

Mit dem Attribut font lassen sich Schriftart, Grose und Auszeichnung
wahlen.

Die Ausrichtung des Textes wird uber das Attribut anchor festgelegt. Die
~Ankerpunkte” orientieren sich an den Himmelsrichtungen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

290

nw nhe

w se
Abb. 115: Die Ankerpunkte eines Label-Textes

Unser Beispiel ordnet zwei Label nebeneinander in einem Fenster an.

tk - o x

Ein Bild sagt mehr
als tausend Worte.

Abb. 116: Text- und Image-Label

Das linke Label in Abb. 116 enthalt einen zweizeiligen Text, der kursiv (it-
alic) in der Schriftart Arial Black in 16 Punkt SchriftgrofSe gesetzt wird.
Der Text ist blau und in beiden Achsen zentriert. Das Label soll 20 Pixel
Abstand zu anderen Elementen lassen.

Im rechten Label sehen wir ein klassisches Gemalde. Falls es ein Problem
beim Laden der Bilddatei gegeben hatte, ware statt des Bildes ein hilfrei-
cher Hinweistext ausgegeben worden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

291

L1 = Label(text="Ein Bild sagt mehr\nals tausend Worte.",
font="ArialBlack 16 italic",
foreground="blue",
anchor="center")

Ll.pack(side="1left", padx=20)

try:

Bild = PhotoImage(file="Monalisa.gif")
except:

Bild = None

L2 = Label(image=Bild,
text="Die Bilddatei Monalisa.gif fehlt!")
L2.pack(side="right")

Eine Variation des Label-Widgets ist das Message-Widget. Es wird genau-
so verwendet, gibt langere Texte jedoch automatisch mehrzeilig aus.

Eingabefeld: Entry

In grafischen Oberflachen verwenden wir fur kurze, einzeilige Eingaben
anstelle der Input-Funktion Eingabefelder, welche in Tkinter Entry hei-
Sen. Den Inhalt des Eingabefeld-Objekts erhalten wir mit dessen Methode
.get als Zeichenkette.

Der Button wurde gedriickt.

Im Eingabefeld '

Der Button wurc

Im Eingabefeld Klick mich an! | i, oder eine Zahl ..

Der Button wu rdEin Text, oder eine Zahl]|

Im Eingabefeld steht: Ein Text, oder eine Zahl ..
Abb. 117: Entry

. o xb oder eine Zahl ..

Martin Vogel: Bauinformatik mit Python, WS 2025/26

292

tkinter *

meine_Funktion():
print("Der Button wurde gedriickt.")
print("Im Eingabefeld steht:",E.get())

-
i

Tk()
Button(text="Klick mich an!", command=meine_Funktion)
B.pack()

E = Entry()
E.pack()

mainloop()

Die grofSte Umstellung gegeniiber Konsolenprogrammen mit print und
input ist der Verzicht auf Argumente bei der Funktion, welche die Einga-
ben auswertet. Diese ist nun selbst dafur verantwortlich, sich mit dem
Methodenaufruf .get() die benotigten Eingabewerte aus den einzelnen
Eingabefeldern der Benutzungsoberflache zusammenzusuchen.

Falls wir mehr als ein Eingabefeld haben, sollten wir ihnen aussagekrafti-
gere Namen als nur E geben. Ein vorangestelltes ,E“, das darauf hin-
weist, dass es sich bei der entsprechenden Variable um ein Eingabefeld-
Objekt handelt, schadet jedoch nicht.

E Kraft = Entry()

E Kraft.pack()
E_Hebelarm = Entry()
E_Hebelarm.pack()

Ublicherweise ordnet man jedem Eingabefeld mindestens ein Beschrif-
tungsfeld zu, damit erkennbar ist, welcher Wert dort einzugeben ist.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

293

Schieberegler: Scale

Mit Schiebereglern konnen wir GrofSen schnell mit der Maus andern. Vor
allem, wenn es nicht um exakte Eingaben, sondern eher um qualitative
Grolsen geht, ist diese Eingabeformen sehr benutzungsfreundlich. Das
Widget Scale stellt solche Schieberegler dar. Sie konnen horizontal oder
vertikal angeordnet werden. Die Endwerte, die Schrittweite und die Art
der Beschriftung sind wahlbar.

Schieberegler steht auf: 0

Schieberegler steht auf: 0 Scale - o x
Schieberegler steht auf: 0

Schieberegler steht auf: 12

Schieberegler steht auf: 40 50| Anzeige
Schieberegler steht auf: 76

Schieberegler steht auf: 100

Schieberegler steht auf: 50

Abb. 118: Scale

In seiner einfachsten Form ist der Schieberegler senkrecht orientiert, der
obere(!) Wert ist 0 und der untere 100. Der aktuelle Wert wird neben dem
Schieber angezeigt. Mit dem Methodenaufruf .get() erhalten wir den
Zahlenwert der aktuellen Einstellung. StandardmafSig werden Ganzzahlen
zuruckgegeben.

tkinter *

Anzeige():
print("Schieberegler steht auf:",S.get())

T = Tk()
T.title("Scale")

S = Scale()
S.pack(side="1left")

B = Button(text="Anzeige", command=Anzeige)
B.pack(side="right", padx=10,pady=10)
mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26

294

Wollen wir einen anderen Wertebereich abdecken, verwenden wir dazu
die beiden Argumente from_ und to. Beachten Sie, dass der Argumentna-
me from_ mit einem Unterstrich endet, um einen Konflikt mit dem Py-
thon-Schlusselwort from zu vermeiden.

Um den oberen Wert auf 100 zu setzen und den unteren Wert auf O,
schreiben wir:

S = Scale(from_=100, to=0)

Die Schrittweite kann auch kleiner als 1 sein. Sie wird durch das Argu-
ment resolution festgelegt. Die mithilfe von .get() abgefragten Werte
sind dann Gleitkommazahlen.

Wir konnen festlegen, dass bei der Bewegung des Schiebers ein Event
ausgelost wird, sodass unser Programm unmittelbar auf den neuen Schie-
berwert reagieren kann. Dazu weisen wir dem Argument command den
Namen einer Funktion zu, die als Eventhandler dient.

Die Orientierung legen wir mit dem Argument orient fest. Giiltige Werte
sind "h", "horizontal”, "v" und "vertical".

In regelmalSigen Abstanden kann die Skala des Schiebereglers beschriftet
werden. Den Abstand der Zahlenwerte bestimmen wir mit dem Argument
tickinterval.

Die Lange des Schiebereglers legen wir mit dem Argument length fest.
StandardmalSig ist ein Schieberegler 100 Pixel lang.

Uber das Argument label fiigen wir eine die Funktion erlauternde Be-
schriftung hinzu.

Ein Scale-Widget kann also auch so aussehen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

295

| Scale - O x |

Zugkraft P1 [kN]
0.85

| S

0.00 0.25 050 075 1.00 1.25 1.5(]!

Abb. 119: Horizontales Scale-Widget

Der vollstandige Quelltext zum obigen Beispiel:

from tkinter import *

def Anzeige(event=None):
print("Schieberegler steht auf:",S.get())

T = Tk()
T.title("Scale")

S = Scale(from_=0, to=1l.5,
resolution=0.01,
command=Anzeige,
orient="h",
tickinterval=0.25,
length=300,
label="Zugkraft P1 [kN]")

S.pack()

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26

296

Rahmen: Frame

Der Frame ist ein Widget, das andere Widgets aufnehmen kann. Um die
Zuordnung eines Widgets zu einem Frame kenntlich zu machen, geben
wir den Namen dieses ubergeordneten Frames als erstes Argument des
Widgets an.

StandardmalSsig sind Frames unsichtbar. Fur unser Beispiel statten wir ei-
nen solchen , Positionierungsrahmen” mit einem dicken gelben Rand aus,
damit wir ihn sehen konnen.

tk - O

Gib etwas ein:|E = mc?|

b
|
=

Abb. 120: Frame

Quelltextauszug:

M

= Frame(background="yellow", borderwidth=10)
.pack()

-

-

= Label(F, text="Gib etwas ein:")
.pack(side="1left")

-

m

= Entry(F)
.pack()

m

= Button(text="ok", command=meine_Funktion)
.pack(side="right")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 297

Beschrifteter Rahmen: LabelFrame

Ein LabelFrame wird wie ein Frame eingesetzt und verfugt zusatzlich
uber einen Rahmen mit Beschriftung.

Die Beschriftung des LabelFrames befindet sich ublicherweise auf der lin-
ken Seite des oberen Randes. Das Attribut labelanchor kann verwendet
werden, um eine andere Position zu wahlen:

labelanchor = ... = o x
MwW—— n ne- en
e
es
I
wn
w
SW s se WS

Abb. 121: Anordnung der LabelFrame-Beschriftung

LabelFrames und Frames konnen kombiniert werden, um Widgets asthe-
tisch ansprechend anzuordnen. Der Abstand zum Inhalt lasst sich mit den
LabelFrame-Attributen padx und pady pixelgenau einstellen. Um den au-
Beren Abstand zu beeinflussen, verwenden wir im nachsten Schritt na-
mensgleiche Attribute bei der Anordnung durch pack.

LabelFrame — o x

Eingabewerte

Kraft:(125.85
Hebelarm: |8.175

Berechnung

Abb. 122: LabelFrame

Martin Vogel: Bauinformatik mit Python, WS 2025/26

298

Zusatzlich zum sichtbaren LabelFrame wurden hier noch zwei gewohnli-
che Frames eingesetzt, um die zeilenweise Anordnung der Label und Ein-
gabefelder zu vereinfachen. Die Breitenangabe der Label (width=10) hat
hier den Zweck, die Elemente sauber ausgerichtet untereinander anzu-
ordnen.

tkinter *

T = Tk()
T.title("LabelFrame")

L = LabelFrame(text="Eingabewerte", padx=10, pady=10)
L.pack(padx=10, pady=10)

F1 = Frame(L)
F1l.pack()

L1 = Label(Fl, text="Kraft:", anchor="e", width=10)
Ll.pack(side="1left")

E_Kraft = Entry(F1)

E Kraft.pack()

F2 = Frame(L)
F2.pack()

L2 = Label(F2, text="Hebelarm:", anchor="e", width=10)
L2.pack(side="1left")

E_Hebelarm = Entry(F2)

E_Hebelarm.pack()

B = Button(text="Berechnung")
B.pack(side="right", padx=10, pady=10)

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26

299

An dieser Stelle sollten wir einmal uber unnotige Tipparbeit reden. Dem
Quelltext grafischer Benutzungsoberflachen haftet der Ruf an, einen
Hang zu ausufernder Lange und ermudenden Wiederholungen zu haben.
Tatsachlich liegt das oft nur an mangelnder Uberlegung. Schauen wir uns
den letzten Quelltext noch einmal an! Die Programmabschnitte fur die
beiden Eingabezeilen sind jeweils ein halbes Dutzend Zeilen lang und na-
hezu identisch. Anstatt nun fur jede weitere Eingabezeile wieder sechs
Zeilen Code einzutippen, schreiben wir lieber eine Funktion, die diese im-
mergleichen Zeilen aufnimmt. Wir nennen sie der Einfachheit halber
»~Eingabezeile”. Als Argument erhalt sie den Text des Labels und einen
Hinweis auf das ubergeordnete Widget (falls vorhanden). Ihr Ruckgabe-
wert soll das Entry-Objekt der Eingabezeile sein. Anstelle von sechs
Codezeilen benotigen wir dank der neuen Funktion zukinftig nur noch ei-
ne:

tkinter *

Eingabezeile(root= , text="Eingabe"):
F = Frame(root)
F.pack(anchor="e")
E = Entry(F)
E.pack(side="right")
L = Label(F, text=f"{text}: ", anchor="e")
L.pack()
E

T = Tk()

L = LabelFrame(text="Eingabewerte")
L.pack()

E Kraft = Eingabezeile(L, "Kraft")
E_Hebelarm = Eingabezeile(L, "Hebelarm")

B = Button(text="Berechnung")
B.pack(side="right")

Martin Vogel: Bauinformatik mit Python, WS 2025/26

300

mainloop()

Haben Sie gemerkt, dass diese Variante ohne die width-Angabe fiir den
Text links vom Eingabefeld auskommt? Was wurde geandert?

Schiebefenster: PanedWindow

Frames und LabelFrames passen ihre Grofse automatisch an ihre Inhalte
an. Mit den Attributen fill und resize konnen wir bei Verwendung des
Pack-Geometriemanagers festlegen, dass Widgets immer den gesamten
verfugbaren Platz ausnutzen und sich Grolsenanderungen des Programm-
fensters oder des iibergeordneten Elements anpassen.

Gelegentlich ist es jedoch sinnvoll, der Anwenderin und dem Anwender
die Flachenaufteilung zu uberlassen, damit diese beispielsweise einer
Grafik oder einem Textbereich vorubergehend mehr Raum zuteilen kon-
nen.

PanedWindow - o x

Linker Bereich Oberer Bereich von P2 im
von P1 rechten Bereich von P1

Unterer Bereich von P2 im
rechten Bereich von P1

Abb. 123: PanedWindow

Martin Vogel: Bauinformatik mit Python, WS 2025/26

301

from tkinter import *

def Textpanel(root,text):

T = Text(root, wrap="word",
font="sans 12 bold",
padx=10, pady=10)

T.pack(fill="both", expand=True)

T.insert(1.0, text)

return T

T = Tk()
T.title("PanedWindow")

P1 = PanedWindow(
T, orient="horizontal", sashrelief="raised")
Pl.pack(fill="both", expand=True)

L_links = Textpanel(
Pl, text="Linker Bereich von P1")
P1l.add(L_1links)

P2 = PanedWindow(
Pl1, orient="vertical", sashrelief="raised")
Pl.add(P2)

L_oben = Textpanel(

P2,

text="0berer Bereich von P2 im rechten Bereich von P1")
P2.add(L_oben)

L_unten = Textpanel(

P2,

text="Unterer Bereich von P2 im rechten Bereich von P1")
P2.add(L_unten)

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26

302

Das Attribut sashrelief legt fest, wie der verschiebliche Trennbalken
zwischen den PanedWindow-Bereichen aussehen soll. Mogliche Werte
sind "raised" (erhaben) "flat" (ohne 3D-Effekt) und "sunk" (versenkt).
Die Standardvorgabe fiir sashrelief ist "flat".

