
Hochschule Bochum
WS 2025/2026

Bauinformatik
mit Python

Dipl.-Ing. Martin Vogel

Pythonbrug Amsterdam, Alain Rouiller, CC BY-SA 2.0

Version vom 23. Januar 2026
Auf martinvogel.de/python erhalten Sie stets die aktuellste Ausgabe.

https://martinvogel.de/python
http://klixan.de/?dce

Inhaltsverzeichnis

1 Einleitung 10

1.1 Bedeutung der Bauinformatik ... 12

1.2 Ermutigung .. 13

1.3 Lerntipps .. 14

1.4 Suchmaschinentipps .. 16

1.5 Große Sprachmodelle ... 18

2 PC-Grundkenntnisse 19

2.1 Tastatur .. 20

2.2 Betriebssystem ... 25

2.3 Dateien und Verzeichnisse ... 26

2.3.1 Verzeichnisbäume ... 27

2.3.2 Dateinamenerweiterungen ... 28

Versteckte Erweiterungen unter Microsoft Windows.............32

Verbotene Zeichen und Dateinamen unter Windows.............34

2.3.3 Desktop, Ordner und Verzeichnisse .. 35

2.3.4 Archivdateien (Containerdateien) ... 38

2.4 Zwischenablage .. 41

2.5 Bildschirmkopien ... 43

2.6 Sonderzeichen .. 46

2.7 Texteditoren .. 48

2.8 Textverarbeitungen .. 51

2.8.1 Formatvorlagen ... 53

2.8.2 Schriftarten ... 54

2.8.3 Zeichenformatierung .. 55

2.8.4 PDF-Dateien .. 57

2.8.5 Grafiken ... 58

2.8.6 Verzeichnisse .. 59

2.8.7 Erzwungene neue Seite .. 59

Martin Vogel: Bauinformatik mit Python, WS 2025/26 1

2.8.8 Kopf- und Fußzeilen .. 59

2.9 Tabellenkalkulationen .. 60

2.9.1 Formeln ... 61

2.9.2 Variablennamen .. 62

2.9.3 Relative und absolute Zellbezüge ... 62

2.9.4 Funktionen .. 63

2.9.5 Zellbereiche .. 64

2.9.6 Fallunterscheidungen mit WENN ... 64

2.9.7 VERWEIS, SVERWEIS und WVERWEIS 68

2.9.8 Zielwertsuche und Solver ... 69

2.9.9 Matrixformeln ... 72

2.9.10 Diagramme .. 73

2.9.11 CSV-Dateien und Tabellenkalkulationen 74

2.9.12 Anwendungsgrenzen ... 77

3 Hypertext 78

3.1 HTML-Tags .. 79

3.2 Hierarchische Ordnung .. 80

3.3 Attribute ... 82

3.4 Grafiken .. 83

3.5 HTML-Entitäten ... 84

3.6 CSS .. 85

4 Algorithmen und ihre Darstellung 86

4.1 Flussdiagramm ... 87

4.2 Struktogramm .. 88

4.2.1 Reihenfolge der Arbeitsschritte .. 88

4.2.2 Fallunterscheidung ... 89

4.2.3 Mehrfachauswahl .. 90

4.2.4 Abweisende Schleife ... 90

4.2.5 Nichtabweisende Schleife ... 91

Martin Vogel: Bauinformatik mit Python, WS 2025/26 2

4.2.6 Endlosschleife ... 91

Ausbruch aus der Endlosschleife..92

4.2.7 Beispiel für ein vollständiges Struktogramm 93

4.2.8 Struktogramm-Editor .. 94

5 Python 95

5.1 Download und Installation ... 97

5.1.1 Module für wissenschaftliches Arbeiten 101

5.1.2 Virtuelle Umgebungen .. 103

5.2 Erste Schritte in der IDLE-Shell .. 104

5.3 Fehlermeldungen .. 107

5.4 Konstanten ... 109

5.5 Variablen ... 111

5.5.1 Variablennamen .. 114

5.6 Rechenoperationen .. 117

5.7 Funktionen und Module ... 119

5.7.1 Funktionsweiser Import .. 121

5.7.2 Modulweiser Import .. 122

5.7.3 Das Mathematik-Modul: math .. 123

5.7.4 Funktionszuweisungen ... 125

5.8 Eingabe mit input(…) ... 126

5.8.1 Lesen aus Textdateien ... 126

5.9 Ausgabe mit print(…) ... 128

5.9.1 Ausgabe in Textdateien ... 129

Warnung!..129

5.9.2 Alternatives Trennzeichen: sep ... 130

5.9.3 Alternatives Zeilenende: end .. 131

5.10 Typumwandlung ... 132

5.10.1 Evaluation von Ausdrücken .. 133

5.11 Das erste richtige Programm ... 136

Martin Vogel: Bauinformatik mit Python, WS 2025/26 3

5.11.1 Python und der Windows-Explorer 137

5.12 Quelltextformatierung ... 138

5.12.1 Kommentarzeilen .. 138

5.12.2 Zeilenlänge .. 139

5.12.3 Groß- und Kleinschreibung ... 141

5.12.4 Shebang und Zeichenkodierung ... 142

5.13 Verzweigungen ... 143

5.13.1 Fallunterscheidungen: if … elif … else 143

5.13.2 Mehrfachunterscheidungen match … case 147

5.13.3 Fehlerbehandlung ... 148

5.14 Programmschleifen .. 151

5.14.1 Bedingte Schleifen mit „while“ ... 151

Aussprung mit break...153

Unstrukturierte Programmierung..155

5.14.2 Verkürzte Arithmetiknotation ... 155

5.14.3 Iterationsschleifen mit „for“ ... 156

5.14.4 Die Funktion range ... 156

5.14.5 Generatoren .. 158

Generatorausdrücke und Comprehensions..........................159

5.14.6 Else und die Schleifen ... 160

5.14.7 Verschachtelte Schleifen ... 162

5.15 Sequenzen .. 164

5.15.1 Listen .. 164

Listen aus Listen...165

5.15.2 Tupel ... 166

5.15.3 Mengen (Sets) ... 166

5.15.4 Dictionarys .. 167

5.15.5 Indizes ... 168

5.15.6 Schleifen über Sequenzen .. 169

5.15.7 Sequenzabschnitte (Slices) ... 170

Martin Vogel: Bauinformatik mit Python, WS 2025/26 4

5.15.8 Kopieren einer Sequenz .. 171

Kopien verschachtelter Sequenzen......................................173

5.15.9 Umwandlung eines Generator-Objektes in eine Liste 174

5.15.10 Sequenzen sprengen ... 174

5.15.11 Das enumerate-Objekt .. 175

5.15.12 Reißverschlussverfahren: das Zip-Objekt 176

5.15.13 Funktionen für Sequenzen .. 179

5.15.14 Löschen von Sequenzen .. 179

5.15.15 Methoden von Listen .. 180

5.15.16 Eine für alle: das map-Objekt ... 183

5.16 Anwendung von Listen: Vektoren 185

5.16.1 Vektoraddition ... 185

5.16.2 Skalarprodukt ... 186

5.16.3 Formatierte Ausgabe eines Vektors 187

5.17 Eigene Funktionen definieren .. 188

5.17.1 Eingangswerte (Argumente) ... 189

5.17.2 Vorbelegte Eingangswerte .. 190

5.17.3 Beliebig viele Argumente .. 190

5.17.4 Reihenfolge von Funktionsargumenten 191

5.18 Sichtbarkeit von Variablen ... 193

5.19 Klassen und Objekte .. 194

5.19.1 Attribute von Objekten .. 195

5.19.2 Methoden von Objekten .. 197

5.19.3 Die Methode __init__ ... 199

5.19.4 Vererbung ... 199

Wir bauen uns eine Durchreiche..200

5.20 Eigene Module .. 202

5.20.1 Modulpfade ... 204

5.20.2 Funktionsüberschreibungen ... 205

5.21 Zeichenketten ... 208

Martin Vogel: Bauinformatik mit Python, WS 2025/26 5

5.21.1 Anführungszeichen in Zeichenketten 208

5.21.2 Der Rückwärtsschrägstrich .. 209

5.21.3 Mehrzeilige Ausgabe .. 209

5.21.4 Zeichenketten-Methoden .. 211

.count(Suchtext)..211

.encode(Kodierung, Fehlerbehandlung)...............................211

.endswith(Suchtext)..212

.find(Suchtext)..212

.isalnum()..213

.isalpha()...213

.isascii()...213

.isdecimal()..214

.join(iterierbares Objekt)..214

.lower()..214

.replace(alt, neu)...215

.split(Trennzeichen)..215

.startswith(Suchtext)..216

.strip(abzustreifende Zeichen)..216

.upper()...216

5.21.5 Formatierung mit Platzhaltern ... 217

5.21.6 F-Strings .. 218

5.21.7 Die Methode .format() ... 220

5.21.8 Die Formatierungs-Mini-Sprache .. 220

Einige Beispiele..221

5.21.9 Die alte printf-kompatible Formatierung 225

Vergleich mit C...225

Vergleich mit Java...226

Übersicht..226

5.21.10 Kodierung und Dekodierung ... 227

5.21.11 Komprimierung und Verschlüsselung 229

Simple Verschlüsselung..231

Martin Vogel: Bauinformatik mit Python, WS 2025/26 6

5.21.12 Sonderformen von Zeichenketten 231

B-Strings...231

U-Strings...232

R-Strings...233

F-Strings...233

5.22 Dateien lesen und schreiben .. 234

5.22.1 Textdateien lesen .. 234

5.22.2 Textdateien schreiben ... 237

5.22.3 Textdateien fortsetzen .. 237

5.22.4 Binärdateien .. 238

5.22.5 Pickle ... 238

5.22.6 Das aktuelle Arbeitsverzeichnis .. 240

5.23 Diagramme mit Matplotlib ... 243

5.23.1 Ein schnelles x-y-Diagramm .. 243

5.23.2 Ein schönes x-y-Diagramm .. 246

5.23.3 Streudiagramme ... 250

5.23.4 Text .. 252

5.23.5 gefüllte Flächen .. 253

5.23.6 Zeichenreihenfolge ... 254

5.23.7 3D-Diagramme .. 256

5.24 Grafik mit Tkinter .. 259

5.24.1 Das Hauptfenster .. 260

5.24.2 untergeordnete Fenster .. 262

5.24.3 Canvas – die Leinwand .. 264

5.24.4 Koordinaten der Canvas .. 266

5.24.5 Koordinatentransformationen ... 267

5.24.6 Linien und Linienzüge ... 268

Die Canvas-ID...269

5.24.7 Pfeilspitzen .. 270

5.24.8 Gestrichelte Linien .. 270

Martin Vogel: Bauinformatik mit Python, WS 2025/26 7

5.24.9 Splines (Kurvenlinien) ... 271

5.24.10 Geschlossene Polygone ... 272

5.24.11 Rechtecke und Ellipsen ... 273

5.24.12 Kreise .. 274

5.24.13 Text .. 274

Schriftart, Auszeichnung und Schriftgröße..........................275

5.25 GUI – Grafische Benutzungsoberflächen 277

5.25.1 EVA und die Events ... 277

Beispiel für einen Eventhandler...277

5.25.2 Anordnung der GUI-Elemente .. 283

5.25.3 Die drei Geometriemanager ... 284

Pack...284

Place..286

Grid...287

5.25.4 GUI-Widgets .. 289

Taste: Button...289

Beschriftung: Label...290

Eingabefeld: Entry..292

Schieberegler: Scale...294

Rahmen: Frame..297

Beschrifteter Rahmen: LabelFrame.....................................298

Schiebefenster: PanedWindow...301

Ankreuzkästchen: Checkbutton..303

Radiobutton..306

Menubutton..308

5.26 Webserver ... 310

5.26.1 Zeichenkodierung ... 312

5.26.2 Darstellung von Webseiten ohne Webserver 312

5.27 Logische Aussagen ... 314

5.27.1 Wahrheitswerte anderer Datentypen 314

Martin Vogel: Bauinformatik mit Python, WS 2025/26 8

5.27.2 Vergleichsoperatoren .. 315

5.27.3 Logische Aussagen über Gleitkommazahlen 316

5.27.4 Boolesche Algebra .. 317

Die Konjunktion: and..317

Die Disjunktion: or..318

Die Negation: not..318

Die Kontravalenz: ^..319

Prioritäten...319

Umkehrung logischer Aussagen...320

Boolesche Variablen..320

5.27.5 Venn-Diagramme ... 320

6 Datenspeicherung und Zahlensysteme 323

6.1 Bits und Bytes .. 323

6.1.1 Das Bit ... 323

6.1.2 Das Byte .. 324

6.1.3 Das Hexadezimalsystem ... 326

6.2 Zeichenkodierung – von ASCII bis Unicode 328

7 Anhang 332

7.1 Häufige Fehlermeldungen .. 332

7.2 Farben und Farbnamen (Auswahl) 334

7.3 Der Windows-Paketmanager WinGet 340

7.4 Abbildungsverzeichnis ... 345

7.5 Links und Literaturhinweise .. 349

7.6 Lizenz .. 352

7.7 Download und Feedback ... 353

Martin Vogel: Bauinformatik mit Python, WS 2025/26 9

1 Einleitung
I wish I understood what this was. But it's kind of nice.

Eric Idle1

Dieses Buch ist eine Ergänzung zu der seit 2009 von mir gehaltenen Vor-

lesung „Bauinformatik“ im Fachbereich Bau- und Umweltingenieurwesen

der Hochschule Bochum. Sie finden hier außer vielen Inhalten der Vorle-

sung auch einige Zusatzinformationen, die in ihrer Breite nicht in Hör-

saal-Lehrveranstaltungen passen.

In den Vorlesungen und Übungen an der Hochschule lernen wir wichtige

Konzepte der Informatik kennen, indem wir uns selbst sprachliche Werk-

zeuge schaffen, mit denen wir ingenieurmäßige Probleme lösen werden.

Wir bauen diese Werkzeuge, indem wir Handlungsanweisungen in einer

Sprache formulieren, die ein Computer interpretieren und ausführen

kann – einer Programmiersprache.

Das vorliegende Werk ist kein Vorlesungsskript im klassischen Sinne. Die

Reihenfolge der Kapitel im Buch ist nicht dieselbe wie in der Vorlesung,

da ich diesen Text zum leichteren Nachschlagen nach Sachthemen geglie-

dert habe. Außerdem werden wir in den Praktika und Übungen manche

Techniken gelegentlich schon kurz kennenlernen, die erst später im Se-

mester ausführlich behandelt werden. Diese Vorgriffe tauchen im Buch

nicht auf.

Im Wintersemester 2022/23 fanden erstmals seit Beginn der Covid-19-

Pandemie wieder Präsenzvorlesungen im Hörsaal statt. Beibehalten wur-

de jedoch das bewährte Verfahren, über unser E-Learning-System Moodle

interaktive Texte und wöchentliche Aufgaben anzubieten, zu denen die

Studierenden zur Kontrolle des Lernstandes Rückmeldungen erhalten.

Auf dem zum Kurs gehörenden Peertube-Kanal2 finden Sie eine ständig

wachsende Zahl von Videos zum Kurs.

In Präsenz werden auch Übungen und Tutorien in kleinen Gruppen

durchgeführt. Hierzu sind im Moodle-Kursbereich für eingeschriebene

Studierende nähere Informationen verfügbar.

1 https://web.archive.org/web/202101291827/https://twitter.com/EricIdle/status/
1355227039146467329

2 https://tube.tchncs.de/c/python/videos

Martin Vogel: Bauinformatik mit Python, WS 2025/26 10

https://tube.tchncs.de/c/python/videos
https://web.archive.org/web/20210129185127/https://twitter.com/EricIdle/status/1355227039146467329
https://web.archive.org/web/20210129185127/https://twitter.com/EricIdle/status/1355227039146467329

Im Gegensatz zu einem Papierbuch verändert sich der Inhalt in dieser

PDF-Datei gelegentlich. Sie sollten daher mit Zitaten vorsichtig sein,

wenn Sie einen wissenschaftlichen Anspruch an Ihre Arbeit haben. Zum

Wintersemester 2018/19 verschwand beispielsweise das komplette Kapi-

tel über Matrizenrechnung mithilfe verschachtelter Schleifen aus diesem

Werk, weil es sich gezeigt hatte, dass dieser Themenbereich erhebliche

Schwierigkeiten hatte, die „Mathe-Hirn-Schranke“ zu passieren.

Falls Sie diese PDF-Datei auf einem Mobilgerät ansehen, sollten Sie einen

PDF-Betrachter verwenden, der Verknüpfungen (Links) unterstützt1.

Durch Antippen der Seitenzahlen im Inhaltsverzeichnis können Sie so bei-

spielsweise direkt zum jeweiligen Kapitel springen. Auch externe Links

auf Webseiten funktionieren dann.

Trotz seines Umfangs ist dieser Text nicht als eigenständiges Selbstlern-

buch konzipiert und stellt kein umfassendes Kompendium zur Program-

miersprache Python dar. Falls es Ihnen dennoch gelingt, ohne die dazuge-

hörenden Lehrveranstaltungen das Programmieren in Python mit diesem

Buch zu lernen, oder wenn Sie einen interessanten Fehler im Text entde-

cken, schreiben Sie mir! Meine Adresse steht auf der letzten Seite.

1 Die meisten Browser können das inzwischen ohne Zusatzsoftware.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 11

1.1 Bedeutung der Bauinformatik

Die Anwendung von Computern, ob in stationärer oder mobiler Form, ist

eine Kulturtechnik geworden, in die wir von Kindheit an hineinwachsen.

Als Ingenieurinnen und Ingenieure stehen wir aber vor der Aufgabe, nicht

nur nach Anleitung fertige Apps und andere Computerprogramme zu be-

dienen, sondern den Computer auch als individuell formbares Werkzeug

zur Lösung von nicht standardisierten Problemen einzusetzen. Die Be-

triebssysteme von Mobilgeräten machen es oft absichtlich schwer, Daten

zwischen Programmen auszutauschen. Gerade der freie Zugriff auf Daten

eröffnet uns aber ganz neue Möglichkeiten, Erkenntnisse zu gewinnen.

Deshalb arbeiten wir bevorzugt mit einem PC anstelle eines Mobilgeräts1.

Die Grenzen populärer Bürosoftware sind mitunter schneller erreicht, als

es uns lieb ist, doch oft können wir scheinbar komplexe Probleme mit we-

nigen Zeilen Programmcode elegant und schnell lösen. Zwar ließen sich

viele dieser Aufgaben mit Ausdauer, Fleiß und Überstunden auch ohne

Programmierkenntnisse bewältigen, sie würden dann aber deutlich we-

niger zur Arbeitsfreude beitragen. Viele scheinbar absurde Phänomene

bei der Anwendung von Standardsoftware lassen sich zudem erst dann

verstehen, wenn wir wenigstens eine ungefähre Ahnung davon haben,

was gerade „unter der Motorhaube“ geschieht.

Informatik ist weit mehr als nur Programmierung, aber das selbständige

Schreiben von Computerprogrammen wird in diesem Kurs der rote Faden

sein, der sich durch unsere fünfmonatige Reise durch die Welt der forma-

len Sprachen, der Datenverarbeitung und der Algorithmen zieht.

1 Die Grenzen zwischen PCs und Mobilgeräten sind zugegebenermaßen fließend.
Selbst an die meisten Smartphones kann man eine Maus, eine Tastatur und einen Mo-
nitor anschließen und hat damit ein Gerät, das vielen PCs kaum nachsteht. Anderer-
seits gibt es als PC verkaufte Geräte wie Chromebooks, die eigentlich nur Android-Ta-
blets mit Tastatur sind. Wenn wir von PCs reden, meinen wir damit ein Gerät mit dem
Betriebssystem Windows, macOS oder einer Desktop-Variante eines Linux-Betriebs-
systems.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 12

1.2 Ermutigung

Es gibt an vielen Schulen hervorragende Informatiklehrer und -lehrerin-

nen, die fachlich kompetent und pädagogisch engagiert sind und Wunder-

bares leisten. Leider gibt es auch andere. Falls Sie seit dem Informatik-

unterricht in Ihrer Schule der Meinung sind, Computer niemals im Leben

verstehen zu werden, dafür aber eine unerklärliche Abneigung gegen

Hamster entwickelten: vergessen Sie am besten alles, was sie dort ge-

lernt haben, bevor Sie weiterlesen!

Haben Sie den Mut, Dinge auszu-

probieren! Sie lernen nicht, zu

programmieren, indem Sie ein

Buch durchlesen oder ein Video

ansehen. Sie lernen es vor allem,

indem Sie eigenhändig Pro-

gramme schreiben, Fehler machen

(das ist wirklich wichtig!), Fehler-

meldungen lesen und verstehen

sowie die Fehlerursachen finden,

begreifen und beseitigen. Immer

wieder.

Seien Sie aktiv! Damit Sie wirklich

etwas lernen, benötigen Sie außer

Ihren Augen und Ohren auch Ihre

Hände. Schreiben Sie in der Vorle-

sung und auch beim Betrachten

von Videos mit, machen Sie sich

Notizen mit Stift und Papier – vor

allem, wenn etwas unklar scheint!

Besprechen Sie offen gebliebene

Fragen nach der Vorlesung mit ih-

rer Lerngruppe, suchen Sie die

Antworten in diesem Text, im In-

ternet oder in der Literatur!

Martin Vogel: Bauinformatik mit Python, WS 2025/26 13

Abb. 1: The Difference (Randall Munroe)

https://xkcd.com/242/ Creative Commons
Attribution-NonCommercial 2.5 License

https://xkcd.com/242/

1.3 Lerntipps

Bringen Sie kein Notebook oder Tablet mit in die Vorlesung! Es mag ver-

führerisch erscheinen, vorgestellte Codeschnipsel gleich auszuprobieren

oder die Vorlesungsmitschrift gleich in leserlicher Druckschrift zu erfas-

sen. Ihnen entgeht jedoch durch das Tippen zu viel vom eigentlichen Sinn

des Vorlesungsstoffs.123456

Bearbeiten Sie vor allem die Wochenaufgaben selbst und besorgen Sie

sich keine fertigen Lösungen! Sie geben die Ergebnisse nicht ab, um zu

beweisen, dass Sie in der Lage sind, fristgerecht eine Ware abzuliefern,

sondern um bei der eigenen Arbeit daran die Lerninhalte zu vertiefen. Au-

ßerdem finden Sie nur so heraus, ob Sie das, was Sie zu wissen glauben,

tatsächlich verstanden haben.

Besonders tückisch sind seit November 2022 die öffentlichen Chats gro-

ßer Sprachmodelle, da die nur scheinbar intelligenten Systeme Formulie-

rungen großer Selbstsicherheit für zum Teil haarsträubend falsche Dar-

stellungen wählen. Noch mehr als bei von Menschen erzeugten Vorlagen

gilt hier, dass sie aufs sorgfältigste geprüft werden müssen. Sie kommen

nicht um das Verstehen herum, um Nutzen daraus ziehen zu können.

1 Besser lernen mit Stift statt Tastatur. heise online [online]. 4 Mai 2014. [Zugriff
am: 8 September 2023]. Verfügbar unter: https://www.heise.de/news/Besser-lernen-
mit-Stift-statt-Tastatur-2182057.html

2 For better learning in college lectures, lay down the laptop and pick up a pen. Broo-
kings [online]. [Zugriff am: 8 September 2023]. Verfügbar unter: https://www.broo-
kings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-
pick-up-a-pen/

3 PATTERSON, Richard W. und Robert M. PATTERSON, 2017. Computers and producti-
vity: Evidence from laptop use in the college classroom. Economics of Education Re-
view. 1 April 2017. Bd. 57, S. 66–79. Verfügbar unter: https://doi.org/10.1016/j.econe-
durev.2017.02.004

4 FISHER, Beth, 2015. Laptop Use in Class: Effects on Learning and Attention. Center
for Teaching and Learning [online]. 22 August 2015. [Zugriff am: 8 September 2023].
Verfügbar unter: https://ctl.wustl.edu/laptop-use-effects-learning-attention/

5 The Impact of Computer Usage on Academic Performance: Evidence from a Randomi-
zed Trial at the United States Military Academy,. Blueprint Labs [online]. [Zugriff
am: 8 September 2023]. Verfügbar unter: https://blueprintlabs.mit.edu/research/the-
impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-tri-
al-at-the-united-states-military-academy/

6 Using laptops in class harms academic performance, study warns, 2017. Times Hig-
her Education (THE) [online]. [Zugriff am: 8 September 2023]. Verfügbar unter:
https://www.timeshighereducation.com/news/using-laptops-in-class-harms-academic-
performance-study-warns

Martin Vogel: Bauinformatik mit Python, WS 2025/26 14

https://www.timeshighereducation.com/news/using-laptops-in-class-harms-academic-performance-study-warns
https://www.timeshighereducation.com/news/using-laptops-in-class-harms-academic-performance-study-warns
https://blueprintlabs.mit.edu/research/the-impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-trial-at-the-united-states-military-academy/
https://blueprintlabs.mit.edu/research/the-impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-trial-at-the-united-states-military-academy/
https://blueprintlabs.mit.edu/research/the-impact-of-computer-usage-on-academic-performance-evidence-from-a-randomized-trial-at-the-united-states-military-academy/
https://ctl.wustl.edu/laptop-use-effects-learning-attention/
https://doi.org/10.1016/j.econedurev.2017.02.004
https://doi.org/10.1016/j.econedurev.2017.02.004
https://www.brookings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-pick-up-a-pen/
https://www.brookings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-pick-up-a-pen/
https://www.brookings.edu/articles/for-better-learning-in-college-lectures-lay-down-the-laptop-and-pick-up-a-pen/
https://www.heise.de/news/Besser-lernen-mit-Stift-statt-Tastatur-2182057.html
https://www.heise.de/news/Besser-lernen-mit-Stift-statt-Tastatur-2182057.html

Fast jeder Mensch, der sich eine Weile mit einer guten Programmierspra-

che auseinandersetzt, entwickelt früher oder später eine gewisse Begeis-

terung fürs Programmieren und möchte gern noch interessantere und

umfangreichere Probleme lösen, als wir im Rahmen dieser Veranstaltung

behandeln können. Am Ende dieses Buches finden Sie im Kapitel 7.5

(Links und Literaturhinweise) ein paar Empfehlungen, um Hilfen und An-

regungen jenseits des Tellerrands der Erstsemestervorlesungen zu erhal-

ten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 15

1.4 Suchmaschinentipps

Suchmaschinen wie Google, Kagi, Bing, Metager oder DuckDuckGo sind

unentbehrliche Werkzeuge zum schnellen Auffinden von Informationen im

WWW. Um in der Masse der Fundstellen gezielt die relevanten Seiten zu

finden, lassen sich die Suchen verfeinern.