Ankreuzkastchen: Checkbutton

Um unsere Anwenderinnen und Anwender einfache Ja/Nein-Entscheidun-
gen mithilfe eines gesetzten oder nicht gesetzten Kreuzchens oder Hak-
chens ausfuhren zu lassen, verwenden wir Checkbuttons.

Checkbuttons — a1 x

-Lastfalle

[Windlast
v Schneelast
[Verkehrslast

Berechnung

Abb. 124: Checkbuttons

Interessanterweise wird die Information daruber, ob ein Kastchen ange-
kreuzt wurde, nicht im Widget selbst gespeichert, sondern in einem von
uns separat anzulegenden Tkinter-IntVar-Objekt, dessen Wert mit .set
geschrieben und mit .get gelesen werden kann.

Eine naheliegende Idee ware es daher, fur jeden Button einen mehrzeili-
gen Programmblock wie den im folgenden Quelltext gelb markierten an-
zulegen.

tkinter *

Auswertung():
print(CWv.get(), CSv.get(), CVv.get())

T = Tk()
T.title("Checkbuttons")

Martin Vogel: Bauinformatik mit Python, WS 2025/26

303

L = LabelFrame(text="Lastfalle", padx=10, pady=10)
L.pack(padx=10, pady=10, side="left")

CWv = IntVar()

CWv.set(0) # Kastchen leer

CW = Checkbutton(L, text="Windlast", variable=CWv)
CW.pack(anchor="w")

CSv = IntVar()

CSv.set(1l) # Kastchen angekreuzt

CS = Checkbutton(L, text="Schneelast", variable=CSv)
CS.pack(anchor="w")

CVv = IntVar()
CV = Checkbutton(L, text="Verkehrslast"™, variable=CVv)

CV.pack(anchor="w")

B = Button(text="Berechnung", command=Auswertung)
B.pack(side="bottom", padx=10, pady=10)

mainloop()

Das kann man so machen; es geht aber auch deutlich ubersichtlicher. Un-
sere selbstgeschriebene Funktion Checkbox erledigt im folgenden Pro-
gramm alle wiederkehrenden Arbeiten. Sie legt das benotigte IntVar-Ob-
jekt an, weist ihm einen Anfangswert zu, zeichnet den Checkbutton und
gibt das IntVar-Objekt zuruck, das uber den Zustand des Checkbuttons
Auskunft gibt. AnschlieRend benotigt jeder Aufruf der Funktion Checkbox

nur noch eine einzige Programmzeile.

tkinter *

Auswertung():
print(CW.get(), CS.get(), CV.get())

Martin Vogel: Bauinformatik mit Python, WS 2025/26

304

Checkbox(root=None, text="", wert=0):
IV = IntVar()
IV.set(wert)
C = Checkbutton(root, text=text, variable=IV)
C.pack(anchor="w")
IV

T = Tk()
T.title("Checkbuttons")

L = LabelFrame(text="Lastfalle", padx=10, pady=10)
L.pack(padx=10, pady=10, side="left")

CW = Checkbox (L, "Windlast")
CS = Checkbox(L, "Schneelast"™, 1)
CV = Checkbox(L, "Verkehrslast")

B = Button(text="Berechnung", command=Auswertung)
B.pack(side="bottom", padx=10, pady=10)

mainloop()

Radiobutton

Der Radiobutton ist ein naher Verwandter des Checkbuttons. Wahrend
jedoch in einer Gruppe von Checkbuttons beliebig viele angekreuzt wer-
den durfen, ist in einer Gruppe von Radiobuttons immer nur einer aktiv.
Damit erklart sich auch der Name dieses Widgets, denn beim Radio lasst
sich mit den Stationstasten ebenfalls zu jedem Zeitpunkt nur ein einzel-
ner Sender wahlen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

305

Radiobuttons - a1 x

~Lastfall

T Windlast
i Schneelast

" Verkehrslast
Berechnung

Abb. 125: Radiobuttons

Wahrend Checkbuttons stets eine eigene Variable besitzen, die ihren An-
kreuzzustand speichert, teilen sich zusammengehorende Radiobuttons ei-
ne gemeinsame Variable. Diese enthalt dann den Wert des Attributs value
des gerade gewahlten Buttons.

Weil Radiobuttons immer rudelweise auftreten, schreiben wir uns eine ei-
gene Funktion, welche die Konfiguration jedes einzelnen Radiobuttons fur
uns ubernimmt. Unsere Funktion , Radiobuttons” verarbeitet daher gleich
eine ganze Liste von Zeichenketten, aus denen sie eine Radiotastenleiste
fur uns zusammenstellt. Diese Aufzahlung darf beliebig lang sein.

tkinter *

Auswertung():
print(RB.get())

Radiobuttons(root= , *textliste, gewahlt=):
TV = StringVar()
TV.set(gewahlt)
t textliste:
R = Radiobutton(root, variable=TV, text=t, value=t)
R.pack(anchor="w")
TV

T = Tk()
T.title("Radiobuttons")

Martin Vogel: Bauinformatik mit Python, WS 2025/26

306

L = LabelFrame(text="Lastfall", padx=10, pady=10)
L.pack(padx=10, pady=10, side="1left")

RB = Radiobuttons(L, "Windlast", "Schneelast",
"Verkehrslast", gewahlt="Schneelast")

B = Button(text="Berechnung", command=Auswertung)
B.pack(side="bottom", padx=10, pady=10)

mainloop()

Der Wert, den ein Radiobutton zurickgibt und sein Beschriftungstext
konnen unterschiedlich sein. Oft wird ein Programm jedoch lesbarer,
wenn wir den Argumenten value und text denselben Wert zuweisen.

Menubutton

Etwas platzsparender als die Auswahl aus einer Liste von Radiobuttons
ist die Verwendung eines in Tkinter Menubutton genannten Ausklapp-
menus. Hier werden die verschiedenen Auswahlpunkte erst nach dem
ersten Anklicken sichtbar.

Menubutton — o *®

Lastfall

Schneelast — |
_ Berechnung
— Windlast

"« Schneelast

V_E-rkeh rslast

Abb. 126: ttk-Menubutton

Der Menubutton kann deutlich mehr, als nur eine kleine Auswahlliste dar-
zustellen. Tatsachlich ist er in der Lage, komplette Menus mit Checkbut-
tons, Radiobuttons, Kommandoschaltflachen und sogar Untermenus auf-
nehmen. Leider wird seine Verwendung durch das Verweben mit dem
Tkinter-Menu-Objekt etwas sperrig.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

307

Unter manchen Betriebssystemen ist der Menubutton in Tkinter auf den
ersten Blick nicht von einem gewohnlichen Button zu unterscheiden.
Durch Uberschreiben der Funktion Menubutton mit der gleichnamigen
Funktion aus dem Modul tkinter.ttk erhalten wir eine visuell ansprechen-
dere Darstellung. Zusatzlich verfrachten wir auch hier wieder allen von
unserem eigentlichen Programm ablenkenden Code in eine eigene Funk-
tion, der wir in unserem Hauptprogramm nur mitteilen mussen, in wel-
chem ubergeordneten Widget sie untergebracht werden soll und welcher
Menupunkt voreingestellt sein soll.

tkinter *
tkinter.ttk Menubutton

Auswertung():
print(MB.get())

Buttonmenu(root= , *textliste, gewahlt=):
V = StringVar()
V.set(gewahlt)
M = Menubutton(root, textvariable=V)
M.pack()
M.menu = Menu(M, tearoff=0)
M["menu"] = M.menu
t textliste:
M.menu.add_radiobutton(variable=V, label=t, value=t)
')

T = Tk()
T.title("Menubutton")

L = LabelFrame(text="Lastfall", padx=10, pady=10)
L.pack(padx=10, pady=10, side="left")

MB = Buttonmenu(L, "Windlast", "Schneelast", "Verkehrslast",
gewahlt="Schneelast")

B = Button(text="Berechnung", command=Auswertung)

Martin Vogel: Bauinformatik mit Python, WS 2025/26

308

B.pack(side="bottom", padx=10, pady=10)

mainloop()

Unser kleiner Widgetzoospaziergang ist damit zu Ende. Wir konnten da-
bei leider nur einen kleinen Teil der umfangreichen Tkinter-Bibliothek
kennenlernen. Wenn Sie meinen, dass ein wichtiges Thema hier unbe-
dingt noch aufgenommen werden sollte, melden Sie sich bei mir!

Martin Vogel: Bauinformatik mit Python, WS 2025/26 309

5.26 Webserver

Bisher haben wir nur Programme geschrieben, bei denen die Bedienung
auf demselben Rechner stattfindet, auf dem das jeweilige Programm
lauft. Wir konnen aber auch uber das Internet auf Programme zugreifen,
die auf weit entfernten Rechnern laufen. Diese Programme heilSen Web-
server. Sie bekommen ihre Eingaben klassischerweise aus HTML-Formu-
laren und erzeugen wiederum HTML- und Grafikdateien, die uber das In-
ternet zuruck zu den Anwenderinnen und Anwendern geschickt werden.

Viele grofse Websites wie Youtube oder Dropbox bestehen zu einem guten
Teil aus Python-Skripten.

Um auf dem eigenen PC einen einfachen Webserver zu starten, genugt ei-
ne einzige Zeile im Terminal:

python -m http.server

Der Server meldet sich mit der verwendeten Portadresse, unter der er auf
dem gastgebenden Rechner (dem sogenannten ,Host“) zu erreichen ist.
In der Regel wird Port 8000 verwendet.

Starten wir nun auf demselben Rechner einen Webbrowser mit der URL
http://localhost:8000, so erhalten wir eine Antwort von unserem Web-
server. StandardmalSig ist das der Inhalt der Datei index.html. Wenn diese
Datei nicht existiert, wird der Inhalt des aktuellen Verzeichnisses ausge-
geben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

310

http://localhost:8000/

C:\Windows‘system32>python -m http.server

g HTTP on :: port 8888 (http://[::]:86688/) ...

& Directory listing for / x + Q
&« C @ localhost:3000 B + 2

Directory listing for /

0409

[@0OpenWithToastl ogo.png
(@optionalfeatures. png
[@TileEmptylxlImage.png
@WiFiNotificationlcon.png
aadauthhelper.dil

aadcloudap.dil
amdth All

Abb. 127: Webserver unter Windows 10

Auf Webservern, die den CGI-Standard unterstutzen, konnen auch Pro-
gramme gestartet werden, die beispielsweise Formulareingaben entge-
gennehmen und HTML-Seiten erzeugen, in denen die Ergebnisse von auf
diesen Eingaben beruhenden Rechnungen ausgegeben werden. Diese
Programme befinden sich dann ublicherweise im Unterverzeichnis ,cgi-
bin“ des Webauftritts. Bis Python 3.14 lasst sich der mit Python mitgelie-
ferte Webserver mit CGI-Unterstutzung starten.

python -m http.server --cgi

Ab Python 3.15 entfallt diese Funktion, sodass wir auf andere Webserver
zuruckgreifen mussen, damit wir Pythonprogramme auf unserem lokalen
Rechner uber eine Browseroberflache steuern konnen. Fur Windows ge-
niigt fur einfache Webserverexperimente das Programm ,TinyWeb'“, fur
Linux lasst sich uber die Werkzeugsammlung , busybox“ Abhilfe schaffen.

1 https://www.ritlabs.com/en/products/tinyweb/

Martin Vogel: Bauinformatik mit Python, WS 2025/26

311

https://www.ritlabs.com/en/products/tinyweb/

busybox httpd -vvfp 8000

5.26.1 Zeichenkodierung

Webbrowser unterstutzen zwar alle Unicode-Zeichen einschliefSlich Emo-
jis, trotzdem sollten Sonderzeichen, die nicht auf der Tastatur zu finden
sind, derzeit noch mit Vorsicht eingesetzt werden.

Python verwendet Unicode-Zeichen nur, wenn das Betriebssystem dies
auch erkennbar unterstutzt. Auf manchen Webservern kann Python je-
doch nicht ermitteln, ob diese Unterstutzung vorhanden ist, und gibt
stattdessen eine Fehlermeldung aus.

Wenn Thr Python-Programm auch als CGI-Skript auf unzureichend konfi-
gurierten Webservern laufen soll, sollte es daher moglichst nur ASCII-Zei-
chen ausgeben.

5.26.2 Darstellung von Webseiten ohne
Webserver

Wir konnen auch ganz ohne Webserver Ausgaben unseres Pythonpro-
gramms in einem Webbrowser darstellen. Dazu muss das Programm le-
diglich eine gewohnliche HTML-Datei erzeugen (siehe Kapitel 3). Diese
HTML-Datei konnen wir dann in einem Dateimanager doppelklicken oder
wir verwenden die Funktion open() aus dem Modul webbrowser.

webbrowser
webbrowser.open("index.html")

Unter Windows und Linux wird dann die Datei ,index.html“ aus dem Ver-
zeichnis des laufenden Pythonprogramms vom Standardwebbrowser des
Systems geladen und dargestellt.