Manche Suchmaschinen legen ihren Schwerpunkt darauf, möglichst viele

Ergebnisse zu liefern und interpretieren gestellte Suchanfragen extrem

unverbindlich. Andere Suchmaschinen bemühen sich, genau das zu lie-

fern, wonach gesucht wurde. Je nach Suchmaschine werden mehr oder

weniger der folgenden Modifikatoren unterstützt.

Anführungszeichen fassen mehrere Wörter zu einer Phrase zusammen,

die als Ganzes im zu findenden Text vorkommen muss. Die Suche nach

hochschule bochum findet Texte, in denen sowohl das Wort „Hochschule“

als auch das Wort „Bochum“ vorkommen. Die Suche nach "hochschule

bochum" dagegen beschränkt die Fundstellen auf Texte zur Hochschule

Bochum.

Pluszeichen markieren Begriffe, die unbedingt auf der Seite vorkommen

müssen. Minuszeichen kennzeichnen auszuschließende Begriffe. Wer Bil-

der von Jaguaren sucht, sollte die Suche entweder mit jaguar -katze

+auto oder mit jaguar +katze -auto durchführen, je nachdem, welche

Ergebnisse nicht gewünscht sind.

Die Suche nach Dateien eines bestimmten Typs oder Formats lässt sich

mit dem Schlüsselwort „filetype“ beeinflussen. Die Eingabe von "python

3" bauinformatik filetype:pdf in die Suchleiste sollte die PDF-Datei

des Textes, den Sie gerade vor sich haben, recht weit oben auf der ersten

Suchergebnisseite aufführen. Nichttextuelle Dateiformate wie mp3, mp4

oder jpg werden allerdings gelegentlich1 ausgefiltert und nicht angezeigt.

Um nur Seiten anzuzeigen, die den gewünschten Suchbegriff im Titel ent-

halten, geben Sie das mit dem Schlüsselwort title an: title:"Bau- und

Umweltingenieurwesen"

1 https://support.google.com/websearch/thread/260589615/filetype-operator-no-longer-
works

Martin Vogel: Bauinformatik mit Python, WS 2025/26 16

https://support.google.com/websearch/thread/260589615/filetype-operator-no-longer-works
https://support.google.com/websearch/thread/260589615/filetype-operator-no-longer-works

Sie können die Suche auf Seiten eines bestimmten Webauftritts begren-

zen. stundenplan site:hs-bochum.de beschränkt die Suche nach Stun-

denplänen auf die Website der Hochschule Bochum. Der Zusatz site:.de

findet nur Seiten, die für Deutschlands Top-Level-Domain DE registriert

wurden.

Wenn Sie nur einen Teil der Adresse (URL) einer Seite kennen, können

Sie auch danach suchen stundenplan inurl:fbb.

Gruppen von Wörtern, die alle auf der gesuchten Seite vokommen müs-

sen, können in Klammern gesetzt und mit AND verknüpft werden: (Beton

AND nachhaltig). Wenn nur eines der Wörter vorkommen muss, können

die Suchbegriffe mit OR verknüpft werden: (Äpfel OR Birnen).

Probieren Sie die oben vorgestellten Modifikatoren einmal mit ein paar

unterschiedliche Suchmaschinen aus. Nicht immer ist die im Browser vor-

eingestellte Wahl die Beste.

Falls Sie eine Webseite mit interessanten Informationen finden, von de-

nen Sie annehmen, sie später noch einmal gebrauchen zu können, sollten

Sie nicht einfach nur ein Lesezeichen im Browser setzen, weil dort nur

die Adresse und der Titel der Seite abgelegt werden und beides nicht sel-

ten keinen Hinweis auf die tatsächlichen Inhalte gibt. Besser ist es, die

Seite in einem Literaturverwaltungssystem wie Zotero1 zu speichern, so-

dass sie die Inhalte auch dann noch wiederfinden, wenn die ursprüngli-

chen Seiten nicht mehr aufrufbar sind.

Um Inhalte von Webseiten auch ohne Literaturverwaltungssystem dauer-

haft zu archivieren, können Sie den Dienst des Internetarchivs2 in An-

spruch nehmen. Über diesen lässt sich manchmal sogar auf historische

Versionen mancher Webseiten zugreifen.

1 https://www.zotero.org/

2 https://archive.org/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 17

https://archive.org/
https://www.zotero.org/

1.5 Große Sprachmodelle

Unter der Bezeichnung „KI“ finden derzeit (2025) erhebliche Umbrüche

in der Art und Weise statt, wie wir auf Informationen zugreifen. Insbeson-

dere die Großen Sprachmodelle (large language models, LLM) wie

ChatGPT werden immer mehr zur Beantwortung von Fragen herangezo-

gen. Leider ist das Trainingsmaterial dieser Sprachmodelle oft von unzu-

reichender Qualität, sodass zwar sehr überzeugend klingende Antworten

gegeben werden, diese jedoch auf mehr oder weniger fatale Weise falsch

sein können. Ob eine Hoffnung besteht, dass sich das kurzfristig ändern

wird, ist unklar. Es steht zu befürchten, dass neue Modelle zunehmend

mit den falschen Antworten alter Modelle trainiert werden, mit denen das

Web derzeit geradezu überflutet wird.

Ralph Caspers hat einen sehr schönen Beitrag1 für die Sendung mit der

Maus produziert, der die Funktion und das große Problem der Sprachmo-

delle verständlich erklärt.

1 https://www.youtube.com/watch?v=_80pKGuyKWc

Martin Vogel: Bauinformatik mit Python, WS 2025/26 18

https://www.youtube.com/watch?v=_80pKGuyKWc

2 PC-Grundkenntnisse
In den Vorlesungen und Übungen des Kurses „Bauinformatik“ setze ich

gewisse im Umgang mit persönlichen Computern (PC) alltägliche Grund-

kenntnisse voraus. In diesem Kapitel des Skriptes erhalten Sie einen kur-

zen Überblick über einige Begriffe und Techniken, die sie verstanden ha-

ben sollten, wenn Sie sich mit den eigentlichen Themen dieses Semesters

auseinandersetzen.

Abb. 2: Schreib-/Leseköpfe einer Festplatte im Größenvergleich

Martin Vogel: Bauinformatik mit Python, WS 2025/26 19

2.1 Tastatur

Die Tastatur eines PC orientiert sich in ihrem grundlegenden Aufbau an

den im 19. Jahrhundert aufgekommenen Schreibmaschinentastaturen.

Während diese maximal zwei verschiedene Zeichen pro Taste aufs Papier

bringen konnten, enthalten PC-Tastaturen auf mehreren Belegungsebe-

nen die häufigsten in Texten verwendeten Buchstaben, Ziffern und Son-

derzeichen sowie einige Steuer- und Funktionstasten.

Abb. 3: Tastenbezeichnungen unter Linux und Windows

PCs mit den Betriebssystemen Linux und Windows verwenden in der Re-

gel die gleichen Standardtastaturen (Abb. 3). In seltenen Fällen ersetzt an

Linux-PCs der Pinguin Tux das „Windows-Fähnchen“ auf der Super-Taste.

PCs der Firma Apple1 verwenden abweichende Bezeichnungen und Sym-

bole für einige Tasten.

1 Die Marketingabteilungen bestimmter Firmen versuchen weiszumachen, es gebe
zwei Sorten von schreibtischtauglichen Computern: den PC (mit Windows) und den
Mac (mit macOS). Das ist Unfug.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 20

Tabulatortaste, Tab

Feststelltaste, Caps Lock

Umschalten, Shift

Steuerung, Ctrl

Windowstaste, Super 3. Zeichen:
Taste + AltGr

| @ ~ ² ³ \ { [µ] } …

Eingabetaste, Enter

Im Gegensatz zu den Bildschirmtastaturen von Mobilgeräten werden Son-

derzeichen auf körperlichen Tastaturen nicht durch langen Druck auf ei-

ne Taste, sondern durch eine Kombination mehrer Tasten, die gleichzeitig

oder nacheinander gedrückt werden müssen, erzeugt.

Da aus gestalterischen Gründen insbesondere auf Apple-Tastaturen viele

mit der Tastatur eingebbare Sonderzeichen nicht auf den Tastenkappen

aufgedruckt sind, hier eine Eingabehilfe:

Zeichen Name Windows Linux macOS

@ at AltGr Q AltGr Q ⌥ L

[eckige Klammer auf AltGr 8 AltGr 8 ⌥ 5

] eckige Klammer zu AltGr 9 AltGr 9 ⌥ 6

{ geschweifte Klammer auf AltGr 7 AltGr 7 ⌥ 8

} geschweifte Klammer zu AltGr 0 AltGr 0 ⌥ 9

/ Schrägstrich ⇧ 7 ⇧ 7 ⇧ 7

\ Rückwärtsschrägstrich AltGr ß AltGr ß ⌥ ⇧ 7

| senkrechter Strich AltGr < AltGr < ⌥ 7

„ Anführungszeichen auf Alt 0132 AltGr V ⌥ ⇧ W

“ Anführungszeichen zu Alt 0147 AltGr B ⌥ 2

‚ einfaches Anf.-zeichen auf Alt 0130 AltGr⇧V ⌥ S

‘ einfaches Anf.-zeichen zu Alt 0145 AltGr⇧B ⌥ #

» franz. Anfz. nach rechts Alt 0187 AltGr Y ⌥ ⇧ Q

« franz. Anfz. nach links Alt 0171 AltGr X ⌥ Q

› einf. franz. Anfz. nach rechts Alt 0155 AltGr⇧Y ⌥ ⇧ N

‹ einf. franz. Anfz. nach links Alt 0139 AltGr⇧X ⌥ ⇧ B

µ My (Mikro-) AltGr M AltGr M ⌥ M

· Multiplikationspunkt Alt 0183 AltGr , ⌥ ⇧ 9

… Auslassungspunkte Alt 0133 AltGr . ⌥ :

’ Apostroph Alt 0146 AltGr # ⌥ ⇧ #

← Pfeil nach links Alt 8592 AltGr Z

↓ Pfeil nach unten Alt 8595 AltGr U

↑ Pfeil nach oben Alt 8593 AltGr⇧U

→ Pfeil nach rechts Alt 8594 AltGr I

¹ hochgestellte 1 Alt 0185 AltGr 1

² hochgestellte 2 AltGr 2 AltGr 2

Martin Vogel: Bauinformatik mit Python, WS 2025/26 21

Zeichen Name Windows Linux macOS

³ hochgestellte 3 AltGr 3 AltGr 3

≤ kleiner oder gleich Alt 8804 < =⎄ ⌥ >

≥ größer oder gleich Alt 8805 > =⎄ ⌥ ⇧ >

≠ ungleich Alt 8800 / =⎄ ⌥ 0

± Plus/Minus Alt 0177 ⎄ + - ⌥ +

− Minuszeichen Alt 8722 u2212

– Gedankenstrich Alt 0150 AltGr - ⌥ _

- Bindestrich − − −

∞ Unendlich-Symbol Alt 8734 ⎄ 8 8 ⌥ ,

× Multiplikationskreuz Alt 0215 AltGr⇧,

÷ Divisionsoperator Alt 0247 AltGr⇧.

π Pi Alt 0960 u3C0

⌀ Durchmesserzeichen Alt 8960 u2300

√ Wurzelzeichen Alt 8730 u221a ⌥ V

∑ Summenzeichen Sigma Alt 8721 u2211 ⌥ W

‰ Promillezeichen Alt 0137 ⎄ % O ⌥ ⇧ R

schmales festes Leerzeichen Alt 8201 u2009

festes Leerzeichen Alt 0160 Strg ⇧ ␣ ⌥ ␣

In den rechten Tabellenspalten werden mehrere ungewöhnliche Symbole

verwendet. Das Symbol steht hier für die unter Linux standardmäßig⎄

verfügbare Compose-Taste, mit der jeweils mehrere leicht zu merkende

Tastendrücke zur Eingabe von Sonderzeichen kombiniert werden. Das

Symbol ␣ bezeichnet die Leertaste. Das unterstrichene u symbolisiert

die Tastenkombination Strg ⇧ U , welche unter Linux die Unicode-Einga-

be aktiviert.

Feste Leerzeichen werden zwischen Zahlenwerte und Einheiten gesetzt,

um eine automatische Trennung am Zeilenende zu verhindern. Schmale

feste Leerzeichen trennen Tausendergruppen großer Zahlen.

MacOS besitzt eine systemweite Funktion zur Eingabe hoch- und tiefge-

stellter Zeichen. Dazu ist zunächst die gewünschte Zeichenfolge zu mar-

kieren. Die Tastenkombination ^⌘+ (Control-Command-Plus) wandelt

die Zeichen dann in die entsprechenden hochgestellten Unicode-Zeichen

um und ^⌘− bewirkt dasselbe zum Tiefstellen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 22

Unter macOS lässt sich in der Systemeinstellung unter „Sprache und Text

→ Eingabequellen“ bzw. „Tastatur → Eingabequellen“ die „Unicode-Hex-

Eingabe“ aktivieren. Damit können die Zeichencodes bei gedrückter Tas-

te ⌥ (Alt, Option) eingetippt werden.

Die Windows-Tastenkombinationen mit dem Schema „ Alt Zahlencode“

werden eingegeben, indem Sie die Taste Alt mit der linken Hand ge-

drückt halten, während Sie auf dem numerischen Ziffernblock rechts

nacheinander die entsprechenden Ziffern tippen. Beim Loslassen der Alt-

Taste erscheint das gewünschte Zeichen. Wenn Ihre Tastatur keinen nu-

merischen Ziffernblock hat, können Sie diese Eingabemethode nicht nut-

zen. Die Zifferntasten der oberen Tastenreihe werden von Windows zur

Code-Eingabe nicht akzeptiert.

Etwas ungewöhnlich bei der Code-Eingabe unter Windows ist die Verwen-

dung einer Dezimalzahl. Üblicherweise werden Unicode-Symbole über ih-

re Hexadezimalcodes1 adressiert.

Um auch unter Windows den Luxus einer Compose-Taste und einer Uni-

code-Eingabe über Hexadezimalcodes nachzurüsten, lässt sich das Pro-

gramm „WinCompose“ installieren2. Es erlaubt zudem, die selten willent-

lich verwendete Großbuchstabenfeststelltaste zur gut erreichbaren

Compose-Taste umzudefinieren.

1 Mehr dazu in Kapitel 6.1.3

2 CMD → winget install wincompose – siehe Kapitel 7.3

Martin Vogel: Bauinformatik mit Python, WS 2025/26 23

Abb. 4: WinCompose rüstet auch eine Unicode-Eingabe nach

Martin Vogel: Bauinformatik mit Python, WS 2025/26 24

2.2 Betriebssystem

Ein Betriebssystem verbindet die Anwendungssoftware (das können bei-

spielsweise kommerzielle oder freie Officepakete, heruntergeladene Apps

oder beliebige andere ausführbare Programme sein) mit der Hardware

(dem Gerät, auf dem die Programme laufen sollen).

Etwas umfassender ausgedrückt bezeichnet man als Betriebssystem eine

Programmsammlung, die Anwendungsprogrammen standardisierte Werk-

zeuge zum Zugriff auf interne und externe Geräte, gespeicherte Daten

und Datenträger sowie die Kommunikationskanäle eines Rechnersystems

zur Verfügung stellt.

Häufig werden Betriebssysteme noch mit einer Vielzahl mehr oder weni-

ger nützlicher Programme ausgeliefert. Wir nennen so ein Paket aus Be-

triebssystemkern und Anwendungsprogrammen eine Distribution. Wäh-

rend zu Linux-Distributionen in der Regel ein oder mehrere Officepakete,

ein breites Sortiment an Programmiersprachen und tausende problem-

spezifischer Anwendungsprogramme aus dem wissenschaftlich-techni-

schen Bereich gehören, wird das oft als unvermeidlich angesehene Wind-

ows in der Regel nur mit dem Allernötigsten zum Betrieb des Rechners

sowie einem Haufen Bloatware in Form von laufzeitbeschränkten Demo-

versionen kommerzieller Softwareprodukte verkauft. Erst seit dem Jahr

2020 wird mit Windows der einfache Paketmanager „WinGet“ ausgelie-

fert, mit dem sich über das Textterminal eine Vielzahl von Softwarepake-

ten installieren lässt, ohne diese zuvor im Handel erwerben zu müssen

oder unter dem Risiko, sich stattdessen Schadsoftware einzufangen, auf

Downloadseiten suchen zu müssen. Eine Kurzanleitung zu WinGet befin-

det sich im Anhang dieses Textes (Kapitel 7.3).

Das auf Desktop-PCs und Notebooks im Ingenieurbereich hierzulande

meistverbreitete Betriebssystem ist derzeit Microsoft Windows, gefolgt

von Linux und dem damit entfernt verwandten macOS. Auf mobilen Klein-

geräten wie Smartphones und Tablets sorgen in der Mehrzahl die Be-

triebssysteme Android (ebenfalls Linux) und iOS für die Kommunikation

zwischen den einzelnen Programmen und der Gerätetechnik.

Auf größeren Rechnern, zum Beispiel den Servern publikumsintensiver

Webauftritte, den Supercomputern in Rechenzentren und den Datenzen-

tren von Cloudspeicherdiensten kommt nahezu ausschließlich Linux zum

Einsatz.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 25

2.3 Dateien und Verzeichnisse

Eine Datei ist eine zusammengehörige Gruppe von Informationen, die in

einem Verzeichnis eines Dateisystems durch einen eindeutigen Dateina-

men identifizierbar ist.

Abhängig von ihrem Inhalt unterscheiden wir zwischen Grafikdateien,

Textdateien, Videodateien, Programmdateien und zahlreichen anderen

Dateitypen.

Im Zusammenhang mit Dateien hören wir oft, dass diese „geöffnet“ oder

„geschlossen“ werden. Die Anmeldung eines Programms beim Betriebs-

system zum lesenden oder schreibenden Zugriff auf eine Datei nennt man

„Öffnen“. Greift ein Programm nicht mehr auf eine Datei zu, meldet es

seine Zugriffserlaubnis wieder ab. Die Datei wird „geschlossen“.

Solange eine Datei nicht geschlossen wurde, können wir uns nicht darauf

verlassen, dass von unserem Programm abgeschickte Daten wirklich in

die Datei geschrieben werden – möglicherweise sind sie noch in einem

Zwischenspeicher, wo sie auf einen günstigen Augenblick warten, um tat-

sächlich in die Datei zu gelangen. Bis die Datei dann allerdings vollstän-

dig auf ihren Datenträger (Festplatte, USB-Stick, etc.) geschrieben wird,

dauert es auch nach ihrem Schließen manchmal noch eine gewisse Weile.

Bei langsamen USB-Sticks und großen Dateien müssen wir sogar mehre-

re Minuten Geduld aufbringen. Das Abziehen eines USB-Sticks direkt

nach der Meldung, dass das Schreiben abgeschlossen sei, kann deshalb

schlimmstenfalls zum Verlust sämtlicher gerade zu schreibender Inhalte

führen.

Besonders unter Microsoft Windows ist das frühzeitige Schließen einer

Datei wichtig, da dieses Betriebssystem regelmäßig den lesenden Zugriff

auf eine Datei verbietet, solange diese noch von irgendeinem Programm

geöffnet ist. Seit Windows 8 führt das beispielsweise zu manch ärgerli-

cher Situation beim Erstellen von PDF-Dateien, da der PDF-Betrachter

der Firma Adobe in die Vorschaufunktion des Windows-Dateimanagers

„Explorer“ eingebunden wurde und die unsinnige Eigenart hat, die zu-

letzt gelesene Datei dauerhaft geöffnet zu halten, selbst wenn das Pro-

gramm scheinbar geschlossen wurde, tatsächlich jedoch noch unsichtbar

im Hintergrund läuft. Erstellt man nun mit einem beliebigen Programm

eine PDF-Datei und entdeckt darin beim Probelesen einen Fehler, so ist es

mitunter nicht möglich, eine neue PDF-Datei nach der Korrektur unter

Martin Vogel: Bauinformatik mit Python, WS 2025/26 26

demselben Namen wie zuvor zu speichern. Verwenden Sie dann beim

Speichern einen anderen Namen für Ihre PDF-Datei oder greifen Sie zu

einem bedienungsfreundlicheren Betriebssystem.

2.3.1 Verzeichnisbäume

Dateien werden üblicherweise in einer hierarchischen, baumähnlichen

Verzeichnisstruktur organisiert. Jedes einzelne Verzeichnis kann außer

Dateien auch wieder andere Verzeichnisse enthalten, diese nennen wir

Unterverzeichnisse. Im botanischen Gegenstück entsprechen die Dateien

den Blättern und die Verzeichnisse den Ästen und Zweigen.

Kurioserweise wird die Wurzel eines Verzeichnisbaums meistens als oben-

liegend angesehen, was ihn signifikant von seinen botanischen Verwand-

ten unterscheidet:

Abb. 5: Teil des Verzeichnisbaums unter Microsoft Windows

Die Grafik (Abb. 5) ist extrem vereinfacht. Tatsächlich kann ein Verzeich-

nisbaum eines Windows-PCs aus mehreren zehntausend Unterverzeich-

nissen bestehen. Das folgende Diagramm (Abb. 6) wurde mit einem Py-

thonprogramm aus den Verzeichnissen eines realen Windowsrechners

unseres PC-Saals zusammengestellt. Die Dateien selbst sind dort nicht

einmal enthalten; lediglich die Unterverzeichnisse bis hinab zur zwanzigs-

ten Ebene werden dargestellt. Aus ästhetischen Gründen wurde das Wur-

zelverzeichnis C:\ in dem Diagramm unten angeordnet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 27

…\

…
\ …\

Musterfrau\

System32\

P
y
t
h
o
n
3
\

…\
…\

Mustermann\

Users\

W
i
n
d
o
w
s
\

P
r
o
g
r
a
m

F
i
l
e
s
\

C:\

Abb. 6: Verzeichnisbaum eines realen Windows-PCs

2.3.2 Dateinamenerweiterungen

Dateien verfügen seit den Anfängen des Personal Computers über ein

Suffix am Ende des Dateinamens, das einen Hinweis auf die Art des In-

halts der Datei gibt. Wir nennen so eine Art von ähnlichen Inhalten auch

„Dateiformat“.

Das Suffix, es wird auch „Dateinamenerweiterung“ oder „Extension“ ge-

nannt, beginnt mit einem Punkt und ist meistens zwei bis vier Buchstaben

lang.

Die folgende Tabelle führt einige häufig anzutreffende Dateinamenerwei-

terungen auf.

Suffix Formatname und Verwendung

.pdf

„portable document format“

Layoutete Texte, die unabhängig vom verwendeten Gerät
immer gleich dargestellt werden. PDF-Dateien können
auch Grafiken und ausfüllbare Formularfelder enthalten.
Das Format ist nach ISO 32000 genormt.

Siehe Kapitel 2.8.4, „PDF-Dateien“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 28

Suffix Formatname und Verwendung

.txt

„Text“

Einfache Textdatei ohne Grafiken und besondere Forma-
tierung.

Da TXT-Dateien keine Metadaten zur verwendeten Zei-
chenkodierung enthalten, kommt es häufig vor, dass Son-
derzeichen außerhalb des ASCII-Zeichensatzes falsch dar-
gestellt werden. TXT-Dateien werden daher fälschlicher-
weise oft als ASCII-Dateien bezeichnet.

Siehe Kapitel 6.2, „Zeichenkodierung – von ASCII bis Uni-
code“.

.html

„hyper text markup language“

Textdatei mit besonderen Kennzeichnungen zur Darstel-
lung in Webbrowsern.

Siehe Kapitel 3, „Hypertext“.

.csv

„comma separated values“

Textdatei, die pro Zeile mehrere Werte enthält, die mit ei-
nem Trennzeichen voneinander abgesetzt sind. Das
Trennzeichen kann das namensgebende Komma sein, an-
dere Zeichen wie Semikolon oder Tabulatorzeichen sind
aber ebenso üblich.

Siehe Kapitel 2.9.11, „CSV-Dateien und Tabellenkalkulati-
onen“.

.odt

.ods

.odp

.odg

„open document text“, „… spreadsheet“, „… presentation“
„… drawing“

Das Open Document Format (kurz ODF) ist eine Gruppe
von Dateiformaten für Bürosoftware gemäß der internati-
onalen Norm ISO/IEC 26300. Der letzte Buchstabe legt
fest, ob es sich (unter anderem) um eine Textverarbei-
tungsdatei, eine Tabellenkalkulationsdatei, eine Präsenta-
tion oder eine Zeichnungsdatei handelt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 29

Suffix Formatname und Verwendung

.doc .docx

.xls .xlsx

.ppt .pptx

„Word document“, „Excel spreadsheet“, „Powerpoint
presentation“

Bürosoftwareformate der Firma Microsoft. Die Formate
ohne „x“ am Ende gelten als unsicher und veraltet.

.py

„Python-Quelltext“

Textdatei mit einem in der Sprache Python geschriebenen
Programm. Zur Ausführung wird ein Python-Interpreter
benötigt, der den Quelltext in Maschinenbefehle über-
setzt.

Siehe Kapitel 5, „Python“.

.zip

„zipped file“

Containerformat nach ISO/IEC 21320-1:2015, das andere
Dateien aufnehmen kann, um sie leichter weitergeben zu
können. Durch verlustfreie Kompression kann die Datei-
größe einer ZIP-Datei kleiner sein als die Summe der Da-
teigrößen der aufgenommenen Dateien.

Siehe Kapitel 2.3.4, „Archivdateien (Containerdateien)“

.7z

„7Z Datei“

Gegenüber ZIP erheblich verbessertes offenes Container-
format, das eine stärkere Datenkompression, größere auf-
nehmbare Datenmengen, sichere Verschlüsselung und Da-
teinamen mit Sonderzeichen im Unicode-Standard ermög-
licht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 30

Suffix Formatname und Verwendung

.jpg, .jpeg

„joint photographic experts group“

Verlustbehaftet komprimierendes Format für Digitalfotos.

Die Kompression wird üblicherweise nur gerade so stark
eingestellt, dass sie nicht zu erkennbaren Störungen
führt. Diese Störungen fallen besonders an harten Kon-
trastkanten auf und werden Kompressionsartefakte ge-
nannt.

Beim Versenden von Fotos in Messengern wie WhatsApp
werden Bildinhalte durch die übermäßige Kompression
oft erheblich beschädigt.