Unter macOS ist leider noch ein Zwischenschritt erforderlich, da dort der
Webbrowser mit dem absoluten Pfad der darzustellenden Datei aufgeru-
fen werden muss. Unser Pythonprogramm muss also zuerst einmal nach-
schauen, in welchen Verzeichnis diese sich uberhaupt befindet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

312

Zusatzlich muss das URL-Schema ,file://“ angeben, dass es sich um eine
Adresse im Dateisystem des verwendeten PCs handelt.

webbrowser
oS
webbrowser.open("file://"+os.path.abspath("index.html"))

Da diese Variante auch unter anderen Betriebssystemen funktioniert,
konnen wir sie bedenkenlos auch fur Programme verwenden, die nicht
ausschliefSlich fur macOS geschrieben werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 313

5.27 Logische Aussagen

Logische Aussagen sind Aussagen, die objektiv bestimmbar entweder ein-
deutig wahr oder eindeutig falsch sind. ,4 ist groer als 3“ ist beispiels-
weise eine logische Aussage, da sie eindeutig als wahr oder falsch er-
kannt werden kann. ,Der Hut ist schon” ist dagegen keine logische
Aussage, sondern eine subjektive MeinungsaulSerung.

Fur die beiden Wahrheitswerte ,wahr” und ,falsch” verwendet Python die
beiden Schlusselworter True und False. Sie sind vom Typ bool.

5.27.1 Wahrheitswerte anderer Datentypen

In bedingten Schleifen und Fallunterscheidungen durfen wir anstelle logi-
scher Aussagen auch boolesche Werte und sogar Werte anderer Datenty-

pen verwenden.

Gleichwertig zu
wahren Aussagen

Gleichwertig zu
falschen Aussagen

Der boolesche Wert True

Der boolesche Wert False
Der Wert None

Zahlenwerte ungleich null

Die Zahl 0

Sequenzen mit mindestens einem
Element

Leere Sequenzen

Die if-Abfragen in der linken und rechten Spalte der folgender Tabelle

sind daher funktionsgleich:

kurze Schreibweise

redundante Schreibweise

b I=

b '=0:

b > IIII:
len(b) > 0O:

Martin Vogel: Bauinformatik mit Python, WS 2025/26

314

kurze Schreibweise

redundante Schreibweise

b !'=

b ==

b==20

b =="":
len(b) == 0:

5.27.2 Vergleichsoperatoren

Um logische Aussagen uber das GrofSenverhaltnis zweier Werte zu tref-

fen, verwenden wir sechs verschiedene Operatoren:

ist gleich

ist ungleich

ist kleiner als

ist kleiner oder gleich
ist grolser als

ist grofRer oder gleich

Martin Vogel: Bauinformatik mit Python, WS 2025/26

315

5.27.3 Logische Aussagen uber
Gleitkommazahlen

Wahrend ganze Zahlen immer mit ihrem exakten Wert gespeichert und
verarbeitet werden, sind Gleitkommazahlen sehr oft nur Naherungswerte
und unterliegen Rundungsfehlern. Intern werden Gleitkommazahlen in
Python, wie auch in vielen anderen Programmiersprachen, als Produkt ei-
ner ganzen Zahl mit einer Zweierpotenz verarbeitet und erst bei der Aus-
gabe in eine Dezimalzahl mit einer bestimmten Anzahl von signifikanten
Stellen umgewandelt. Die letzte Stelle ist dabei manchmal erstaunlich un-
genau.

>>> 3 + 4 ==

True

>>> 3/2 + 4/2 == 7/2
True

>>> 3/3 + 4/3 == 7/3
False

Schauen wir einmal genauer hin, was da bei der letzten Eingabe passiert
ist und werten wir beide Seiten einzeln aus:

>>> 3/3 + 4/3
2.333333333333333
>>> 7/3
2.3333333333333335

Der Unterschied ist zwar aulSerst gering, aber es gibt einen Unterschied.
Wir sollten uns daher davor huten, Gleitkommazahlen jemals auf Gleich-
heit zu testen.

Auch das Aufaddieren von Gleitkommazahlen bis zum Erreichen eines be-
stimmten Grenzwertes fithrt oft zu Uberraschungen. Wer sichergehen
will, dass ein selbstgeschriebenes Programm sich wie erwartet verhalt,
sollte besser auf Ahnlichkeit anstatt auf Gleichheit testen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 316

Das Mathematikmodul math enthalt dazu die Funktion isclose(a,b):

>>> a = 3/3 + 4/3
>>> a == 7/3

False

>>> isclose(a, 7/3)
True

5.27.4 Boolesche Algebra

Logische Ausdrucke lassen sich miteinander verknupfen. So entsteht ein
neuer logischer Ausdruck, der ebenfalls wieder den Wahrheitswert True
oder False besitzt.

Der englische Mathematiker George Boole stellte dazu die Regeln der
spater nach ihm benannten booleschen Algebra auf. lhm zu Ehren wurde
die Klasse der Wahrheitswerte True und False in Python bool genannt.

>>> type()
<class 'bool'>

Die drei wichtigsten Operatoren zur Verknupfung logischer Aussagen
sind ,und”, ,oder” sowie ,nicht” (in Python: and, or und not).

Die Konjunktion: and

Die Verknupfung zweier logischer Aussagen mit and ergibt eine neue logi-
sche Aussage, die nur dann wahr ist, wenn beide Einzelaussagen wahr
sind.

and True False

True True False

False False False
Abb. 128: Wahrheitstabelle and

Martin Vogel: Bauinformatik mit Python, WS 2025/26

317

Dies entspricht dem ublichen Sprachgebrauch: ,Wenn ich draulien bin
und es regnet, dann spanne ich meinen Schirm auf.” Der Schirm bleibt al-
so in drei von vier Fallen geschlossen: Wenn ich drinnen bin und es reg-
net, wenn ich drinnen bin und es nicht regnet sowie wenn ich draulsen
bin und es nicht regnet.

Die Disjunktion: or

Die Verknupfung zweier logischer Aussagen mit or ergibt eine neue logi-
sche Aussage, die nur dann falsch ist, wenn beide Einzelaussagen falsch
sind. Wenn entweder die eine oder die andere oder beide Aussagen wahr
sind, wird die Gesamtaussage ebenfalls wahr.

or True False

True True True

False True False
Abb. 129: Wahrheitstabelle or

Eine gewisse Aufmerksamkeit ist angebracht, da das or durch die dritte
Kombinationsmoglichkeit (beides wahr) nicht dem in Konversationen ubli-
chen unterscheidenden Sprachgebrauch des Wortes ,oder” entspricht.

Die Antwort ,ja“ auf die Frage ,mochtest Du Kaffee oder Tee?”“ mag aus
boolescher Sicht korrekt sein (wenn der/die Befragte beides mag), ver-
stort aber in der Regel die meisten Fragenden.'

Die Negation: not

Der Wahrheitswert einer logischen Aussage wird durch Voranstellen von
not negiert.

Der Ausdruck not True ergibt False und umgekehrt.

1 Leider erlaubt es die offene Lizenz dieses Buches nicht, urheberrechtlich beschrank-
tes Material einzubinden, sonst hatte ich langst mal Sydney Padua gefragt, ob ich den
wundervollen Comic , Mr. Boole Comes to Tea” aus ihrem Buch , The Thrilling Adven-
tures of Lovelace and Babbage: The (Mostly) True Story of the First Computer” ver-
wenden darf. Immerhin findet sich eine Leseprobe auf Google Books: https://goo.gl/
466Hfu

Martin Vogel: Bauinformatik mit Python, WS 2025/26 318

https://goo.gl/466Hfu
https://goo.gl/466Hfu

Vorsicht: das entspricht ganz und gar nicht dem in zwischenmenschlichen
Konversationen bei Fragen uiblichen Sprachgebrauch!

,Mochtest Du keinen Broccoli?” - ,Nein!“

Logische Konsequenz: ein Teller voll gesunden dampfenden Broccolis. Die
logisch richtige Antwort fur keinen Broccoli ware ,ja“ gewesen. Ein logi-
sches ,doch” gibt es nicht.

Die Kontravalenz: ©

Die Kontravalenz oder exklusiv-oder-Verknupfung ergibt immer dann den
Wert True, wenn entweder die eine oder die andere Aussage wahr ist,
aber nicht beide gleichzeitig.

A True False

True False True

False True False
Abb. 130: Wahrheitstabelle ~

Diese logische Verknupfung wird in manchen anderen Programmierspra-
chen mit dem Operator xor vorgenommen. In Python ist dazu, genau wie
in den Programmiersprachen C oder Java, das Zirkumflex ~ vorgesehen,
das verwirrenderweise anderenorts, zum Beispiel in der Programmier-
sprache BASIC und vielen Tabellenkalkulationen, als Potenzierungsopera-
tor verwendet wird.

Prioritaten

Wie in der ,Zahlenalgebra“ haben auch in der Booleschen Algebra die
einzelnen Operatoren unterschiedliche Prioritaten. Bei zusammengesetz-
ten logischen Ausdrucken besitzt not die hochste, and eine mittlere und
or die geringste Prioritat.

Im Zweifelsfall empfiehlt es sich, Klammern zu verwenden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 319

Umkehrung logischer Aussagen

Bei der Umkehrung logischer Aussagen ist Vorsicht geboten. So lautet die
Negierung von a and b nicht etwa not a and not b oder gar not a
and b, sondern not a or not b. Wer sich da unsicher fuhlt, sollte eben-
falls besser Klammern verwenden und not(a and b) schreiben.

Boolesche Variablen

Wahrheitswerte konnen in Python in Variablen gespeichert werden. Diese
Variablen, die entweder den Wert True oder den Wert False haben, nen-
nen wir boolesche Variablen.

>>> A 3>14

>>> A
False

>>> B = 7 ==
>>> B
True

Beachten Sie bitte den Unterschied zwischen dem Zuweisungsoperator =
(,wird zu“) und dem Vergleichsoperator == (,,ist gleich”)!

Der Variable B wird der Wahrheitswert der Aussage 7 == 7, also True,
zugewiesen.

5.27.5 Venn-Diagramme

John Venn, ein Mathematiker an der Universitat zu Cambridge, stellte
1880 eine Diagrammform vor, mit der sich auf sehr ubersichtliche Weise
logische Aussagen formulieren und uberprufen lassen.

Im einfachsten Fall bestehen Venn-Diagramme aus zwei sich uberschnei-
denden Kreisen A und B, die jeweils einer logischen Aussage zugeordnet
sind.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

320

Abb. 131: Venn-Diagramm mit zwei Aussagen A und B

Alle Elemente, auf die Aussage A zutrifft, werden in Kreis A versammelt
und alle Elemente, auf die Aussage B zutrifft, finden wir in Kreis B wie-
der. Im Schnittbereich sollten nur diejenigen Elemente zu finden sein, auf
die sowohl Aussage A als auch Aussage B zutrifft.

In einem Pythonprogramm wurde fur diese Schnittmenge gelten:
A and B == True.

Die folgende Abbildung zeigt einige ausgewahlte Moglichkeiten, logische
Aussagen zu den Mengen A und B zu formulieren, um exakt eine be-
stimmte Teilmenge zu erhalten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 32 1

@ @ v

A B Aund B
nicht A nicht Aund B nicht { A und B}

A und nicht B Aoder B

nicht (A oder B)

«entweder A oder B
(A oder B) und nicht (A und B)
AAB

Abb. 132: Venn-Diagramme und logische Aussagen

Martin Vogel: Bauinformatik mit Python, WS 2025/26

322

6 Datenspeicherung und
Zahlensysteme

6.1 Bits und Bytes

Wenn Sie dieses Buch als Python-Lehrbuch von vorne nach hinten durch-
arbeiten, sind Sie nun schon fast durch und haben immer noch nichts
uber die elementaren Grundbegriffe der Datenspeicherung gehort: Bit
und Byte.

Das liegt vor allem daran, dass wir uns bisher vor allem auf einer , hohe-
ren Ebene” bewegt haben, auf der es ziemlich unwichtig ist, wie Daten
tatsachlich gespeichert werden. Den ganzen Arger, den uns eine fehler-
hafte Zeichenkodierung bei der Verarbeitung von Textdateien einbringt,
konnen wir aber nur dann wirklich vermeiden, wenn wir einen tiefen
Blick in den Kaninchenbau unter der Oberflache werfen.

6.1.1 Das Bit

Das Bit ist die kleinste in der EDV verwendete Informationseinheit. Es
kennt nur zwei definierte Zustande; wir konnen sie beispielsweise ,0“
und , 1”“ nennen. Diese zwei Zustande konnen wir elektrisch recht einfach
umsetzen, indem wir auf einer Leitung eine Spannung anlegen oder eben
nicht.

Um ein Bit speichern zu konnen, mussen wir ein Medium finden, das von
einem Zustand in einen anderen uberfuhrt werden kann. Wir konnen bei-
spielsweise einen Knoten in eine Schnur knupfen, ein Loch in ein Stuck
Karton stanzen, einen schwarzen Punkt auf ein weilSes Blatt Papier malen
(Abb. 133), einen Bereich einer magnetischen Oberflache umpolen, mit
einem Laser einen Spiegel matt schieSen oder ein paar Molekile elek-
trisch aufladen. Der Phantasie sind hier keine Grenzen gesetzt. Hauptsa-
che, wir finden unser Bit spater wieder und konnen zuverlassig und am
besten auch noch moglichst schnell wieder herausfinden, ob wir dort eine
»,0“ oder eine ,, 1“ gespeichert haben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

323

Abb. 133: QR-Code

6.1.2 Das Byte

Wollen wir grofSere Zahlen als 0 und 1 verarbeiten, mussen wir mehrere
Bits kombinieren. Mit zwei Bits lassen sich schon vier verschiedene Zah-
lenwerte darstellen. Sind beide Bits null, stellen sie die Zahl Null dar. Ei-
ne Eins entsteht dadurch, dass eines der beiden Bits den Wert 1 annimmt.
Fur die Zwei wird das andere Bit auf 1 gesetzt und die Drei wird dadurch
reprasentiert, dass beide Bits den Wert 1 annehmen.