.png

„portable network graphics“

Verlustfrei komprimierendes Grafikformat für Rastergrafi-
ken. Rastergrafiken bestehen aus einer rechteckigen Ma-
trix aus Bildpunkten, denen jeweils eine Farbe und oft
auch ein Transparenzwert zugeordnet werden können.

Für kontrastreiche Grafiken mit starken Kontrasten und
einfarbigen Flächen, wie beispielsweise Screenshots, sind
PNG-Grafiken dem JPG-Format unbedingt vorzuziehen.

.svg

„scalable vector graphics“

Vektorgrafiken bestehen aus geometrischen Linien und
Flächen, die auch übereinander liegen können. SVG-Grafi-
ken können im Gegensatz zu Rastergrafiken beliebig ver-
größert werden, ohne dass sie dadurch unscharf werden.
Die einzelnen Elemente einer Vektorgrafik lassen sich
nachträglich beliebig verändern.

.ttf

.otf

„true type font“, „open type font“

Datei, die das Aussehen und Verhalten einer Schriftart de-
finiert.
Siehe Kapitel 2.8.2, „Schriftarten“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 31

Suffix Formatname und Verwendung

.exe

„executable“

Datei mit unter Windows ausführbarem Maschinencode.
EXE-Dateien werden mit einem Compiler aus Programm-
quelltexten erzeugt, die in einer Programmiersprache ver-
fasst wurden.

Versteckte Erweiterungen unter Microsoft Windows

Für Programme, die Dateien verarbeiten, ist es erforderlich, den genauen

Namen einer Datei und des Verzeichnisses, in dem diese sich befindet, zu

kennen. Leider wird beides im Windows-Explorer in der Regel nicht oder

sogar falsch angezeigt, obwohl Windows die Dateinamenerweiterung

zwingend zur Erkennung des Dateiformats benötigt.

Unter anderen Betriebssystemen wie macOS oder Linux gibt es diesen

Zwang zur Dateinamenerweiterung nicht. Der Dateityp hängt dort auch

vom Inhalt der Datei ab, nicht nur von ihrem Namen. Um diese

Benutzungsfreundlichkeit vorzutäuschen, versteckt der Windows-Explo-

rer daher seit Windows XP bei manchen bekannten Dateitypen die vor-

handenen Dateinamenerweiterungen vor den Anwenderinnen und Anwen-

dern.

Das hat nicht nur den unangenehmen Nebeneffekt, dass Kriminelle im-

mer wieder erfolgreich ausführbare Windows-Programme durch ihre Op-

fer starten lassen, weil das jenen zugeschobene ausführbare Programm

im Explorer wie eine harmlose Bild- oder Textdatei gelistet wird, es be-

wirkt auch, dass wir Dateien im Windows-Explorer nicht mehr vollständig

umbenennen können. Eine neu angelegte Textdatei „Berechnung.txt“

wird im Windows-Explorer beispielsweise nur als „Berechnung“ ange-

zeigt. Handelt es sich bei der Textdatei aber um ein Python-Programm, so

sollte es stattdessen auf „.py“ enden, um durch Doppelklick gestartet

oder durch Rechtsklick mit IDLE geöffnet zu werden.

Wir können zwar versuchen, die Datei umzubenennen, doch hilft uns das

zunächst nicht weiter. Der Windows-Explorer zeigt die umbenannte Text-

datei anschließend zwar irreführenderweise als „Berechnung.py“ an,

führt das darin enthaltene Programm jedoch beim Doppelklicken immer

Martin Vogel: Bauinformatik mit Python, WS 2025/26 32

noch nicht aus, sondern lädt die Datei weiterhin nur in den Texteditor. In

Wirklichkeit heißt sie nun nämlich „Berechnung.py.txt“ und wird von

Windows daher immer noch als Textdatei behandelt.

Um diese unnötigen Probleme loszuwerden, sollten Sie im Datei-Explorer

jeder Windows-Installation, der Sie begegnen, eine Einstellung vorneh-

men, die dafür sorgt, dass Dateinamen grundsätzlich unverstümmelt an-

gezeigt werden.

Unter Windows 10/11 drücken Sie dazu die Windowstaste ⊞ und tippen

das Wort „Ordneroptionen“. Sie erreichen so die hinter der etwas schrä-

gen Bezeichnung „Suchoptionen für Dateien und Ordner ändern“ ver-

steckten „Explorer-Optionen“ der Systemsteuerung.

Abb. 7: Ordneroptionen in Windows XP (2001) und Windows 11 (2022)

Seit einiger Zeit blendet auch macOS bei einigen Dateitypen den hinteren

Teil von Dateinamen aus. Das kann für jede einzelne Datei in deren Eigen-

schaftendialog (Cmd-i) deaktiviert werden. In den Einstellungen des Fin-

ders lässt sich dieses Verhalten allerdings auch gleich systemweit abstel-

len. Dazu muss dort das Häkchen vor „Alle Suffixe einblenden“ gesetzt

werden (Abb. 8).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 33

Abb. 8: Dateinamenerweiterungen bei macOS heißen Suffixe

Verbotene Zeichen und Dateinamen unter Windows

Unter Microsoft Windows 11 dürfen diese neun ASCII-Zeichen nicht in

Dateinamen verwendet werden: < > : " | ? * \ /

Dies kann zu Problemen führen, wenn Dateien aus anderen Betriebssyste-

men, die in der Regel nur den Schrägstrich nicht als Teil eines Dateina-

mens erlauben, auf einen Windowsrechner kopiert werden sollen.

Außerdem kann eine Datei niemals den Namen NUL tragen. In früheren

Windows-Versionen waren sogar die Namen CON, PRN, AUX, CONIN$,

CONOUT$, COM1 bis COM9 und LPT1 bis LPT9 als sogenannte „reservierte Ge-

rätenamen“ verboten. Diese Einschränkung galt selbst dann, wenn man

versuchte, der Datei außer dem verbotenen Namen auch eine Dateina-

menerweiterung zu geben. Unter Windows 11 ist das nur problematisch,

wenn die Anzeige von Dateiendungen im Windows-Explorer unterdrückt

wird.

Eine weitere Besonderheit von Microsoft Windows ist, dass es die Groß-

und Kleinschreibung bei Dateinamen ignoriert und daher keine Datei

„XYZ.txt“ anlegen kann, wenn in demselben Verzeichnis bereits eine Da-

tei „xyz.txt“ existiert. Stattdessen wird die vorhandene Datei überschrie-

ben. Das führt auch zu dem skurrilen Effekt, dass man die Groß- und

Kleinschreibung eines Dateinamens unter Windows nicht nachträglich än-

dern kann, ohne der Datei in einem Zwischenschritt einen Namen zu ge-

ben, der sich noch durch mindestens ein anderes Zeichen vom Ur-

sprungsnamen unterscheidet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 34

2.3.3 Desktop, Ordner und Verzeichnisse

In fast allen modernen PC-Betriebssystemen gibt es das Konzept einer Ar-

beitsfläche, auf der Dateien und Verzeichnisse oder Verweise darauf zum

schnellen Zugriff abgelegt werden können.

Diese Arbeitsfläche ist üblicherweise bildschirmfüllend und taucht im Da-

teimanager des Betriebssystems unter Namen wie „Desktop“ oder

„Schreibtisch“ auf. Auch aus diesem Grund werden Betriebssysteme wie

Microsoft Windows, Ubuntu Linux oder macOS heute als Desktop-Be-

triebssysteme bezeichnet1.

Unter Microsoft Windows finden wir weitere besondere Orte zur Dateiab-

lage in der baumartigen Anordnung im linken Panel des Dateimanagers

„Explorer“. Diese Verweise auf bestimmte Verzeichnisse werden als „Ord-

ner“ bezeichnet. Wir sehen im Bereich „Schnellzugriff“ zum Beispiel häu-

fig benötigte Ordner wie den Desktop oder den Ordner „Downloads“ für

die vorübergehende Aufbewahrung heruntergeladener Dateien. Diese Lis-

te lässt sich mit einem Rechtsklick auf die Einträge beliebig kürzen oder

erweitern.

Unterhalb der Schnellzugriffseinträge gibt es einen Bereich mit dem Na-

men „Dieser PC“, in dem ebenfalls der Desktop und der Download-Ordner

sowie die persönlichen Ordner für Bilder, „Dokumente“, Musik und Vide-

os aufgeführt sind.

Grundsätzlich ist es keine schlechte Idee, den Desktop oder den Down-

loadordner nicht mit allen möglichen Projektdateien zuzupflastern. Legen

Sie dafür besser Unterverzeichnisse im Ordner „Dokumente“ an.

1 Der andere Grund für diese Benennung ist, dass sich Computer mit Desktop-Betriebs-
systemen in der Regel auf, neben oder unter Schreibtischen befinden. Das führte zu
der Kuriosität, dass Notebooks einige Jahre lang „Laptops“ hießen, da man sie ja auf
dem Schoß (engl. lap) bedienen konnte. Die Bezeichnung wurde etwa zu dem Zeit-
punkt unpopulär, als sich herumsprach, dass die Nähe heißer Gerätelüfter zu mensch-
lichem Gewebe unerwünschte Wirkungen nach sich zieht (https://www.newscien-
tist.com/article/dn6777-hot-laptops-may-reduce-male-fertility/).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 35

https://www.newscientist.com/article/dn6777-hot-laptops-may-reduce-male-fertility/
https://www.newscientist.com/article/dn6777-hot-laptops-may-reduce-male-fertility/

Abb. 9: Bibliotheken als „Dieser PC“ im Windows-10-Explorer

Wo genau sich diese Ordner im Dateisystem der Festplatte oder anderer

angeschlossener Datenträger befinden, ist oft gar nicht auf Anhieb er-

kennbar. Kurioserweise ist die tatsächliche Verzeichnisstruktur unter

Microsoft Windows der im Explorer dargestellten Ordnung fast genau

entgegengesetzt.

Oberste Ordnungsinstanz sind in Wirklichkeit die Datenträger. Diese sind

in eine oder mehrere Partitionen unterteilt. Jeder von Windows lesbaren

Partition ist dabei ein Buchstabe zugeordnet. Diese Buchstaben werden in

der Regel fortlaufend vergeben. Die Buchstaben „A:“ und „B:“ sind für die

im letzten Viertel des vorigen Jahrhunderts in fast jedem PC zu findenden

Diskettenlaufwerke reserviert. Die Festplatte mit dem Windows-Betriebs-

system, den Anwendungsprogrammen und den persönlichen Daten heißt

daher auch heute immer noch nach dem ersten damals freien Buchstaben

„C:“. Rechner, die noch über ein optisches Laufwerk für CDs oder DVDs

Martin Vogel: Bauinformatik mit Python, WS 2025/26 36

verfügen, sehen dies in der Regel unter Windows als Laufwerk „D:“ und

für USB-Sticks und alle weiteren Laufwerke stehen die Buchstaben von

„E:“ bis „Z:“ zur Verfügung.

Unterhalb des Stammverzeichnisses „C:\“ befinden sich die Verzeichnisse

für das Betriebssystem („C:\Windows“), für Programme („C:\Program

Files“) und für die persönlichen Dateien („C:\Users\Anmeldename“).

Der Ordner „Desktop“ findet sich in Microsoft Windows 7 bis 11 schließ-

lich tief unten als Verzeichnis „C:\Users\Anmeldename\Desktop“ und die

unsinnigerweise1 als „Dokumente“ bezeichneten eigenen Dateien auf der-

selben Ebene als „C:\Users\Anmeldename\Documents“.

Abb. 10: Eigene Dateien unter Windows 10

Das Verzeichnis „C:\Users“ von Microsoft Windows entspricht somit dem

Verzeichnis „/home“ von Linux und Unix oder dem Verzeichnis „/Users“

von macOS.

Der Windows-Explorer versteckt die wahren Verzeichnisnamen seiner

Ordner seit Windows 11 außerordentlich hartnäckig. Konnte man unter

Windows 10 noch durch einen Klick auf das Icon links neben dem Ordner-

namen an den korrekten Verzeichnisnamen gelangen, besteht der einzige

Weg in Windows 11 darin, in das übergeordnete Verzeichnis zu wechseln,

den Ordner rechtszuklicken und den Menüpunkt „Als Pfad kopieren“ an-

1 Bevor die Microsoft Corporation das Wort „Dokument“ durch Anwendung auf alle
möglichen Arten beliebiger Informationsgruppen verwässerte, bedeutete es in
Deutschland „Urkunde“ oder „beweiskräftiges Schriftstück“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 37

zuklicken. Aus dem im Windows-Explorer angezeigten Ordnernamen „🖵

> Dokumente >“ wird dann der wahre Verzeichnisname „C:\Users\Anmel-

dename\Documents“, wenn wir den Inhalt der Zwischenablage in einem

Text einfügen.

Wir benötigen diese wahren Datei- und Verzeichnisnamen, wenn wir Pro-

gramme entwerfen, die selber Dateien anlegen, lesen, verarbeiten und

schreiben werden. Bis dahin genügen uns der Desktop oder der Ordner

für „Dokumente“.

2.3.4 Archivdateien (Containerdateien)

Um Gruppen von Dateien einfacher weitergeben zu können und um Platz

zu sparen, fassen wir mehrere Dateien und sogar ganze Verzeichnisbäu-

me zu einer komprimierten Archivdatei zusammen. Solche Dateien, die

mehrere andere Dateien aufnehmen, nennen wir auch „Containerdatei-

en“.

Unter Microsoft Windows heißen diese Archivdateien seit Windows XP

„ZIP-komprimierte Ordner“ und sind auf den ersten Blick von gewöhnli-

chen Verzeichnissen nur schwer zu unterscheiden. Die Funktion zum An-

legen eines ZIP-Archivs ist etwas versteckt angeordnet und befindet sich

beim Windows-Explorer im Kontextmenü der rechten Maustaste unter

dem Menüpunkt „Senden an …“.

Abb. 11: Anlegen eines ZIP-Archives im Windows-Explorer

Martin Vogel: Bauinformatik mit Python, WS 2025/26 38

Außer dem ZIP-Format von Windows gibt es noch andere Archivformate

wie RAR, TAR.BZ2 oder 7Z, die in der Regel effizienter komprimieren und

vielseitiger in der Bedienung sind.

Gerade das freie1 7Z-Format besitzt gegenüber ZIP Vorteile, da die vom

Windows-Explorer verwendete ZIP-Version einen Fehler2 aufweist, der da-

für verantwortlich ist, dass es Dateinamen mit Umlauten oder Sonderzei-

chen nicht eindeutig speichert. In lokal begrenzten Betriebssystemmono-

kulturen fällt der Fehler nicht auf, doch beim Austausch zwischen

unterschiedlichen Sprachversionen von Windows oder zwischen Windows

und anderen Betriebssystemen, wie Linux oder macOS, kommt es bei mit

dem Windows-Explorer erzeugten ZIP-Dateien immer wieder zu Proble-

men mit Dateinamen. Falls Sie ZIP-Dateien verwenden, sollten Sie für die

Dateinamen nur die Buchstaben „A“ bis „Z“ und „a“ bis „z“ sowie Ziffern,

Punkte und Unterstriche „_“ verwenden. Die Namen der verschiedenen

Dateien in der ZIP-Datei dürfen sich nicht nur durch Groß- und Klein-

schreibung unterscheiden, da Microsoft Windows sonst Probleme beim

Entpacken dieser Dateien verursacht.

Abb. 12: ZIP-Datei mit Windows-Umlauten unter Linux

1 Als „frei“ bezeichnen wir Software, wenn ihre Verwendung von Patenten und sonsti-
gen Verwendungsbeschränkungen unbelastet ist. Freie Software ist nicht notwendi-
gerweise kostenlos. Oft wird das Wort „frei“ daher durch Erläuterungen ergänzt: „frei
wie freie Rede“ im Gegensatz zu „frei wie Freibier“.
Das Programm 7zip erhalten Sie auf https://www.7-zip.org/download.html

2 Wer das Wort „Fehler“ nicht mag, darf es hier durch „microsofttypische Besonderheit
zur Aufrechterhaltung der Rückwärtskompatibilität“ ersetzen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 39

https://www.7-zip.org/download.html

Dass Windows ZIP-Archive scheinbar als gewöhnliche Verzeichnisse be-

handelt, führt in der Praxis häufig zu Problemen, denn die „transparente“

Unterstützung von ZIP-Archiven durch Windows birgt eine Fußangel. Der

Windows-Explorer tut zwar so, als sei eine ZIP-Datei ein ganz normales

Verzeichnis, tatsächlich wird jedoch jede im Archiv enthaltene Datei,

wenn sie doppelgeklickt wird, einzeln in das Windows-Temporärverzeich-

nis „%tmp%“ entpackt und dort mit dem Programm geöffnet, das ihrem

jeweiligen Dateityp zugeordnet ist. Die anderen Dateien des Archivs, die

von der doppelgeklickten Datei möglicherweise benötigt werden, werden

jedoch dort im Temporärverzeichnis nicht gefunden, weil sie sich noch

unausgepackt in der Archivdatei befinden.

Viele Programme weigern sich außerdem, geöffnete Dateien aus dem

Temporärverzeichnis nach Änderungen wieder dort zu speichern, weil

Windows die Änderungen dann nicht wieder in die Datei im ZIP-Archiv

überträgt. Wenn Sie bereits Änderungen an einer Datei durchgeführt ha-

ben, können Sie diese unter einem anderen Namen in einem regulären

Verzeichnis speichern, damit die Änderungen nicht verlorengehen.

Heruntergeladene ZIP-Archive sollten Sie daher immer komplett entpa-

cken, bevor Sie Dateien daraus bearbeiten.

Auch moderne Bürosoftwaredateien bestehen intern aus einer Vielzahl

von Einzeldateien (Texte, Bilder, Formatanweisungen, etc.) und befinden

sich ebenfalls in einem ZIP-komprimierten Container. Wenn wir beispiels-

weise eine .docx-Datei mit der Endung .zip versehen, können wir sie un-

ter Windows wie ein Verzeichnis öffnen und auf alle darin enthaltenen

Grafikdateien zugreifen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 40

2.4 Zwischenablage

Die Zwischenablage (ZA) ist unter vielen Betriebssystemen ein Konzept,

mit dem innerhalb eines Programms oder programmübergreifend Daten

ausgetauscht werden können.

Meistens ist die Zwischenablage über das Menü „Bearbeiten“ eines An-

wendungsprogramms erreichbar, fast immer über das Kontextmenü nach

Drücken der rechten Maustaste und am schnellsten über drei unter Wind-

ows und Linux einheitliche Steuerungstastenkombinationen:

Strg C Kopieren (Markierte Inhalte werden in die ZA kopiert)

Strg X Ausschneiden (Inhalte werden in die ZA verschoben)

Strg V Einfügen (Von der Zwischenablage an ein neues Ziel)

Gelegentlich finden wir in Programmen zudem die Funktion „Einfügen als

…“, die es uns erlaubt, das Format oder die Art der einzufügenden Daten

auszuwählen (zum Beispiel als „normaler Text“ oder „formatierter Text“).

Sie ist in der Regel über die Tastenkombination Strg ⇧ V erreichbar.

Auf manchen Tastaturen ist die Steuerungstaste nicht mit Strg (Steue-

rung1), sondern mit Ctrl (Control) beschriftet. Auf Apple-Rechnern wer-

den die Tastaturkommandos für die Zwischenablage nicht mit der Steue-

rungstaste, sondern mit der Taste ⌘ (Command) ausgelöst.

Im Englischen heißt die Zwischenablage Clipboard (Klemmbrett), wes-

halb die Einfügen-Funktion üblicherweise über ein wie ein Klemmbrett

aussehendes Icon erreichbar ist.

Abb. 13: Icons für „Ausschneiden“, „Kopieren“ und „Einfügen“

1 Falls Ihr Informatiklehrer Ihnen beigebracht hat, diese Taste hieße „String“, „Stran-
ge“ oder „Strong“, geben Sie ihm bitte meine Telefonnummer. Ich muss mit ihm re-
den.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 41

In Abbildung 13 befindet sich rechts neben dem Klemmbrett-Icon ein klei-

nes Dreieck, hinter dem sich ein nach unten aufklappendes sogenanntes

Drop-Down-Menü verbirgt, das die zur Verfügung stehenden Einfügefor-

mate des Zwischenablageinhalts aufzählt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 42

2.5 Bildschirmkopien

Zu Dokumentationszwecken ist es oft sinnvoll, Grafiken mit dem aktuel-

len Bildschirminhalt oder Teilen davon als sogenannte „Screenshots“ in

einen Text einzufügen. Smartphonefotos sind als schnelle Bildnotizen

sehr beliebt, eignen sich für technische Dokumentationen jedoch fast nie,

da sie in der Regel verwackelt, verdreht, verzerrt, unscharf, farbstichig,

falsch belichtet und mit einem als Moiré bekannten Streifenmuster über-

zogen sind. Besser ist es, den Bildschirminhalt unmittelbar zu verwenden.

Als sehr praktisch erweist sich dazu bei PCs die Taste Druck . Ende des

vergangenen Jahrhunderts sorgte das Drücken dieser Taste noch dafür,

dass die gerade angezeigten 80 × 25 Zeichen des Textbildschirms auf

dem angeschlossenen Drucker ratternd zu Papier gebracht wurden. Mit

der Einführung von Betriebssystemen mit grafischen Benutzungsoberflä-

chen wurde die Funktion dieser Taste jedoch geändert. Sie kopiert nun

unter den meisten Windowsversionen den gesamten Bildschirminhalt in

die Zwischenablage und schreibt ihn unter Linux in eine Bilddatei im Bil-

derordner des angemeldeten Benutzers bzw. der angemeldeten Benutze-

rin. Die Tastenkombination Alt Druck kopiert nur den Inhalt des aktuel-

len Fensters (einschließlich der Fensterdekorationen wie Rahmen und

Titelzeile). Die meisten Bildschirmkopien in diesem Buch sind so entstan-

den.

Auf Apple-Tastaturen gibt es keine dedizierte Druck-Taste; hier helfen

Tastenkombinationen aus ⌘ (Command), ⇧ (Shift oder Umschalttaste),

␣ (Leertaste) sowie der Ziffern 3 und 4 weiter.

Auch Mobiltelefone verfügen in der Regel über eine Screenshotfunktion.

Unter dem Linux-Betriebssystem Android wird diese häufig durch exakt

gleichzeitiges Drücken der Tasten an/aus und leiser ausgelöst und auf

älteren iPhones durch exakt gleichzeitiges Drücken der Tasten an/aus

und home . Neuere Apple-Smarthones ohne Home-Button verlangen

stattdessen die Tastenkombination aus an/aus und lauter . Je nach Mo-

dell und Hersteller sind auch andere Tastenkombinationen, Klopfsignale,

Wischgesten oder Spracheingabebefehle möglich. Der Phantasie der Her-

steller scheinen hier keine Grenzen gesetzt zu sein: Auf Samsung-Geräten

wischt man mit der Handkante von rechts nach links, auf Xiaomi- und

Martin Vogel: Bauinformatik mit Python, WS 2025/26 43

OnePlus-Geräten wischt man mit drei Fingern von oben nach unten, auf

Huawei-Geräten klopft man zweimal mit dem Fingerknöchel auf den Bild-

schirm.

Unter Windows, Linux und macOS können wir auch beliebige Ausschnitte

von Bildschirminhalten anfertigen. Die folgende Tabelle zeigt die dazu er-

forderlichen Tastenkombinationen:

Funktion Linux macOS Windows

Den gesamten Bildschirm
in die Zwischenablage ko-
pieren

Strg Druck Ctrl ⌘ ⇧ 3 Druck

Den gesamten Bildschirm
als Grafikdatei speichern

Druck ⌘ ⇧ 3 ⊞ Druck 1

Das aktuelle Fenster in die
Zwischenablage kopieren

Strg Alt
Druck

Ctrl ⌘ ⇧ 4
␣

Alt Druck

Das aktuelle Fenster als
Grafikdatei speichern

Alt Druck ⌘ ⇧ 4 ␣

Einen rechteckigen Bereich
in die Zwischenablage ko-
pieren

Strg ⇧
Druck

Ctrl ⌘ ⇧ 4 ⊞ ⇧ S 2

Einen rechteckigen Bereich
als Grafikdatei speichern

⇧ Druck ⌘ ⇧ 4

Ein kurzes3 Video des auf
dem primären Monitor lau-
fenden Desktops als Datei
aufzeichnen/stoppen

Ctrl Alt ⇧
R

In Windows 11 und in der Linux-Desktop-Umgebung GNOME 42 wurden

die zahlreichen Tastenkombinationen durch ein grafisches Menü abge-

löst, das alle Optionen vereinigt. Bildschirmkopien werden hier nach Aus-

lösen der Druck-Taste und Wahl der entsprechenden Option sowohl in die

Zwischenablage kopiert als auch im Verzeichnis „~/Bilder/Bildschirmfo-

1 Erst ab Windows 10

2 Erst ab Windows 10 „Creators Update“, 2017

3 Standardmäßig wird die Aufzeichnung nach 30 Sekunden beendet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 44

tos“ abgelegt. Videos werden entsprechend im Verzeichnis „~/Videos/

Bildschirmaufzeichnungen“ gesammelt und dürfen nun auch mehrere Mi-

nuten lang sein.1

Abb. 14: Bildschirmkopiemenü in GNOME 42 und Windows 11

Das Bildschirmkopiemenü von Windows 11 bietet zusätzlich einen prakti-

schen Farbwähler, welche die Farbnamen und Hexcodes beliebiger Bild-

schirmstellen anzeigt, sowie eine Funktion, um regulär nicht mit der

Maus auswählbaren Text, zum Beispiel in Grafiken oder geschützten In-

halten von Webseiten und PDF-Dateien, mittels optischer Zeichenerken-

nung zu extrahieren. Es ist auch möglich, dem Bildschirmausschnitt grafi-

sche Elemente wie Pfeile oder Hervorhebungen hinzuzufügen.

Noch mehr Möglichkeiten bieten Grafikprogramme wie das sehr umfang-

reiche kostenlose Bildbearbeitungsprogramm GIMP2. Hiermit können Sie

auch zeitversetzte Bildschirmkopien anfertigen und sind sogar in der La-

ge ist, den Mauszeiger auf einem eigenen Layer in die Bildschirmkopie zu

übernehmen.

1 Das sind die Namen der Linux-Verzeichnisse. In Windows müssen die Schrägstriche
umgedreht und das Symbol ~ durch %USERPROFILE% ersetzt werden.

2 https://docs.gimp.org/de/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 45

https://docs.gimp.org/de/

2.6 Sonderzeichen

Satzzeichen, Symbole und Buchstaben, die nicht über einzelne Tastendrü-

cke eingegeben werden können, nennen wird Sonderzeichen. Um diese

Zeichen zu verwenden, können wir sie aus einer Zeichentabelle heraussu-

chen.