Mit jedem zusatzlichen Bit lasst sich der darstellbare Zahlenbereich ver-
doppeln. Mit acht Bits lassen sich schon 28, also 256 verschiedene Zu-
stande unterscheiden.

Das reicht beispielsweise, um allen Grols- und Kleinbuchstaben des Alpha-
bets, den wichtigsten Satzzeichen und einigen Sonderzeichen (§$%&) eine
eindeutige Codenummer zuzuweisen und dadurch Texte als Folge von
Acht-Bit-Zahlenwerten speichern zu konnen.

In der weltweit verbreitetsten Zeichenkodierung ASCII (american stand-
ard code for information interchange) wird zum Beispiel dem grofSen , A”
die Codeposition 65 zugewiesen, dem kleinen ,a“ die Position 97 und dem
Leerzeichen , “ die Position 32 (siehe Tabelle in Kapitel 6.2).

Martin Vogel: Bauinformatik mit Python, WS 2025/26

324

Die Zeichenkette
Hallo Bochum
wird in der ASCII-Kodierung zur Zahlenfolge
72 97 108 108 111 32 66 111 99 104 117 109.

Im Speicher des Computers werden diese Zahlen als Gruppen von jeweils
acht Nullen und Einsen abgelegt:

01001000 72
01100001 97
01101100 108
01101100 108
01101111 111
, 00101100 44
00100000 32
01000010 66
01101111 111
01100011 99
01101000 104
01110101 117
011011601 109
00100001 33

Abb. 134: ASCII-Zeichen als Bits und Bytes

O rr~9o I

-2 C SO 0

Da die Kombination aus 8 Bits so wichtig fur die elektronische Datenver-
arbeitung geworden ist, hat sie einen eigenen Namen bekommen. Wir
nennen sie ,Byte“. Ein Byte kann 256 verschiedene Werte annehmen.

Je mehr Bits zur Verfugung stehen, desto grofSer sind die verarbeitbaren
Zahlenwerte. Mit 16 Bits lassen sich schon Zahlen von 0 bis 65535 dar-
stellen, mit 32 Bits sind rund vier Milliarden unterschiedliche Kombinati-
onen moglich und mit 64 Bits konnen alle ganzen Zahlen von 0 bis unge-
fahr 1,84x10'° unterschieden werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

325

Der 32-Bit-Beschrankung begegnen wir derzeit (2022) gelegentlich noch
bei alteren PCs. Manche alte 32-Bit-Betriebssysteme konnen nicht einmal
4 GiB! RAM nutzen, ein mit dem Dateisystem FAT32 formatierter USB-
Stick kann keine Dateien grofSer als 4294967295 Byte speichern und es
gibt weltweit keine freien IPv4-Adressbereiche mehr, um neue Gerate ans
Internet anzuschlielRen, weil alle Kombinationen aus 4 Bytes schon verge-
ben sind.?

6.1.3 Das Hexadezimalsystem

Jede 8-Bit-Zahl konnen wir im uns vertrauten Dezimalsystem mit ein bis
drei Dezimalziffern darstellen: O bis 255.

Mit einem kleinen Trick lasst sich eine Ziffer einsparen, indem wir anstel-
le des Zehnersystems das Sechzehnersystem verwenden. Zu den zehn
Ziffern 0 bis 9 kommen dann die sechs Buchstaben A bis F mit den dezi-
malen Ziffernwerten 10 bis 15.

010 = O16 410 = 416 810 = 816 1210 = Cie
lio = 116 510 = D16 910 = 916 1310 = D16
210 = 216 610 = 016 1010 = A1e 1410 = E16
310 = 316 710 = 716 1110 = Bis 1510 = Fie

Zahlen aus zwei Hexadezimalziffern decken somit alle 16 x 16 moglichen
Werte eines Bytes ab.

Bei mehrstelligen Hexadezimalzahlen steigt der Stellenwert nach links je-
weils um den Faktor 1610 = 101s.

Die Hexadezimalzahl 30C4 hat beispielsweise den dezimalen Wert 12484:

1 Ein GiB (Gibibyte) sind 23 Byte, also rund 1,074 GB (Gigabyte). Im Microsoft-Wind-
ows-Explorer werden die Einheiten falsch verwendet und GiB-Zahlenwerte mit der
Einheit GB dekoriert. Ebenso verwendet Windows die Einheit MB falschlicherweise
nicht fiir eine Million Bytes, sondern fiir 2?° Bytes und kB nicht fiir 1000 Bytes, son-
dern fiir 1024 Bytes.

2 Besonders ,kreativ” hat sich hierbei die Firma Microsoft angestellt, die fir einen
Schadsoftwarescanner in ihrem Produkt , Microsoft Exchange” das Datum und die
Uhrzeit in einem vorzeichenbehafteten 32-Bit-Wert speicherte. Die grofSte damit dar-
stellbare Zahl ist 2147483647. Beim Jahreswechsel 2021/2022 fielen weltweit Ex-
change-Server aus, weil 2112312359 damit noch darstellbar ist, 2201010000 aber
nicht mehr.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 326

30C416=3-16-16-16+0-16-16 +12-16 +4 -1 = 1248410

Python stellt Hexadezimalzahlen als Zeichenkette dar und setzt ihnen den
Prafix '0x' voran. Die Umwandlung einer solchen Zeichenkette in einen
Zahlenwert geschieht mit den uns schon bekannten Standardfunktionen
eval oder int - bei letzterer muss als zweites Argument die Zahlenbasis
16 angegeben werden.

>>> hex(12484)
'0x30c4"’

>>> eval("0x30c4")
12484

>>> 1nt("30c4", 16)
12484

Umgekehrt lassen sich ganzzahlige Werte mit der Funktion hex ins Hexa-
dezimalsystem uberfuhren.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 32 7

6.2 Zeichenkodierung - von ASCII bis Unicode

In Kapitel 6.1.2 haben wir gesehen, dass sich Buchstaben und Satzzei-
chen in einem Byte speichern lassen. Seit dem Jahr 1963 ist die Zuord-
nung der Buchstaben von A bis Z, der Ziffern von 0 bis 9 sowie haufiger
Satz-, Sonder- und Steuerzeichen im ASCII festgelegt, dem siebenbittigen
American Standard Code for Information Interchange.

wn

10 (1112 [13 [14 | 1

32
43
64
80
9%
112

Abb. 135: ASCII-Code

Uber Jahrzehnte wurde der ASCII mit seinen lediglich 95 verschiedenen
druckbaren Zeichen unverandert benutzt, bis die Firma IBM 1981 eine
Erweiterung auf 256 Zeichen fur ihre ersten Personal Computer zusam-
menstellen liels und dazu alle 8 Bits eines Bytes verwendete. Mit dem so
hinzugewonnenen Platz in dieser IBM-PC8 getauften Kodierung konnten
diese Gerate auch fir die internationale Korrespondenz mit und in West-
europa eingesetzt werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

328

-
=
-
-
-
B
-
Ll
-
£
-
(5.}

[HR -
-‘u
H- Bl

= 0B
.=
kT

Q=™ 4

-.l.“.-.-q

13 2w

% o DO

112
128
144
160
176
192

208
224
240

Abb. 136: Die 256 Zeichen im IBM-PC8-Zeichencode

M T I 00~ =H0E

SR IR U I H HIU- TR - RN LY D]

e
SIS N IR M

Il Y e o T = T Y
e Sy E 0 E L)~

v =1d o #oAmS oADK
F= 4 SN s MNO- % [

I = | =S St 0L
= 0 IF-

=M e oo =08 wS
T =R oo s T

S EHE S EBakME== A A

CI-RE I e TS

Sll= B T I Y T TE il el I N = 0 T
i |- |k

In der Folge entstanden zahlreiche weitere Zeichenkodierungen, die den
Zeichenpositionen oberhalb des ASCII immer wieder andere Bedeutun-
gen zuwiesen - so standen sie beispielsweise fur griechische oder kyrilli-
sche Buchstaben oder fur eine grolRere Zahl von akzentuierten Buchsta-
ben.

Mit diesen ganzen Erweiterungen erwuchs das Problem, dass der in ei-
nem Byte gespeicherte Zahlenwert nun nicht mehr eindeutig einem be-
stimmten Buchstaben zuzuordnen war. Zu jedem Text, der von einem
Rechner zu einem anderen Rechner ubertragen werden sollte, musste da-
her immer angegeben werden, nach welchem System die Zeichen darin
kodiert wurden. Haufig erfolgte diese Angabe nicht und Umlaute und
Sonderzeichen wurden falsch dargestellt. Die Empfangenden mussten
dann erraten, welche Kodierung von den Absendenden verwendet worden
war.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 329

>>> "Schone GriiBe!".encode("Windows-1252").decode("850")
'Sch+ne Gr:We!:

>>> "Schone GriBe!".encode("Windows-1252").decode("855")
'Schllne Gry®e!"

>>> "Schone GriiBe!".encode("Windows-1252").decode("869")
'Schyne Gri%e!"

>>> "Schone GriBe!".encode("Windows-1252").decode("maclatin2")
'SchUne GrkRe!’

>>> "Schone GriiRe!".encode("Windows-1252").decode("macturkish")
'Sch”ne Gr se!’

>>> "Schone GriiBe!".encode("Windows-1252").decode("Windows-1251")
'Schune Grofle!’

Abb. 137: Windows-Umlaute

Zudem gibt es auf der Welt Zeichensysteme wie die chinesische Schrift,
deren tausende Schriftzeichen sich uberhaupt nicht in die 128 zusatzli-
chen Positionen quetschen lassen.

Ein internationales Konsortium stellte darum 1991 eine Zeichenkodie-
rung zusammen, die alle auf der Erde verwendeten Schriftzeichen sam-
meln und ordnen sollte. Diese universelle Kodierung ist der Unicode'. Die
acht Bit des ASCII-Codes wurden dazu zunachst auf 16 Bit erweitert, so-
dass 65536 verschiedene Codepositionen zur Verfugung standen. Spater
wurden noch 16 weitere dieser 16-Bit-Ebenen hinzugefugt, um auch so
exotischen Zeichen wie altagyptischen Hieroglyphen, sumerischer Keil-
schrift und infantilen Emojis eine Heimat zu geben.

Da 16 Bit logischerweise doppelt so viel Speicherplatz benotigen wie
8 Bit, arbeiten die meisten Programme mit Texten in einem besonderen
Unicodeformat, das unterschiedliche viele Bytes pro Zeichen verwendet.
In diesem UTF-8 genannten Format entsprechen die Zeichencodes der Po-
sitionen 32 bis 126 dabei den alten ASCII-Codes, sodass ASCII-Dateien
ganz ohne Umwandlung immer auch gultige UTF-8-Dateien sind. Seltener
im westeuropaischen Sprachraum verwendete Zeichen belegen bis zu
vier Byte.

Unicode-Zeichen konnen wir in Python auf drei verschiedene Arten ver-
wenden. Zeichen, die sich direkt uber die Tastatur eingeben lassen, wie
das Eurozeichen €, konnen wir unmittelbar als Zeichenkettenkonstante in
Anfuhrungszeichen setzen. Wir konnen diese Zeichen einfach aus ande-

1 https://de.wikipedia.org/wiki/Unicode

Martin Vogel: Bauinformatik mit Python, WS 2025/26

330

https://de.wikipedia.org/wiki/Unicode

ren Texten oder Webseiten herauskopieren. Alternativ kann Python Uni-
code-Zeichen uber ihre Codeposition ansprechen. Das Eurozeichen hat
beispielsweise die hexadezimale Unicode-Position 20ac. SchliefSlich hat
jedes Unicodezeichen auch einen genormten (englischsprachigen) Namen
und kann uber diesen angesprochen werden. Das Eurozeichen wird hier
als ,EURO SIGN*“ gefuhrt.

>>> print ("€ - \u20ac - \N{EURO SIGN}")
€ - € - €

Seit der Version 3 von Python ist UTF-8 die standardmaldige Zeichenko-
dierung fur alle Zeichenketten und wir mussten uns eigentlich keine wei-
teren Gedanken um dieses Thema machen, wenn es nicht noch viele
Windowsprogramme gabe, die nur mit den alten 256-Zeichen-Kodierun-
gen umgehen konnen. Auch viele Dateiformate zum Datenaustausch ver-
wenden immer noch die alten Windows-Kodierungen und wir mussen dar-
auf gefasst sein, hier notigenfalls korrigierend eingreifen zu mussen. Wie
das in Python umgesetzt werden kann, sehen wir bei der Beschreibung
der Methoden .encode und .decode in Kapitel 5.21.10.

Eine recht unterhaltsame Kurzeinfuhrung in dieses Thema hat Thomas
Scholz verfasst!.