Abb. 15: Die Zeichentabelle von Windows 11

Im Internet finden wir umfangreiche Codetabellen1, in denen jedem Zei-

chen eine eindeutige Nummer zugeordnet ist, die oft als Hexadezimalzahl

dargestellt wird. Die meisten modernen Programme unterstützen die in-

ternational genormte Zeichenzusammenstellung Unicode. Jedes weltweit

verwendete Schriftzeichen und tausende gängige Symbole einschließlich

der unentrinnbaren Emojis sind dort mit einer festgelegten Kodierung zu

finden. So lauten die Zeichencodes für die beiden griechischen Buchsta-

ben α und β beispielsweise U+03b1 und U+03b2.

1 zum Beispiel https://symbl.cc/de/unicode-table/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 46

https://symbl.cc/de/unicode-table/

Um Sonderzeichen in Python zu verwenden, können wir entweder diesen

Zeichencode verwenden, wir schreiben „α und β“ dann wie in

print("\u03b1 und \u03b2"), oder wir suchen das jeweilige Zeichen

aus der Zeichentabelle des Betriebssystems heraus und fügen es über die

Zwischenablage in den Quelltext ein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 47

2.7 Texteditoren

Wir benötigen zum Editieren, also zum Verfassen und Bearbeiten von

Quelltexten, ein geeignetes Programm. Python bietet mit der integrierten

Entwicklungsumgebung „IDLE“ bereits einen einfachen Texteditor an.

Dieser ist für kleinere Programme recht praktisch – nicht zuletzt, weil

dort durch Drücken der Taste F5 sofort das gerade getippte Programm

ausgeführt werden kann.

Abb. 16: Der Editor der Entwicklungsumgebung IDLE

Texteditoren für Programmierende können die verschiedenen Elemente

eines Quelltextes je nach ihrer Bedeutung farblich kennzeichnen. Diese

sogenannte Syntaxhervorhebung (engl.: syntax highlighting) hilft uns bei

der Fehlersuche, da falsch geschriebene Schlüsselwörter und Standard-

bezeichner oder das Fehlen von Kommentar- und Anführungszeichen zu

einer farblichen Auffälligkeit der Fehlerstelle führen.

Damit das Syntax-Highlighting funktioniert, muss der Editor „wissen“,

welche Art von Text wir schreiben, denn ein Python-Programm wird logi-

scherweise ganz anders farbig markiert als ein HTML-Quelltext. In der

Regel trifft die Software die Entscheidung anhand der Dateinamenerwei-

Martin Vogel: Bauinformatik mit Python, WS 2025/26 48

rot: Kommentare grün: Zeichenkettenkonstanten

purpur:
Standardbezeichner,
z. B. vorbelegte
Funktionen

schwarz: Sonderzeichen
und eigene oder
importierte Bezeichner

orange:
Schlüsselwörter

blau: Namen von Klassen-
und Funktionsdefinitionen

terung. Das bedeutet aber auch: solange ein neuer Text nicht mit der kor-

rekten Dateinamenerweiterung gespeichert wurde, ist das Syntax-High-

lighting häufig inaktiv.

Hilfreich ist es auch, wenn der Editor die Nummer der aktuellen Textzeile

anzeigt, damit wir diese bei Fehlern während des Programmlaufs schnell

auffinden und korrigieren können. Beim Editor der IDLE lässt sich die An-

zeige der Zeilennummern in den Voreinstellungen dauerhaft aktivieren.

Dort können Sie auch festlegen, ob Sie wirklich jedesmal gefragt werden

wollen, ob Ihr Programm gespeichert werden soll, bevor Sie es mit F5

ausführen dürfen.

Linux-Distributionen enthalten in der Regel eine Vielzahl geeigneter Edi-

toren. Populäre und einfach zu bedienende Editoren mit grafischer Be-

nutzungsoberfläche sind dort beispielsweise „Gedit“ oder „Geany“.

Abb. 17: Gedit unter Ubuntu Linux

Unter Microsoft Windows gibt es in der Standardausstattung des

Betriebssystems keine geeignete Software. Sie können jedoch mehrere

kostenlose Windowsprogramme im Internet finden.

Welchen Texteditor Sie zum Verfassen und Bearbeiten von Quelltexten

verwenden, ist weitgehend Geschmackssache. Probieren Sie einfach ein

paar aus!

Martin Vogel: Bauinformatik mit Python, WS 2025/26 49

Gute Erfahrungen haben wir mit den Programmen „PSPad“ des tschechi-

schen Programmierers Jan Fiala1 und „Notepad++“ von Don Ho aus

Frankreich2 gemacht. Auch der unter Linux sehr verbreitete Editor „Ge-

dit“ ist in einer Windowsversion zu haben3.

Ein Textverarbeitungsprogramm wie Microsoft Word oder LibreOffice

Writer4 ist zum Schreiben von Pythonprogrammen ungeeignet, da beim

Speichern in den Standarddateiformaten dieser Programme zusätzliche

Metadaten – das sind beispielsweise Gestaltungs- und Verwaltungsinfor-

mationen – in die Dateien geschrieben werden, wodurch die eigentlichen

Inhalte für unsere Zwecke unbrauchbar werden.

1 Jan Fiala, PSPad, http://www.pspad.com/de/download.php

2 Don Ho, Notepad++, http://notepad-plus-plus.org

3 GNOME text editor, Gedit, https://wiki.gnome.org/Apps/Gedit

4 Der kostenlose und quellenoffene LibreOffice Writer ist auch das Programm, mit dem
ich gerade dieses Pythonbuch für Sie schreibe: http://de.libreoffice.org.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 50

http://de.libreoffice.org/
https://wiki.gnome.org/Apps/Gedit
http://notepad-plus-plus.org/
http://www.pspad.com/de/download.php

2.8 Textverarbeitungen

Textverarbeitungen und Textsatzsysteme erlauben es, längere struktu-

rierte Texte layoutunabhängig zu erfassen und inhaltsunabhängig zu ge-

stalten. Sie erstellen automatisch Inhalts-, Abbildungs- und Literaturver-

zeichnisse, passen Texte und Abbildungen in den vorgesehenen Bereich

ein und führen Querverweise innerhalb eines Textes automatisch nach.

Bei den meisten Programmen werden mehrere Dokumentvorlagen (Tem-

plates) mitgeliefert, um den Text direkt mit einem ansprechenden Layout

beginnen zu können. Die Vorlagen von Microsoft Word gehen allerdings

überwiegend an den Gestaltungserwartungen technisch-wissenschaftli-

cher Texte vorbei.

Abb. 18: Dokumentvorlagen in Microsoft Word 2021

Martin Vogel: Bauinformatik mit Python, WS 2025/26 51

Für LibreOffice gibt es auf der Erweiterungs-Website des Projekts1 von

Anwenderinnen und Anwendern des Programms erstellte Vorlagen, die

für unsere Bedürfnisse vermutlich eher angebracht sind.

Abb. 19: Dokumentvorlagen für LibreOffice

Erstaunlich häufig werden Dokumentvorlagen in deutschsprachigen Tex-

ten „Formatvorlagen“ genannt. Das ist ziemlicher Unfug, wie wir im

nächsten Kapitel sehen werden.

1 https://extensions.libreoffice.org

Martin Vogel: Bauinformatik mit Python, WS 2025/26 52

https://extensions.libreoffice.org/

2.8.1 Formatvorlagen

Die sogenannten „Formatvorlagen“ legen fest, wie semantische Elemente

eines Textes wie beispielsweise Überschriften, Absätze, Zitate und Ver-

zeichnisse gestaltet werden sollen. Es sind also eigentlich gar keine fes-

ten Vorlagen, sondern vielmehr jederzeit veränderliche Einstellungen. In

manchen Programmen heißen diese Gestaltungseinstellungen auch Stile,

Styles oder Stylesheets. Da das Wort aber durch die Dominanz von Micro-

soft-Produkten eine weite Verbreitung erfahren hat, verwenden wir es

nun ebenfalls.

Als Beispiel für die Anwendung einer Formatvorlage schauen wir uns ein-

mal die Überschrift 2. Grades an, wie sie über diesem Absatz steht. Die

Formatvorlage enthält hier die Information, dass sie in 16 Punkt hoher

Schrift in der Schriftart „DejaVu Sans“ gesetzt und fett gedruckt werden

soll. Falls nun alle Überschriften 2. Grades ein anderes Aussehen erhalten

sollen, so genügt es, diese Formatvorlage zu ändern und sofort werden

sämtliche mit ihr formatierten Überschriften angepasst.

Abb. 20: Schrifteinstellung einer Formatvorlage

Martin Vogel: Bauinformatik mit Python, WS 2025/26 53

Um einem Textabschnitt eine Formatvorlage zuzuweisen, markieren Sie

ihn mit der Maus und wählen die gewünschte Vorlage aus der Formatie-

rungsleiste der Textverarbeitung.

Abb. 21: Absatzformatvorlagen in LibreOffice

Üblicherweise werden Formatvorlagen absatzweise zugeordnet. Um nur

einige Buchstaben oder Wörter gestalterisch definiert abzuheben, gibt es

neben den Absatzvorlagen auch sogenannte Zeichenvorlagen.

2.8.2 Schriftarten

Als Schriftart bezeichnet man die Gestaltung der Buchstaben und ande-

ren Zeichen einer Schrift. Die Dateien, in denen die Formen dieser Zei-

chen gespeichert werden, nennen wir Schriftartendateien oder Fontdatei-

en. Sie tragen im PC-Bereich häufig die Dateinamenerweiterung .ttf

oder .otf für „True Type Font“ bzw. „Open Type Font“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 54

Abb. 22: Bearbeitung eines Buchstabens im Fonteditor FontForge

Eine Textverarbeitung kann beliebig viele Schriftarten verwenden. Aller-

dings kann es ein Problem geben, wenn Sie Textverarbeitungsdateien

weitergeben. Wenn Sie Pech haben, sieht Ihre Datei auf unterschiedli-

chen Rechnern, unter unterschiedlichen Betriebssystemen oder in unter-

schiedlichen Textverarbeitungen ganz anders aus als beim Schreiben.

Schuld daran sind oft fehlende Schriftartendateien.

Wenn Sie zu mehreren Personen an einer Datei arbeiten, sollten alle die-

selben Schriftartendateien installiert haben oder sie in das Dokument ein-

binden. In LibreOffice geschieht das mit dem Menübefehl „Datei → Eigen-

schaften → Schriftart → Schriftarten ins Dokument einbetten“.

Nicht alle Schriftarten erlauben die Einbindung. Manche unterliegen sehr

restriktiven Nutzungslizenzen.

2.8.3 Zeichenformatierung

Sie können Textstücke direkt formatieren anstatt Formatvorlagen zu ver-

wenden, das sollte aber möglichst die Ausnahme bleiben, weil die Bear-

beitbarkeit vor allem längerer Texte dadurch erheblich erschwert wird.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 55

Hervorhebungen von Textstellen werden auch Auszeichnungen genannt.

Sie sollten äußerst sparsam verwendet werden, weil sie den Lesefluss

u n t e r b r e c h e n und dadurch die Lesbarkeit eines Textes vermindern

können.

Abb. 23: Zeichenformatierung in LibreOffice

Für Fettschrift wird Text mit dem Format „fett“ versehen. Der Button da-

für ist in eingedeutschten Textverarbeitungen meistens ein fettgeschrie-

benes „F“, gelegentlich aber auch ein „B“ (für „bold“) oder sogar nur ein

„A“.

Kursivschrift soll ein wenig an geschwungene, leicht schräg gestellte

Handschrift erinnern. Kursiv formatierte Buchstaben sind daher nicht

einfach parallelogrammartig geschert, sondern in der Regel komplett an-

ders gestaltet als die geraden Buchstaben einer Schriftart.

Die Unterstreichung ist eine Auszeichnungsform, die heute eher selten

genutzt wird, da unterstrichene Textstellen zu sehr wie Hyperlinks ausse-

hen und so für Verwirrung sorgen.

S p e r r s c h r i f t mit einzeln geschriebenen Buchstaben ist verpönt, da

durch Leerzeichen auseinandergezogene Wörter nicht durch die Such-

funktion gefunden werden können und auch die automatische Silbentren-

nung hier nicht funktioniert.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 56

https://martinvogel.de/lexikon/hyperlink.html

2.8.4 PDF-Dateien

Zum Austausch von Texten, bei denen es auf das exakte Aussehen an-

kommt, verwenden wir das „portable document format“ PDF. Wenn wir in

LibreOffice die Option „Gliederung exportieren“ verwenden, erhalten wir

ein navigierbares PDF-Dokument, in dem wir alle Kapitel direkt ansprin-

gen können.

Zum erstmaligen Erzeugen einer PDF-Datei wählen Sie den Menübefehl

„Datei → Exportieren als … → als PDF exportieren“. Dort nehmen Sie alle

gewünschten Einstellungen vor, zum Beispiel, dass die Gliederung expor-

tiert werden soll. Alle weiteren PDF-Exportvorgänge können Sie zukünf-

tig aus dem Hauptbildschirm durch Anklicken des PDF-Icons auslösen.