1 Thomas Scholz, Grundlagen der Zeichenkodierung, 2008, http://toscho.de/2008/
grundlagen-zeichenkodierung/
Ironischerweise ist die Zeichenkodierung dort seit ein paar Jahren falsch eingestellt.
Eine altere Version der Seite ist besser lesbar: https://web.archive.org/web/
2019030215204 2/http://toscho.de/2008/grundlagen-zeichenkodierung/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 33 1

https://web.archive.org/web/20190302152042/http://toscho.de/2008/grundlagen-zeichenkodierung/
https://web.archive.org/web/20190302152042/http://toscho.de/2008/grundlagen-zeichenkodierung/
http://toscho.de/2008/grundlagen-zeichenkodierung/
http://toscho.de/2008/grundlagen-zeichenkodierung/

7 Anhang

7.1 Haufige Fehlermeldungen
Fahler Uberset-
zung, Bedeu- Ursache, Behebung
meldung
tung
Programmab- | Sie haben gerade gedriickt
KeyboardInte .. . o .
bruch uber die | und damit die Programmausfuhrung
rrupt
Tastatur. abgebrochen.
Vermutlich haben Sie sich bei einem
Variablennamen vertippt. Achten Sie
NameError: Namensfehler: | @uf Grols- und Kleinschreibung!
nName 'Xxyz' D‘iesen Namen | pgglicherweise haben Sie auch zwei
1S '.‘°t g}bt es noch Programmzeilen vertauscht. Sie kon-
defined nicht. nen eine Variable nicht verwenden, be-
vor Sie ihr einen Wert zugewiesen ha-
ben.
Entweder steht in der angegebenen
Sprachlicher Zeile volliger Unfug oder die Zeile dar-
SyntaxError: | Fehler: Das uber ist versehentlich nicht richtig
invalid Geschriebene | abgeschlossen worden. Zahlen Sie dort
syntax ergibt keinen | einmal die o0ffnenden und schlieSenden
Sinn. Klammern und die offnenden und
schlieRenden Anfuhrungszeichen.
Eine Zeichenkette sollte in eine Kodie-
rung uberfuhrt werden, die nicht alle
enthaltenen Zeichen abdeckt.
. Kodierungs- Das geschieht regelmafSig, wenn ein
g;tizg?EnCOd fehler: Dieses | Python-Programm in der MS-DOS-
T Unicode-Zei- | Shell (,Eingabeaufforderung”) von
can't encode
chen gibt es Microsoft Windows ausgefuhrt werden
character ..

hier nicht.

soll.

Vermeiden Sie entweder ausgefallene
Sonderzeichen oder Microsoft Wind-
ows!

Martin Vogel: Bauinformatik mit Python, WS 2025/26

332

Uberset-

Fehler- zung, Bedeu- Ursache, Behebung
meldung
tung
Definitions- Die Wurzel aus -1 und der Arkussinus
mengenfehler: . .
. . von 12 lassen sich nun mal nicht so
ValueError: Die Ein-) . .
math domain AnasaréRe einfach ausrechnen. Vermeiden Sie
g g g . den Fehler durch eine Kontrolle der
error ist fur die) .. .
, Eingangswerte oder fangen Sie ihn bei
Funktion
. Auftreten ab.
ungeeignet.
ZeroDivision ggilﬁzs;(;?: Sie haben versucht, durch null zu tei-
Error: len. Uberpriifen Sie die Eingangswerte

division by
zero

eines Bruchs
darf nicht null
sein.

oder fangen Sie den Fehler uber eine
try-except-Konstruktion ab.

Martin Vogel: Bauinformatik mit Python, WS 2025/26

333

7.2 Farben und Farbnamen (Auswahl)
Farbe Rot | Grun | Blau 23:(; Farbname
240 | 248 | 255 | #FOF8FF | alice blue
250 235 215 | #FAEBD7 | antique white
127 255 212 | #7FFFD4 | aquamarine
240 | 255| 255 | #FOFFFF | azure
245 | 245| 220 | #F5F5DC | beige
255 | 228 196 | #FFE4C4 | bisque
_ 0 0 0 | #000000 | black
255 235 205 | #FFEBCD | blanched almond
0 0| 255 | #0000FF | blue
138 43 226 | #8A2BE2 | blue violet
165 42 42 | #A52A2A | brown
222 184 135 | #DEB887 ' burlywood
95 158 160 | #5F9EAO | cadet blue
127 255 O | #7FFF00 | chartreuse
_ 210 105 30 | #D2691E | chocolate
255 127 80 | #FF7F50 | coral
_ 100 149 237 | #6495ED | cornflower blue
255 | 248 | 220 | #FFF8DC | cornsilk
0| 255| 255 #0OFFFF | cyan
0 0 139 | #00008B | dark blue
0 139 139 | #0608B8B | dark cyan
184 134 11 | #88860B | dark goldenrod
0 100 0 | #006400 | dark green
169 169 169 | #A9A9A9 | dark grey

Martin Vogel: Bauinformatik mit Python, WS 2025/26

334

RGB-

Farbe Rot | Grun | Blau Code Farbname
189 | 183 | 107 | #BDB76B | dark khaki
139 0 139 | #8B008B | dark magenta
85 107 47 | #556B2F | dark olive green
255 140 O | #FF8CO0 | dark orange
153 50| 204 | #9932CC | dark orchid
139 0 0 | #8B0000 | dark red
233 150 122 | #£9967A | dark salmon
143 188 143 | #8FBC8F | dark sea green
72 61 139 | #483D8B | dark slate blue
47 79 79 | #2F4F4F | dark slate gray
0 206 209 | #00CED1 | dark turquoise
148 0| 211 | #9400D3 | dark violet
215 7 81 | #D70751 | debianred
255 20 147 | #FF1493 | deep pink
0 191 255 | #00BFFF | deep sky blue
105| 105 | 105 | #696969 | dim gray
30 144 | 255 | #1E90FF | dodger blue
178 34 34 | #B22222 firebrick
255 | 250 | 240 | #FFFAFO | floral white
34 139 34 | #228B22 | forest green
220 220 | 220 | #DCDCDC | gainsboro
248 248 | 255 | #F8F8FF | ghost white
255 | 215 0 | #FFD700 | gold
218 165 32 | #DAA520 | goldenrod
190 190 190 | #BEBEBE | gray

Martin Vogel: Bauinformatik mit Python, WS 2025/26

335

RGB-

Farbe Rot | Grun | Blau Code Farbname
0 255 0 | #0OFF00 | green
173 255 47 | #ADFF2F | green yellow
240 | 255| 240 #FOFFFO | honeydew
255| 105| 180 #FF69B4 | hot pink
205 92 92 | #CD5C5C | indian red
255 | 255| 240 | #FFFFFO | ivory
240 | 230| 140 | #FOE68C | khaki
230 230 | 250 | #E6E6FA | lavender
255 | 240 | 245 | #FFFOF5 | lavender blush
124 252 0 | #7CFCO0 lawn green
255 250 | 205 | #FFFACD | lemon chiffon
173 | 216 | 230 #ADD8E6 | light blue
_ 240 128 128 | #F08080 | light coral
224 | 255 | 255 | #EOFFFF | light cyan
238 221 130 | #EEDD82 | light goldenrod
250 250 | 210 | #FAFAD2 | light goldenrod yellow
144 | 238 144 | #90EE90 | light green
211 211 211 | #D3D3D3 | light grey
255 | 182 | 193 #FFB6C1 | light pink
255 160 122 | #FFAO7A | light salmon
32 178 170 | #20B2AA | light sea green
135 206 | 250 | #87CEFA | light sky blue
132 112 255 | #8470FF | light slate blue
119 136 153 | #778899 | light slate gray
176 196 222 | #BOC4DE | light steel blue

Martin Vogel: Bauinformatik mit Python, WS 2025/26

RGB-

Farbe Rot | Grun | Blau Code Farbname
255 | 255| 224 | #FFFFEO | light yellow
_ 50 205 50 | #32CD32 | lime green
250 | 240 | 230 #FAFOE6 | linen
255 0 255 | #FFOOFF | magenta
176 48 96 | #803060 | maroon
102 205 170 | #66CDAA | medium aquamarine
0 0| 205 #0000CD | medium blue
186 85| 211 #BA55D3 | medium orchid
147 | 112 | 219 | #9370DB | medium purple
60 179 113 | #3CB371 | medium sea green
123 104 | 238 | #7B68EE | medium slate blue
0 250 154 | #00FA9A | medium spring green
72 209 204 | #48D1CC medium turquoise
199 21 133 | #C71585 | medium violet red
25 25 112 | #191970 midnight blue
245 255 | 250 | #F5FFFA | mint cream
255 228 225 | #FFE4E1 | misty rose
255 228 181 | #FFE4B5 | moccasin
255 222 173 | #FFDEAD | navajo white
_ 0 0| 128 #000080 | navy
253 | 245| 230 #FDF5EG6 | old lace
_ 107 142 35 | #6B8E23 | olive drab
255 165 O | #FFA500 | orange
255 69 0 | #FF4500 | orange red
218 | 112| 214 #DA70D6 | orchid

Martin Vogel: Bauinformatik mit Python, WS 2025/26

RGB-

Farbe Rot | Grun | Blau Code Farbname

238 232 170 | #EEE8AA | pale goldenrod

152 251 152 | #98FB98 | pale green

175 238 238 | #AFEEEE | pale turquoise
_ 219 112 147 | #DB7093 | pale violet red

255 239 213 | #FFEFD5 | papaya whip

255 | 218 | 185 | #FFDAB9 | peach puff
_ 205 | 133 63 | #CD853F | peru

255 | 192 | 203 | #FFCOCB | pink

221 160 | 221 | #DDAODD | plum

176 224 230 | #BOEOE6 | powder blue

160 32| 240 | #A020F0 | purple

255 0 0 | #FF0000 | red

188 143 143 | #BC8F8F | rosy brown

65| 105| 225 |#4169E1 royal blue

139 69 19 | #8B4513 saddle brown

250 128 114 | #FA8072 | salmon

244 164 96 | #F4A460 sandy brown
_ 46 139 87 | #2E8B57 | sea green

255 | 245 | 238 | #FFF5EE | seashell
_ 160 82 45 | #A0522D | sienna

135| 206 | 235 | #87CEEB | sky blue

106 90 | 205 | #6A5ACD | slate blue

112 128 | 144 | #708090 | slate gray

255 | 250 | 250 | #FFFAFA | snow

0 255 127 | #00FF7F | spring green

Martin Vogel: Bauinformatik mit Python, WS 2025/26

Farbe Rot | Grun | Blau 23:(; Farbname
_ 70 130 | 180 | #4682B4 | steel blue
210 180 | 140 #D2B48C | tan
216 191 216 | #D8BFD8 | thistle
_ 255 99 71 | #FF6347 | tomato
04 224 208 | #40EODO turquoise
238 130 | 238 | #EE82EE | violet
_ 208 32 144 | #D02090 violet red
245 | 222 179 | #F5DEB3 | wheat
255 | 255 | 255 | #FFFFFF | white
245 245 245 | #F5F5F5 | white smoke
255 | 255 0 | #FFFF00 | yellow
154 205 50 | #9ACD32 | yellow green

Bei den Farben mit zusammengesetzten Namen ist auch jeweils die
Schreibweise ohne Leerzeichen zulassig, zudem ist die Grols- und Klein-
schreibung hier nicht relevant. Anstelle von ,pale violet red” konnen
wir also auch ,PaleVioletRed” schreiben.

Von vielen Farben existieren zusatzliche Nuancen. So gibt es beispiels-
weise neben ,PaleVioletRed” auch noch ,PaleVioletRedl”,
,PaleVioletRed2”, ,PaleVioletRed3” und ,PaleVioletRed4"”.

Von der Farbe Grau (deren Name je nach Vorliebe , gray”“ oder ,grey” ge-
schrieben werden darf) gibt es gleich hundertundeins verschiedene Ab-
stufungen von ,grey0“ bis ,greyl00“. Ich empfehle, anstelle solcher
nichtssagender Namen gleich die RGB-Codes zu verwenden.

Ein RGB-Code ist dank Pythons Formatstrings (Kapitel 5.21.8) ziemlich
einfach zu erzeugen. Angenommen, die Rot-, Grun- und Blauwerte eines
Farbtons befinden sich mit Werten zwischen 0 und 255 in den drei Inte-
gervariablen r, g und b. Der RGB-Code dazu lautet f"#{r:02X}{g:02X}
{b:02X}".

Martin Vogel: Bauinformatik mit Python, WS 2025/26

339

7.3 Der Windows-Paketmanager WinGet

Seit 2020 wird mit Windows 10 der einfache Paketmanager WinGet aus-
geliefert. Die textbasierte Software greift dabei auf zentral verwaltete Ka-
taloge (sogenannte Paketquellen) mit mehreren tausend Anwendungspro-
grammen zu, die sich mit einem Befehl installieren und auch wieder
entfernen lassen.

Um WinGet zu verwenden, offnen Sie ein Textterminal (,,Eingabeaufforde-
rung”“) mit Administratorrechten. Dazu drucken Sie die Windowstaste,
tippen CMD und klicken dann entweder den gefundenen Eintrag mit der
rechten Maustaste an und wahlen ,Als Administrator ausfuhren” oder Sie

drucken die Tastenkombination | Strg 0 d |

Wenn Sie im Terminalfenster ,winget” eingeben, erhalten Sie einen kur-
zen Uberblick iiber die verwendbaren Kommandos (Abb. 138).

C:\Windows\System32>winget
Windows-Paket-Manager v1.3.2691
Copyright (c) Microsoft Corporation. Alle Rechte vorbehalten.

Das “winget”-Befehlszeilenprogramm ermdglicht das Installieren von Anwendungen
und anderen Paketen mithilfe der Befehlszeile.

Nutzung: winget [<Befehl>] [<Optionen=]

Folgende Befehle sind verfiigbar:
install Installiert das angegebene Paket

show Zeigt Informationen zu einem Paket an

source Verwalten von Paketquellen

search Suchen und Anzeigen grundlegender Informationen zu Paketen
list Installierte Pakete anzeigen

upgrade Zeigt verfiigbare Upgrades an und fiihrt sie aus.

uninstall Deinstalliert das angegebene Paket

hash Hilfsprogramm zum Hashen von Installationsdateien

validate Oberpriift eine Manifestdatei

settings Einstellungen 6ffnen oder Administratoreinstellungen festlegen
features Zeigt den Status von experimentellen Features an

export Exportiert eine Liste der installierten Pakete

import Installiert alle Pakete in einer Datei

Wenn Sie weitere Details zu einem bestimmten Befehl erfahren michten, (bergeben
Sie ihm das Hilfe-Argument. [-7]

Die folgenden Optionen stehen zur Verfiigung:
-v,--version Version des Tools anzeigen
--info Allgemeine Informationen zum Tool anzeigen

Weitere Hilfe finden Sie unter: https://aka.ms/winget-command-help

C:\Windows\System32>

Abb. 138: Hilfstext des Paketmanagers WinGet

AulSer den Programmen der WinGet-eigenen Liste werden anfangs noch
Programme der Paketquelle ,msstore” aufgefuhrt. Diese enthalt zu einem
grolSen Teil kostenpflichtige Programme, Abonnement-Produkte oder ein-
geschrankte Demoversionen. Mit dem WinGet-Aufruf

Martin Vogel: Bauinformatik mit Python, WS 2025/26

340

winget source remove msstore

entfernen Sie diese unerwunschten Eintrage aus der von WinGet verwal-
teten Liste. Falls Sie das nicht mochten mussen Sie bei jedem weiteren
Aufruf explizit die Installationsquelle durch Nachstellen von --source
winget benennen.

Wenn Sie den Namen des Programms, das Sie installieren mochten, be-
reits kennen, installieren Sie es einfach durch Eingabe des folgenden Be-
fehls:

winget install Programmname

Standardmalsig werden einige Programme nur fur den gerade angemel-
deten Benutzungsaccount installiert. Um anderen Personen Zugriff auf
die neue Software zu gewahren, kann mit dem Zusatz --scope machine
veranlasst werden, dass ein Programm fur alle Accounts des PCs instal-
liert wird.

winget install Programmname --scope machine

Fur die in diesem Vorlesungsskript angesprochenen Programme sind das
beispielsweise folgende Befehle:

winget install Python3 --scope machine

winget install TheDocumentFoundation.LibreOffice --scope
machine

winget install 7zip --scope machine

winget install notepad++ --scope machine

winget install Gimp.Gimp.3 --scope machine

Falls Sie den Namen eines zu installierenden Programms nur ungefahr
wissen, finden Sie durch die Eingabe von

winget search Suchbegriff

Martin Vogel: Bauinformatik mit Python, WS 2025/26 341

hoffentlich schnell die korrekte Schreibweise heraus.

Wenn Sie anstatt in einer textbasierten Liste lieber in einem grafischen
Katalog stobern, finden Sie auf Webseiten wie winget.run oder win-
stall.app eine sortierte Aufstellung aller fur WinGet verfugbaren Program-

me mit kurzen Beschreibungen.

Popular Apps

The essentials for your new Windows device. Click to include them on your install script.

Zoom

More Info >

Featured Packs

@

Work From Home

done from home.

& Microsoft Teams
) zoom

@ Notion

© sharex

3 Loom

View Pack >

(3]

Gaming

e with our

@ Steam

&l piscord

@ Epic Games Launcher
2 Playnite

@ Moonlight Game Streaming
Client

View Pack >

+ 4+ + + 4+

+ + + +

S

Spotify

More Info »

Web Browsers
The t

0 Opera Stable
Vivaldi
@ Opera GX Stable

View Pack »

<

Developers

1-‘_%: Notepad++

Cacher

Windows Terminal

@ GcitHub Desktop

o PuTTY

View Pack »

+ o+ + o+ o+

@ View All

X @

Visual Studio Code - Mozilla Firefox
Insiders More Info >
More Info >
@ View All

Just got a new Windows device? Start with our favourites. Click the + sign to include an app on your install script.

43
Entertainment

All the popular music and video apps.

o ShareX + i iTunes +
o QuickLook + izf Deezer +
%i Notepad++ + é VLC media player +
“ GIMP e @ Amazon Music +
EarTrumpet -+ ° YouTube Music Desktop App +

View Pack > View Pack »

o4 m
Social Media School

for online learning with

@ Tweeten g Evernote

+ +
[~] Caprine AR E Qalculate! +
e Skype + a Zoom +
9 Ferdi + * Microsoft Teams +
Q Discord + B\ Simplenote +
View Pack > View Pack >

Abb. 139: Katalog der installierbaren Software auf winstall.app

Mit WinGet konnen Sie Thre Programmsammlung stets aktuell halten. Der

Befehl

winget upgrade --all

Martin Vogel: Bauinformatik mit Python, WS 2025/26

342

https://winstall.app/
https://winstall.app/
https://winget.run/

aktualisiert alle bereits auf Ihrem Rechner installierten Anwendungspro-
gramme, sofern sie WinGet bekannt sind. Die Erweiterung auf

winget upgrade --all --include-unknown

versucht zusatzlich, Programme zu aktualisieren, deren Versionsnummer
aufgrund eines nachlassig konfigurierten Installationsprogramms bisher
nicht bekannt ist.

Eine Ubersicht tiber alle installierten Programme erhalten Sie mit

winget list

und uberflussige sowie unerwunschte Programme werden durch

winget uninstall Programmname

aus dem System entfernt. Achten Sie aber darauf, dass Sie nicht verse-
hentlich wichtige Windows-Komponenten entfernen. Der mitgelieferte
Werbemill sowie das alle moglichen personliche Daten einschliefSlich
samtlicher ins Startmenu eingetippter Suchbegriffe an Microsoft ubertra-
gende Cortana sind vermutlich durchaus geeignete Kandidaten.

Beim Deinstallieren von Programmen, deren Name Leerzeichen enthalt,
muss dieser in Anfithrungszeichen gesetzt werden (Abb. 140).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 343

C:\Users\Qemu>winget uninstall "xbox tcui"
lGefunden [1
Paket-Deinstallation wird gestartet...
100%
Erfolgreich deinstalliert

C:\Users\Qemu>winget uninstall "xbox console companion™
lGefunden [1
Paket-Deinstallation wird gestartet...
100%
Erfolgreich deinstalliert

C:\Users\Qemu>winget uninstall "xbox game bar"
Gefunden [1
Paket-Deinstallation wird gestartet...
108%
Erfolgreich deinstalliert

C:\Users\Qemu>winget uninstall "xbox game bar plugin”
lGefunden [1
Paket-Deinstallation wird gestartet...
108%
Erfolgreich deinstalliert

C:\Users\Qemu>winget uninstall "xbox identity provider”
lGefunden [1
Paket-Deinstallation wird gestartet...
100%
Erfolgreich deinstalliert

C:\Users\Qemu>winget uninstall “"xbox game speech window"
Gefunden [1
Paket-Deinstallation wird gestartet...
100%
Erfolgreich deinstalliert

Abb. 140: Deinstallation von Programmen durch WinGet

Weitere Hilfe zu WinGet erhalten Sie auf Microsofts Hilfeseiten!. Die dort
an einigen Stellen verwendete seltsame Bezeichnung ,Moniker” bedeutet
ubrigens soviel wie , Spitzname“ oder , Ersatzname”.

1 https://aka.ms/winget-command-help

Martin Vogel: Bauinformatik mit Python, WS 2025/26

344

https://aka.ms/winget-command-help

7.4 Abbildungsverzeichnis

Abb. 1: The Difference (Randall MUNIOE).........coeiiiiiiiiiiiiiiiiiiiieenen, 13
Abb. 2: Schreib-/Lesekopfe einer Festplatte im GrofSenvergleich............ 19
Abb. 3: Tastenbezeichnungen unter Linux und Windows......................... 20
Abb. 4: WinCompose rustet auch eine Unicode-Eingabe nach................. 24
Abb. 5: Teil des Verzeichnisbaums unter Microsoft Windows................... 27
Abb. 6: Verzeichnisbaum eines realen Windows-PCs............ccocevvnvinnnneen. 28
Abb. 7: Ordneroptionen in Windows XP (2001) und Windows 11 (2022). 33
Abb. 8: Dateinamenerweiterungen bei macOS heilSen Suffixe................. 34
Abb. 9: Bibliotheken als , Dieser PC“ im Windows-10-Explorer................ 36
Abb. 10: Eigene Dateien unter Windows 10..........ccccevviiiiiiiiiniiiiiinenieennnee. 37
Abb. 11: Anlegen eines ZIP-Archives im Windows-Explorer..................... 38
Abb. 12: ZIP-Datei mit Windows-Umlauten unter LinuX........................... 39
Abb. 13: Icons fur ,Ausschneiden”, ,Kopieren” und ,Einfugen”.............. 41
Abb. 14: Bildschirmkopiemenu in GNOME 42 und Windows 11.............. 45
Abb. 15: Die Zeichentabelle von Windows 11........cccoiiiiiiiiiiiniiniinninennen. 46
Abb. 16: Der Editor der Entwicklungsumgebung IDLE............................ 48
Abb. 17: Gedit unter Ubuntu LinUX.......c.ccoviiiiiiiiiiiiiiiniic e, 49
Abb. 18: Dokumentvorlagen in Microsoft Word 2021............cceevevniinnennen. 51
Abb. 19: Dokumentvorlagen fur LibreOffice............cccooiiiiiiiiiiiiiinn. 52
Abb. 20: Schrifteinstellung einer Formatvorlage..............cccccoeiviiiininnnni. 53
Abb. 21: Absatzformatvorlagen in LibreOffice..........c.ccoovviiiiiiiiiininnnn..n. 54
Abb. 22: Bearbeitung eines Buchstabens im Fonteditor FontForge......... 55
Abb. 23: Zeichenformatierung in LibreOffice..............ccooviiiiiiiiiinninnn.. 56
Abb. 24: Navigation der PDF-Dokumentstruktur in Firefox..................... 58
Abb. 25: Tabellenkalkulation 1979 (Bild: Wikipedia).........cccceovvvenininnnnn... 00
Abb. 26: Formel einer Tabellenkalkulation...........cc.coooviiiiiiininininnnn.n. 61l
Abb. 27: Funktion mit zwei Parametern..........cc..cceeviiiiiiiiiiiiiiiniinneene, 64
Abb. 28: Bereichschreibweise..........ccoooviviiiiiiiiiiiii e 64
Abb. 29: Fallunterscheidung..........cccoouiiiiiiiiiii e, 65
Abb. 30: Tabelle mit Fallunterscheidungen..............cccccoviiiiiiiiiinininnennenn. 66
Abb. 31: Drei verschachtelte Fallunterscheidungen...................c.cccoeonini. 67
Abb. 32: VERWEIS.. ..ot e e e e e 68
Abb. 33: SVERWEIS.o 69
Abb. 34: ZielWertSUChe......c.cuiiiiie e 70
ADD. B35: SOLVET . cu i 71
Abb. 36: Matrixformeln..........cooiiiiiii 72
Abb. 37: Gelostes GleichungsSyStem.........ccivuviiiiiiiiiiiiniiiieeiineeeeev e, 73
ADbD. 38: X-y-DiagramI.......ccuiiuiiiiiiiiiiiieiie e 74
Abb. 39: CSV-Import-Dialog in LibreOffice CalC...........ccceevivviiininiininnan..n. 75
Abb. 40: Meme ,Incel vs. Excel” auf Reddit..........ccoeuviviiiiiiiiiiiiinnnn.. 76
Abb. 41: Nerdwitz. Foto: Markus Tacker, Lizenz: CC BY-ND 2.0.............. 79

Martin Vogel: Bauinformatik mit Python, WS 2025/26 345

ADbD. 42: HTML-StrUuK UL ..ot e 80

Abb. 43: Ein Browser stellt HTML-Seiten dar........c..ccoeeiviiviiiiiniiniineennnn. 81
Abb. 44: Bestandteile eines HTML-Elements..........ccoccoveiiiiiniiiiiniinninneennn. 82
Abb. 45: Ein einfaches Flussdiagramm................cccoiiiiiiiiiiiiiiiiiiiiiieeeeeenns 87
Abb. 46: Struktogramm: Sequenz von Arbeitsschritten............................ 89
Abb. 47: Struktogramm: Fallunterscheidung...............ccoceeiiiiiiiinnnnnn.. 89
Abb. 48: Struktogramm: Mehrfachauswahl.....................conll 90
Abb. 49: Struktogramm: Schleife...........ccoooiiiiiiiiii 91
Abb. 50: Struktogramm: Nichtabweisende Schleife...................ccoeeennnin. 91
Abb. 51: Struktogramm: Endlosschleife.............cccooviiiiiiiiiiiiineen, 92
Abb. 52: Struktogramm: Endlosschleife mit Aussprung..............cc.ccune..... 92
Abb. 53: Struktogrammbeispiel ,Zahlenraten”................cc.cooiiiiiiiinni. 93
Abb. 54: Der Struktogramm-Editor ,, Structorizer”..............cocoeviiiiinnannnn. 94
Abb. 55: Guido van Rossum 2006 (dsearls, CC-BY-SA 2.0).....c.cccevvenennnnen. 96
Abb. 56: Wahlen Sie ,Customize installation”...............ccooiiiiiiiiiniinnn. 98
Abb. 57: Setzen Sie ruhig alle Hakchen..............c.cooiiiiiiiiiin 98
Abb. 58: Installation fur alle Benutzerinnen und Benutzer....................... 99
Abb. 59: Das Startmenu von Windows 11........cccoviiiiiiiiiiiiiiiiiiniieieeenn. 100
Abb. 60: Paketverwaltung Synaptic in Ubuntu Linux............................. 101
Abb. 61: Paketinstallation mit PIP unter Windows 10............................. 102
Abb. 62: Paketinstallation ohne Administratorrechte............................. 103
Abb. 63: Die Python-Shell der IDLE unter Windows............c.cccevuvennennenn. 104
Abb. 64: Die IDLE-Shell unter LinUX........cc.cccovuviiiiiniii e 104
Abb. 65: Die IDLE-Shell als Taschenrechner...............cccoociiiiiiiininnnnn.. 105
Abb. 66: Python-Fehlermeldungen............ccccooovviiiiiiiiiiiiiiiiin e, 107
Abb. 67: Variablenmodell ,beschriftete Kastchen“...............cc.coeeiiennnen. 111
Abb. 68: Funktion mit Eingangswerten und Ruckgabewert................... 119
Abb. 69: Funktion mit Wirkung...........ccooeiiiiiiiiiieee e, 119
Abb. 70: Funktionen mit und ohne Wirkung oder Ruckgabewert........... 120
Abb. 71: Das versteckte Kontextmenu des Windows-11-Explorers......... 137
Abb. 72: Fallunterscheidung im Struktogramm..............cc.ccoiiiiiiininini. 145
Abb. 73:if ... elif ... else im Struktogramm..................cciiiiiiiiiiiiniinnnns, 146
Abb. 74: Bedingte Schleife im Struktogramm...............ccccoeiiiiiiiiinnnnnnenn. 151
Abb. 75: Nicht abweisende Schleife im Struktogramm.......................... 153
Abb. 76: Else-Zweig einer For-Schleife.........c.cccovviiiiiiiiiiiiiiieeen, 162
Abb. 77: Verschachtelte Schleifen im Struktogramm............................. 163
Abb. 78: Merkhilfe fur Sequenzabschnitte..............ccooceeiiiiiiiiiininnnn... 170
Abb. 79: www.pythontutor.COm.........c.coiviiiiiiii e 173
PV o) o TR S 10 B0 [T <Y o To{0] o) /28U 174
Abb. 81: Vorbild fur ein Objekt: Ein Einfeldtrager.........c..cc.coovviviiiini. 194
Abb. 82: Das Arithmetikmodul ,labermath”.................cc.ooiiii . 203
Abb. 83: Anzeige der Modulverzeichnisse unter Windows XP................ 205
Abb. 84: ASCII-ZEICheN.....coiiiiii e 228

Martin Vogel: Bauinformatik mit Python, WS 2025/26 346

Abb. 85: Schreibrechte unter WindoOWS.ooeeeieiii e eeeeeaeans 241

Abb. 86: Eines der einfachsten Matplotlib-Diagramme.......................... 244
Abb. 87: Verbessertes Matplotlib-Diagramm..............ccccooiiiiiiiiiininennnn.. 247
Abb. 88: Plot mit MarKerN........c.oviiiiiiiiiiiei e 251
Abb. 89: Scatterplot mit Flachen- und Farblisten.........................ccoei. 252
Abb. 90: Textausrichtung mit Matplotlib...........c.ccooiiiiiiiii, 253
Abb. 91: Flachenfullung mit plt.fill(...) .o 254
Abb. 92: Unbeeinflusste Anzeigereihenfolge...........cccccoiiiiiiiiiiiiinininnn.. 255
Abb. 93: Einfluss VON ZOTAET.........ciuiiiiiiiieie et e e e 256
Abb. 94: x-y-z-Oberflache mit Terrain-Farbgebung..............c.ccceeeiennin. 257
Abb. 95: GUI-Programm aus dem ersten Semester 2014/2015.............. 260
Abb. 96: Das Tk-Hauptfenster..........coooiiiiiiiieeee e 261
Abb. 97: Tk-Fenster mit festgelegter GroRe und Uberschrift................. 262
Abb. 98: Hauptfenster und Unterfenster...........cccooviiiiiiiiiiiiiiniiiiene. 263
Abb. 99: Fensterdekorationen...........ccoooviiiiiiiiiniiiiiiniiie e, 264
Abb. 100: Die leere Leinwand..........ccccveuniiiiiiiiiiiiiiiniinei e e 265
Abb. 101: Das tk-Koordinatensystem...........cccooeeiiiiiiiiiiiiiiiiiiiieee e, 266
Abb. 102: Koordinatentransformation...........c.cceveuviiiiiniiiiiiniiiniineineenenn. 267
Abb. 103: Linienzug mit Breite und Farbe............cccoooiiiiiiiiiinn, 269
Abb. 104: Pfeilspitzen am Anfang und/oder am Ende von Linien........... 270
Abb. 105: Gestrichelte Linien.........ccccviiiiiiiiiiiiii e 271
Abb. 106: Linienzug und SPliNe........ccceviiiiiiiiiii e 272
Abb. 107: Dreieck als geschlossenes Polygon...........cccccceevviiiiiiineinnennnen.. 272
Abb. 108: Rechteck und ElLPSe.......cciuiiniiiiiiiiie e 273
Abb. 109: Die Ankerpunkte eines Canvas-TextesS.........ccoceevveviiiiiiininnnnnn. 275
ADbD. 110: WO iSt di€ MausS?.....ciuiiniiiiiiiiiiie et 278
ADD. 1171: Glade....cunieniiiiiieie e 284
ADD. 112: PACK. .. 286
VY o) o T I G T ' o (o FS PSPPSR 287
PV o o TR I I S & A1 1 10 4 B PPN 290
Abb. 115: Die Ankerpunkte eines Label-Textes........ccccoccviiiiiiiiiiiiiininnanns. 291
Abb. 116: Text- und Image-Label.........c.ooiiiiii e 291
WY o) o TR I A 8 1 2P 292
ADD. 118: SCALE..cuiiiiei e 294
Abb. 119: Horizontales Scale-Widget...........cevviiiiiiiiiiiiiiiiieeceee e, 296
P o) o TR 24 B b = 11 4 L= T PPN 297
Abb. 121: Anordnung der LabelFrame-Beschriftung...............c.cc.ooonen.. 298
Abb. 122: LabelFTame........cccoiuiiiiiiie e 298
Abb. 123: PanedWindOW.........couviiniiiiiiieieiieeie et 301
Abb. 124: CheCKbUttons......ccoviiiiiiii e 303
Abb. 125: RadiobuttonsS......c.covuiiiiiiiii e 306
Abb. 126: ttk-Menubutton.........ccccceiiiiiiiii e 308
Abb. 127: Webserver unter Windows 10.........cccooeiiiiiiiiiiiiiiniieiceieeeeeenes 311

Martin Vogel: Bauinformatik mit Python, WS 2025/26 347

Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.

128:
129:
130:
131:
132:
133:
134.:
135:
136:
137:
138:
139:
140:

Wahrheitstabelle and............ccoooiiiiiiiii 317
Wahrheitstabelle OT.........cooiiiiiiii e 318
Wahrheitstabelle ™ ..., 319
Venn-Diagramm mit zwei Aussagen Aund B...............cc.ceenl 321
Venn-Diagramme und logische Aussagen...............cccceevnennenen. 322
()] 26 00 Yo [TR 324
ASCII-Zeichen als Bits und Bytes.......ccccooviiiiiiiiiiiiiiiiiiieennn, 325
ASCII-COAE....uiuiiiiieie e e e e e e eans 328
Die 256 Zeichen im IBM-PC8-Zeichencode..............ccceucnen..... 329
Windows-Umlaute........ccoeeiiiiiiiiiiiiiiieeeecee e 330
Hilfstext des Paketmanagers WinGet..........c.ccccevvviiiiiiinnennnnnn. 340
Katalog der installierbaren Software auf winstall.app........... 342
Deinstallation von Programmen durch WinGet...................... 344

Martin Vogel: Bauinformatik mit Python, WS 2025/26

348

7.5

Links und Literaturhinweise

Wenn im Text Bezug auf andere Werke genommen wird, finden Sie die
entsprechenden Angaben direkt im Text oder als FulSnote. Anstelle einer
wissenschaftlichen Literaturliste mochte ich Thnen in diesem Kapitel da-
her lieber ein paar Tipps zum Weiterlesen zur Verfugung stellen:

»Python - Der Grundkurs” ist ein Buch von Michael Kofler, das viele
Ubungen und Codebeispiele enthéalt und besonders von Studieren-
den empfohlen wird.

https://kofler.info/buecher/python/
2. Auflage 2021, ISBN 978-3-8362-8513-1

Die Universitat Waterloo in Ontario, Kanada, bietet einen hervorra-
gend gemachten Onlinekurs in Deutscher Sprache an, der in Zu-
sammenarbeit mit dem Bundeswettbewerb Informatik entstand. Be-
sonders gelungen ist die Einbindung von interaktiven Elementen,
mit denen sich Codebeispiele direkt auf der Webseite ausprobieren
und uberprufen lassen. Lehrende konnen sich dort als ,Guru” ein-
tragen und von ihren Schulern oder Studierenden bei Problemen
angeschrieben werden. Mein Guru-Name dort ist ubrigens ,MV".

https://cscircles.cemc.uwaterloo.ca/using-website-de/

Wer im Englischunterricht nicht nur Kreide! holen war, kann die
wichtigsten Python-Konzepte in einem Online-Tutorial mit 92 kur-
zen Lektionen in neun Modulen kennenlernen und vertiefen. Nach
Abschluss jedes Moduls kann man seinen Lernstand in einem Kklei-
nen Quiz uberprifen und zum Schluss winkt ein Teilnahmezertifi-
kat.

https://www.sololearn.com/learn/courses/python-introduction

Die Website ,,Pythonbuch” von Marco Schmid und Beni Keller rich-
tet sich an Schuler der Oberstufe und eignet sich hervorragend fur
alle, die ohne lange Umschweife schnell ans Programmieren kom-
men wollen. Mir gefallt besonders, dass sie die wichtigsten Elemen-
te eines Programms zuerst behandeln: Die Quelltextkommentare.

1 ... oder iPad-Ladekabel ...

Martin Vogel: Bauinformatik mit Python, WS 2025/26

349

https://www.sololearn.com/learn/courses/python-introduction
https://cscircles.cemc.uwaterloo.ca/using-website-de/
https://kofler.info/buecher/python/

https://pythonbuch.com

- ,Das Python-3.3-Tutorial“ in der deutschen Ubersetzung ist eine
Fundgrube fur Informatikfans, die sich etwas intensiver mit dem
Stoff befassen wollen, als es der Rahmen dieses Skriptes erlaubt.
Auch zum Nacharbeiten und Vertiefen der Vorlesungen ist der Be-
reich ab Kapitel 3 ein geeignetes Hilfsmittel.

https://readthedocs.org/projects/py-tutorial-de/

« Bernd Klein hat nicht nur das Buch ,Einfuhrung in Python 3 - In ei-
ner Woche programmieren lernen“ geschrieben, sondern ist auch
Verfasser eines Online-Kurses.

http://www.python-kurs.eu/python3 kurs.php

» Das erste Semester ist viel zu kurz, um alles uber Python zu lernen,
was man in Wissenschaft und Ingenieurwesen gebrauchen kann.
Gert-Ludwig Ingold hat mit dem Online-Vorlesungsskript ,Python
fiir Naturwissenschaftler” eine Ubersicht der fortgeschrittenen As-
pekte von Python geschaffen.

https://gertingold.github.io/pythonnawi/index.html

» Das weite Feld der Grafikprogrammierung mit tkinter wurde vom
2017 verstorbenen John W. Shipman vom New Mexico Tech Com-
puter Center sehr ausfuhrlich dokumentiert. Die archivierte Websi-
te ist in englischer Sprache und kann als gut lesbar gesetztes PDF
heruntergeladen werden.

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter

» Individuelle Hilfe zu allen moglichen Programmierfragen bieten die
englischsprachigen Fragen-und-Antworten-Seiten der Community
auf Stackoverflow. Hier gehort es zum guten Ton, Fragen gleich mit
einem Stuck Programmtext zu beantworten.

http://stackoverflow.com/search?q=python3

« Dass ein grofSes Sprachmodell (large language model - LLM) beim
Lernen einer neuen Sprache auch dann helfen kann, wenn es sich
um eine Programmiersprache handelt, zeigt die Firma OpenAl mit

Martin Vogel: Bauinformatik mit Python, WS 2025/26 350

http://stackoverflow.com/search?q=python3
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
https://gertingold.github.io/pythonnawi/index.html
http://www.python-kurs.eu/python3_kurs.php
https://readthedocs.org/projects/py-tutorial-de/
https://pythonbuch.com/

ihrem vortrainierten Textgenerator ChatGPT. Wer in der Lage ist,
Algorithmen klar zu formulieren und Fragen zielgerichtet und pro-
blembezogen zu stellen, erhalt von dem Sprachmodell teilweise be-
eindruckende Antworten und mitunter sogar direkt lauffahige Pro-
gramme. Recht haufig produziert das LLM leider grandiosen Unfug,
prasentiert diesen aber mit Formulierungen grofSer Selbstsicher-
heit, auf die man leicht hereinfallen kann.

https://chat.openai.com/

» Zu guter Letzt sei auf die offizielle Dokumentation des Python-Pro-
jektes hingewiesen. Hier sind auch die als ,PEP 8“ bekannt gewor-
denen Gestaltungsvorschlage festgehalten, die dafur sorgen, dass
unsere Programme nicht nur vom Python-Interpreter, sondern auch
von Menschen gut gelesen werden konnen.

https://docs.python.org/3/tutorial/index.html

https://www.python.org/dev/peps/pep-0008.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 35 1

https://www.python.org/dev/peps/pep-0008
https://docs.python.org/3/tutorial/index.html
https://chat.openai.com/

7.6 Lizenz

Der Inhalt dieses Werkes ist urheber-
rechtlich geschiitzt und steht unter einer @ @ @
Creative-Commons-Lizenz. Das heilst,

dass ich zu Recht ziemlich sauer werden

darf, wenn ich Inhalte aus diesem Buch

irgendwo wiederfinde, wo sie als eigenes Werk der Kopistin oder des
Kopisten ausgegeben werden.

Sie durfen den Text und die Grafiken fur Thre eigenen Werke verwenden,
auch verandern und weitergeben, solange Sie sich an die Creative-Com-
mons-Lizenzbedingungen halten. Die beiden wesentlichen Punkte dieser
Bedingungen lauten: IThr eigenes Werk muss auch wieder unter einer
Creative-Commons-Lizenz stehen und Sie mussen stets den Urheber an-
geben.

Eine kommerzielle Nutzung dieses Textes ist untersagt. Sie durfen ihn al-
so auch in veranderter Form nicht verkaufen oder auf gewerblich betrie-
bene Plattformen wie Docplayer, Scribd oder Yumpu hochladen.

Weitere Informationen dazu finden Sie auf der Webseite

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de.

Alle Bildinhalte in diesem Lehrbuch, die keine eigenen Werke des Autors
sind, stehen selbst ebenfalls unter einer Creative-Commons-Lizenz (die je-
weilige Lizenz ist am Bild angegeben) oder sind gemeinfrei (public do-
main).

Das Python-Logo ist ein eingetragenes Warenzeichen der Python Soft-
ware Foundation.

Das Titelfoto zeigt die Pythonbrucke (Pythonbrug) in Amsterdam. Es wur-
de am 10. Mai 2008 von Alain Rouiller aufgenommen. Er gab ihm den Ti-
tel ,Java Eiland 51“. Original: http://klixan.de/?dce

Martin Vogel: Bauinformatik mit Python, WS 2025/26

352

http://klixan.de/?dce
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de
https://www.ifross.org/artikel/creative-commons-lizenzen-deutschland-gerichtlich-durchgesetzt

7.7 Download und Feedback

Dieses Vorlesungsskript wird bei Bedarf aktualisiert.
Die jeweils aktuellste Version stelle ich als PDF-Datei iber den Link

https://martinvogel.de/python

zum Herunterladen bereit.
Thr Pythonbuch-Exemplar wurde am 23. Januar 2026 veroffentlicht.

Uber Anregungen und Kommentare freue ich mich immer sehr. Sie sind
herzlich eingeladen, dazu den Kommentarbereich in meinem Blog zu ver-
wenden:

https://martinvogel.de/blog/index.php?/archives/120-Kommentare-zum-Py-

thon-3-Buch.html

Wer nicht offentlich schreiben mochte, darf gerne eine Mail schicken:

martin.vogel@hs-bochum.de

Martin Vogel: Bauinformatik mit Python, WS 2025/26

353

mailto:Martin%20Vogel%20%3Cmartin.vogel@hs-bochum.de%3E?subject=Bauinformatik%20mit%20Python%203%20(Feedbacklink)
https://martinvogel.de/blog/index.php?/archives/120-Kommentare-zum-Python-3-Buch.html
https://martinvogel.de/blog/index.php?/archives/120-Kommentare-zum-Python-3-Buch.html
https://martinvogel.de/python

	1 Einleitung
	1.1 Bedeutung der Bauinformatik
	1.2 Ermutigung
	1.3 Lerntipps
	1.4 Suchmaschinentipps
	1.5 Große Sprachmodelle

	2 PC-Grundkenntnisse
	2.1 Tastatur
	2.2 Betriebssystem
	2.3 Dateien und Verzeichnisse
	2.3.1 Verzeichnisbäume
	2.3.2 Dateinamenerweiterungen
	Versteckte Erweiterungen unter Microsoft Windows
	Verbotene Zeichen und Dateinamen unter Windows

	2.3.3 Desktop, Ordner und Verzeichnisse
	2.3.4 Archivdateien (Containerdateien)

	2.4 Zwischenablage
	2.5 Bildschirmkopien
	2.6 Sonderzeichen
	2.7 Texteditoren
	2.8 Textverarbeitungen
	2.8.1 Formatvorlagen
	2.8.2 Schriftarten
	2.8.3 Zeichenformatierung
	2.8.4 PDF-Dateien
	2.8.5 Grafiken
	2.8.6 Verzeichnisse
	2.8.7 Erzwungene neue Seite
	2.8.8 Kopf- und Fußzeilen

	2.9 Tabellenkalkulationen
	2.9.1 Formeln
	2.9.2 Variablennamen
	2.9.3 Relative und absolute Zellbezüge
	2.9.4 Funktionen
	2.9.5 Zellbereiche
	2.9.6 Fallunterscheidungen mit WENN
	2.9.7 VERWEIS, SVERWEIS und WVERWEIS
	2.9.8 Zielwertsuche und Solver
	2.9.9 Matrixformeln
	2.9.10 Diagramme
	2.9.11 CSV-Dateien und Tabellenkalkulationen
	2.9.12 Anwendungsgrenzen

	3 Hypertext
	3.1 HTML-Tags
	3.2 Hierarchische Ordnung
	3.3 Attribute
	3.4 Grafiken
	3.5 HTML-Entitäten
	3.6 CSS

	4 Algorithmen und ihre Darstellung
	4.1 Flussdiagramm
	4.2 Struktogramm
	4.2.1 Reihenfolge der Arbeitsschritte
	4.2.2 Fallunterscheidung
	4.2.3 Mehrfachauswahl
	4.2.4 Abweisende Schleife
	4.2.5 Nichtabweisende Schleife
	4.2.6 Endlosschleife
	Ausbruch aus der Endlosschleife

	4.2.7 Beispiel für ein vollständiges Struktogramm
	4.2.8 Struktogramm-Editor

	5 Python
	5.1 Download und Installation
	5.1.1 Module für wissenschaftliches Arbeiten
	5.1.2 Virtuelle Umgebungen

	5.2 Erste Schritte in der IDLE-Shell
	5.3 Fehlermeldungen
	5.4 Konstanten
	5.5 Variablen
	5.5.1 Variablennamen

	5.6 Rechenoperationen
	5.7 Funktionen und Module
	5.7.1 Funktionsweiser Import
	5.7.2 Modulweiser Import
	5.7.3 Das Mathematik-Modul: math
	5.7.4 Funktionszuweisungen

	5.8 Eingabe mit input(…)
	5.8.1 Lesen aus Textdateien

	5.9 Ausgabe mit print(…)
	5.9.1 Ausgabe in Textdateien
	Warnung!

	5.9.2 Alternatives Trennzeichen: sep
	5.9.3 Alternatives Zeilenende: end

	5.10 Typumwandlung
	5.10.1 Evaluation von Ausdrücken

	5.11 Das erste richtige Programm
	5.11.1 Python und der Windows-Explorer

	5.12 Quelltextformatierung
	5.12.1 Kommentarzeilen
	5.12.2 Zeilenlänge
	5.12.3 Groß- und Kleinschreibung
	5.12.4 Shebang und Zeichenkodierung

	5.13 Verzweigungen
	5.13.1 Fallunterscheidungen: if … elif … else
	5.13.2 Mehrfachunterscheidungen match … case
	5.13.3 Fehlerbehandlung

	5.14 Programmschleifen
	5.14.1 Bedingte Schleifen mit „while“
	Aussprung mit break
	Unstrukturierte Programmierung

	5.14.2 Verkürzte Arithmetiknotation
	5.14.3 Iterationsschleifen mit „for“
	5.14.4 Die Funktion range
	5.14.5 Generatoren
	Generatorausdrücke und Comprehensions

	5.14.6 Else und die Schleifen
	5.14.7 Verschachtelte Schleifen

	5.15 Sequenzen
	5.15.1 Listen
	Listen aus Listen

	5.15.2 Tupel
	5.15.3 Mengen (Sets)
	5.15.4 Dictionarys
	5.15.5 Indizes
	5.15.6 Schleifen über Sequenzen
	5.15.7 Sequenzabschnitte (Slices)
	5.15.8 Kopieren einer Sequenz
	Kopien verschachtelter Sequenzen

	5.15.9 Umwandlung eines Generator-Objektes in eine Liste
	5.15.10 Sequenzen sprengen
	5.15.11 Das enumerate-Objekt
	5.15.12 Reißverschlussverfahren: das Zip-Objekt
	5.15.13 Funktionen für Sequenzen
	5.15.14 Löschen von Sequenzen
	5.15.15 Methoden von Listen
	5.15.16 Eine für alle: das map-Objekt

	5.16 Anwendung von Listen: Vektoren
	5.16.1 Vektoraddition
	5.16.2 Skalarprodukt
	5.16.3 Formatierte Ausgabe eines Vektors

	5.17 Eigene Funktionen definieren
	5.17.1 Eingangswerte (Argumente)
	5.17.2 Vorbelegte Eingangswerte
	5.17.3 Beliebig viele Argumente
	5.17.4 Reihenfolge von Funktionsargumenten

	5.18 Sichtbarkeit von Variablen
	5.19 Klassen und Objekte
	5.19.1 Attribute von Objekten
	5.19.2 Methoden von Objekten
	5.19.3 Die Methode __init__
	5.19.4 Vererbung
	Wir bauen uns eine Durchreiche

	5.20 Eigene Module
	5.20.1 Modulpfade
	5.20.2 Funktionsüberschreibungen

	5.21 Zeichenketten
	5.21.1 Anführungszeichen in Zeichenketten
	5.21.2 Der Rückwärtsschrägstrich
	5.21.3 Mehrzeilige Ausgabe
	5.21.4 Zeichenketten-Methoden
	.count(Suchtext)
	.encode(Kodierung, Fehlerbehandlung)
	.endswith(Suchtext)
	.find(Suchtext)
	.isalnum()
	.isalpha()
	.isascii()
	.isdecimal()
	.join(iterierbares Objekt)
	.lower()
	.replace(alt, neu)
	.split(Trennzeichen)
	.startswith(Suchtext)
	.strip(abzustreifende Zeichen)
	.upper()

	5.21.5 Formatierung mit Platzhaltern
	5.21.6 F-Strings
	5.21.7 Die Methode .format()
	5.21.8 Die Formatierungs-Mini-Sprache
	Einige Beispiele

	5.21.9 Die alte printf-kompatible Formatierung
	Vergleich mit C
	Vergleich mit Java
	Übersicht

	5.21.10 Kodierung und Dekodierung
	5.21.11 Komprimierung und Verschlüsselung
	Simple Verschlüsselung

	5.21.12 Sonderformen von Zeichenketten
	B-Strings
	U-Strings
	R-Strings
	F-Strings

	5.22 Dateien lesen und schreiben
	5.22.1 Textdateien lesen
	5.22.2 Textdateien schreiben
	5.22.3 Textdateien fortsetzen
	5.22.4 Binärdateien
	5.22.5 Pickle
	5.22.6 Das aktuelle Arbeitsverzeichnis

	5.23 Diagramme mit Matplotlib
	5.23.1 Ein schnelles x-y-Diagramm
	5.23.2 Ein schönes x-y-Diagramm
	5.23.3 Streudiagramme
	5.23.4 Text
	5.23.5 gefüllte Flächen
	5.23.6 Zeichenreihenfolge
	5.23.7 3D-Diagramme

	5.24 Grafik mit Tkinter
	5.24.1 Das Hauptfenster
	5.24.2 untergeordnete Fenster
	5.24.3 Canvas – die Leinwand
	5.24.4 Koordinaten der Canvas
	5.24.5 Koordinatentransformationen
	5.24.6 Linien und Linienzüge
	Die Canvas-ID

	5.24.7 Pfeilspitzen
	5.24.8 Gestrichelte Linien
	5.24.9 Splines (Kurvenlinien)
	5.24.10 Geschlossene Polygone
	5.24.11 Rechtecke und Ellipsen
	5.24.12 Kreise
	5.24.13 Text
	Schriftart, Auszeichnung und Schriftgröße

	5.25 GUI – Grafische Benutzungsoberflächen
	5.25.1 EVA und die Events
	Beispiel für einen Eventhandler

	5.25.2 Anordnung der GUI-Elemente
	5.25.3 Die drei Geometriemanager
	Pack
	Place
	Grid

	5.25.4 GUI-Widgets
	Taste: Button
	Beschriftung: Label
	Eingabefeld: Entry
	Schieberegler: Scale
	Rahmen: Frame
	Beschrifteter Rahmen: LabelFrame
	Schiebefenster: PanedWindow
	Ankreuzkästchen: Checkbutton
	Radiobutton
	Menubutton

	5.26 Webserver
	5.26.1 Zeichenkodierung
	5.26.2 Darstellung von Webseiten ohne Webserver

	5.27 Logische Aussagen
	5.27.1 Wahrheitswerte anderer Datentypen
	5.27.2 Vergleichsoperatoren
	5.27.3 Logische Aussagen über Gleitkommazahlen
	5.27.4 Boolesche Algebra
	Die Konjunktion: and
	Die Disjunktion: or
	Die Negation: not
	Die Kontravalenz: ^
	Prioritäten
	Umkehrung logischer Aussagen
	Boolesche Variablen

	5.27.5 Venn-Diagramme

	6 Datenspeicherung und Zahlensysteme
	6.1 Bits und Bytes
	6.1.1 Das Bit
	6.1.2 Das Byte
	6.1.3 Das Hexadezimalsystem

	6.2 Zeichenkodierung – von ASCII bis Unicode

	7 Anhang
	7.1 Häufige Fehlermeldungen
	7.2 Farben und Farbnamen (Auswahl)
	7.3 Der Windows-Paketmanager WinGet
	7.4 Abbildungsverzeichnis
	7.5 Links und Literaturhinweise
	7.6 Lizenz
	7.7 Download und Feedback