In Microsoft Office Word ist die Einstellung etwas versteckter. Rufen Sie

im Datei-Menü den Befehl „Exportieren“ auf und wählen Sie dort „PDF/

XPS-Dokument erstellen“ aus. Im nächsten Dialog drücken Sie den But-

ton „Optionen“ und aktivieren im sich öffnenden Dialog im Abschnitt

„Nicht druckbare Informationen einschließen“ den Unterpunkt „Textmar-

ken erstellen mithilfe von“. Dort wählen Sie „Word-Textmarken“ oder

„Überschriften“ aus. Wenn der Unterpunkt „Textmarken erstellen mithilfe

von“ ausgegraut und nicht auswählbar ist, besitzt Ihr Text keine richtigen

Überschriften. Verwenden Sie für Überschriften immer die entsprechen-

den Formatvorlagen und keine direkten Formatierungen!

Auf den meisten Rechnern werden PDF-Dateien standardmäßig mit einem

Webbrowser geöffnet. Um darin navigieren zu können, können Sie links

eine Seitenleiste einblenden. Je nach Browser heißt das zuständige Icon

am oberen Rand „Seitenleiste“ oder „Lesezeichen“ oder sieht aus wie ein

Hamburger: ≡. Wenn Ihr Browser das nicht unterstützt, ist ein zusätzli-

cher PDF-Betrachter, wie beispielsweise Evince, sinnvoll. Software der

Firma Adobe benötigen Sie entgegen häufig verbreiteter Falschinformati-

onen nicht. Der Adobe Reader ist außerdem ziemlich ressourcenhungrig

und braucht mitunter recht lange, um überhaupt zu starten und eine

PDF-Datei anzuzeigen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 57

Abb. 24: Navigation der PDF-Dokumentstruktur in Firefox

2.8.5 Grafiken

Um eine Grafik in einen Text einzufügen, können Sie die gewünschte Gra-

fikdatei mit der Maus direkt in den Text ziehen. Vorhandener Text fließt

automatisch um die Grafik herum. Die Höhe und Breite der Grafik passen

Sie freihändig mit der Maus an oder Sie bestimmen die Abmessungen nu-

merisch exakt über die Eigenschafteneinstellungen, die Sie durch Rechts-

klicken der Grafik aufrufen. Kontrast und Helligkeit lassen sich nachträg-

lich einstellen. Das ist besonders für eingefügte Smartphonefotos wichtig,

mit denen Sie besonders einfach auf Papier vorliegende Bildinhalte in

Ihren Text übernehmen können.

Die Abstände der Grafik zum umgebenden Text können Sie nach Belieben

einstellen. Um einer Grafik eine Beschriftung zuzuordnen, rechtsklicken

Sie diese und wählen den Menüeintrag „Beschriftung einfügen …“. Sie

können zwischen verschiedene Kategorien auswählen, für die Sie später

separate Abbildungsverzeichnisse erstellen können.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 58

2.8.6 Verzeichnisse

Sie können automatisch aus Kapitelüberschriften Inhaltsverzeichnisse

oder aus Bildbeschreibungen Abbildungsverzeichnisse erstellen lassen,

die an einer beliebigen Stelle im Text eingefügt werden können. Achten

Sie darauf, alle Verzeichnisse vor dem Drucken oder vor dem Exportieren

des Textes als PDF-Datei aktualisieren zu lassen. In LibreOffice geschieht

das über die Menüfolge „Extras → Aktualisieren → Alles“.

2.8.7 Erzwungene neue Seite

Mit Strg ↲ erzeugen Sie einen festen Seitenumbruch. Normalerweise ist

das niemals notwendig. Versuchen Sie auf keinen Fall, durch wiederhol-

tes Drücken der Eingabetaste auf die nächste Seite zu kommen. Sie wür-

den damit zeigen, dass Sie nicht begriffen haben, was eine Textverarbei-

tung von einer Schreibmaschine unterscheidet.

Auch zwischen zwei Absätze setzen Sie bitte nicht einfach eine leere Zei-

le. Arbeiten Sie immer mit den Abstandseinstellungen des verwendeten

Absatzformates.

2.8.8 Kopf- und Fußzeilen

Der Text in Kopf- und Fußzeilen erscheint auf jeder Seite Ihres Textes. Ei-

ne automatische Seitenzahl fügen Sie dort durch den Menübefehl „Einfü-

gen → Seitennummer“ ein. Andere automatisch aktualisierbare Inhalte,

wie den Namen der Textverarbeitungsdatei, das Druckdatum oder die Ge-

samtbearbeitungszeit erhalten Sie über „Einfügen → Feldbefehl“.

Es ist empfehlenswert, dass Sie sich für die Hausaufgaben in diesem Fach

zumindest aneignen, wie man mit dem von Ihnen bevorzugten Programm

Überschriften korrekt setzt, ein Inhaltsverzeichnis erzeugt, die Recht-

schreibkorrektur verwendet, Grafiken einbindet und PDF-Dateien er-

zeugt.

Darüber hinaus ist das Thema „Textverarbeitung“ nicht Bestandteil dieses

Kurses.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 59

2.9 Tabellenkalkulationen

Tabellenkalkulationen gehören zu den ältesten Anwendungsprogrammen

der PC-Geschichte. Sie trugen maßgeblich zur schnellen Verbreitung die-

ser Geräte in Buchhaltungen und Ingenieurbüros bei.

Abb. 25: Tabellenkalkulation 1979 (Bild: Wikipedia)

Bereits 1979 erschien die Tabellenkalkulation Visicalc für den Apple][, ei-

nem der ersten je gebauten Personal Computer. 1983 war Lotus 1-2-3 für

das junge Betriebssystem DOS erhältlich, ein Jahr später brachte das

frisch gegründete Startup-Unternehmen „Micro-Soft“ für den Apple

Macintosh die Tabellenkalkulation Excel auf den Markt. Excel war eine

dermaßen originalgetreue Kopie von Lotus 1-2-3, dass es von diesem so-

gar den Fehler übernahm, das Jahr 1900 als Schaltjahr auszuweisen1.

1985 veröffentlichte der Lüneburger Schüler Marco Börries das Pro-

gramm StarWriter für den 8-Bit-Heimcomputer Schneider CPC, welches

1995 zum ersten plattformübergreifenden Bürosoftwarepaket StarOffice

heranwuchs und Grundlage für das heutige LibreOffice (bzw. OpenOffice)

wurde. 2006 schließlich machte Google mit der Browserapplikation „Text

und Tabellen“ die Tabellenkalkulation unabhängig von einzelnen PCs und

ermöglichte es, mit mehreren Personen gleichzeitig über das Internet an

derselben Datei zu arbeiten.

1 Konrad Lischka, Das Excel-Phantomschaltjahr 1900, 2008, http://www.spiegel.de/
netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637-
4.html

Martin Vogel: Bauinformatik mit Python, WS 2025/26 60

https://web.archive.org/web/20220522054905/https://www.spiegel.de/netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637.html
https://web.archive.org/web/20220522054905/https://www.spiegel.de/netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637.html
https://web.archive.org/web/20220522054905/https://www.spiegel.de/netzwelt/web/technikaergernis-tabellenkalkulation-so-falsch-rechnet-excel-a-563637.html

Allen Tabellenkalkulationen gemeinsam ist das Rechengitter oder Arbeits-

blatt, in dessen Zellen Zahlenwerte, Texte oder Formeln gespeichert und

ausgeführt werden können. Traditionell werden bei den meisten Tabellen-

kalkulationen die Spalten dieses Arbeitsblattes mit Buchstaben und die

Zeilen mit Zahlen bezeichnet. Die Zelle mit der Zellenadresse „B3“ ist al-

so in der dritten Zeile der zweiten Tabellenspalte zu finden.

Wenn Tabellenblätter mehr als 26 Spalten verwenden, werden die Spal-

tenbezeichner aus mehreren Buchstaben zusammengesetzt. Nach der 26.

Spalte „Z“ folgen als 27. und 28. Spalte „AA“ und „AB“, nach der 676.

Spalte "ZZ" folgen als 677. und 678. Spalte „AAA“ und „AAB“. Der letzte

vergebene Spaltenbezeichner in LibreOffice Calc und Microsoft Excel lau-

tet „XFD“ für Spalte 16384.

2.9.1 Formeln

Beginnt der Inhalt einer Zelle mit einem Gleichheitszeichen, so wird der

Zellinhalt als Formel interpretiert. Mit Formeln lassen sich neue Zellwer-

te berechnen. Anstelle von Variablennamen werden in den Formeln einer

Tabellenkalkulation oft nur die Zellbezeichner anderer Zellen verwendet.

Abb. 26: Formel einer Tabellenkalkulation

In Abb. 26 lesen wir oben rechts ab, dass sich in der mit einem breiten

Rahmen hervorgehobenen Zelle B3 die Formel =0,19*A3 befindet, wel-

che also 19 % des Wertes von Zelle A3 ausrechnet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 61

2.9.2 Variablennamen

Um Formeln lesbarer zu gestalten, können wir anstelle von Zellbezeich-

nern richtige Variablennamen verwenden, die wir einzelnen Zellen oder

ganzen Zellbereichen zuweisen. Den gewünschten neuen Namen tragen

wir dazu nach dem Markieren der Zelle oder des Zellbereichs in das in

Abb. 26 oben links zu sehende Feld ein, in dem momentan noch der Zell-

bezeichner „B2“ zu sehen ist.

Die Namen sollten nur aus den Buchstaben von „A“ bis „Z“, dem Unter-

strich „_“ und Ziffern bestehen und dürfen keine Leerzeichen enthalten.

Umlaute und sonstige Sonderzeichen sind in der Regel nicht zulässig.

Groß- und Kleinschreibung wird ignoriert. Das erste Zeichen des Namens

darf keine Ziffer sein.

Die Namen C und R (sowie c und r) dürfen in Microsoft Office Excel und

LibreOffice Calc nicht verwendet werden.

2.9.3 Relative und absolute Zellbezüge

Beim Kopieren von Formeln stellen wir fest, dass die Zellbezeichner darin

automatisch verändert werden. Mit jeder Zeile, die die Formel beim Ko-

pieren nach unten wandert, erhöhen sich die Ziffern der Zellbezeichner

um den Wert eins und mit jeder Spalte nach rechts wird der Spaltenbuch-

stabe heraufgesetzt. Aus der Formel =A2+B4 wird, wenn sie drei Spalten

nach rechts und vier Zeilen nach unten kopiert oder verschoben wird,

=D6+E8.

Relativ zur neuen Position bleiben die Zellbezüge dabei unverändert. Ein

Bezeichner, der an der alten Position auf ein Feld drei Spalten links und

zwei Zeilen oberhalb der Formel verwies, bezieht sich auch an der neuen

Position auf ein Feld drei Spalten links und zwei Zeilen oberhalb der For-

mel.

Damit Formeln sich beim Kopieren oder Verschieben nicht unerwünscht

verändern, sollten wir bevorzugt mit Variablennamen arbeiten. Diese be-

ziehen sich immer auf absolute Zelladressen und Zellbereiche. Wir kön-

nen aber auch Zellbezeichner als absolut kennzeichnen, ohne ihnen einen

Namen zu geben. Dazu stellen wir den Zeilen- und Spaltenbezeichnern je-

weils ein Dollarzeichen voran. Der Zellbezeichner $A2 wird auch auf der

Martin Vogel: Bauinformatik mit Python, WS 2025/26 62

neuen Position stets auf Spalte A verweisen, beim Zellbezeichner A$2

bleibt Zeile 2 fest eingestellt und A2 bezieht sich immer absolut auf Zel-

le A2.

2.9.4 Funktionen

Um Formeln innerhalb von Zellen nicht übermäßig lang und kompliziert

werden zu lassen, verfügen Tabellenkalkulationen über eine große Zahl

eingebauter Funktionen. Leider gibt es hier keinen verbindlichen Stan-

dard, sodass in der Dokumentation der jeweils verwendeten Tabellenkal-

kulation nachgeschaut werden muss, ob die gesuchte Funktion dort exis-

tiert und wie sie dort heißt. Zu allem Überfluss haben dieselben

Funktionen in den internationalisierten Versionen eines Programms oft

unterschiedliche Namen.

Die meisten in Deutschland verwendeten Tabellenkalkulationen verwen-

den weitgehend dieselben Funktionsnamen, auch wenn diese zum Teil

recht ausufernde Längen besitzen (Abb. 27).

Ein Funktionsaufruf besteht immer aus einem Funktionsnamen und da-

hinter in Klammern eingeschlossenen Argumenten. Der Funktionsaufruf

SIN(B3) berechnet beispielsweise den Sinus des Bogenmaß-Winkels in

Zelle B3 und WURZEL(C7) zieht die Quadratwurzel aus der Zahl in Zelle

C7.

Wenn eine Funktion mit mehreren Argumenten aufgerufen wird, so sind

diese in deutschsprachigen Tabellenkalkulationen mit einem Semikolon ;

zu trennen. In englischsprachigen Tabellenkalkulationen wird anstelle

des Semikolons ein Komma zur Trennung von Funktionsargumenten ver-

wendet. Das geht in Deutschland1 nicht, weil wir das Komma schon als

Dezimaltrennzeichen verwenden. Anstelle von SUM(1.2, 3.4) schreiben

wir SUMME(1,2; 3,4), um die Zahl 4,6 zu erhalten.

1 Weltweit verwendet ungefähr die Hälfte der Menschheit das Komma als Dezimal-
trennzeichen, die andere Hälfte den Dezimalpunkt. Als drittes Dezimaltrennzeichen
ist in den Ländern rund um den Persischen Golf das einem Komma ähnlich sehende
Momayyez ٫ in Gebrauch.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 63

Abb. 27: Funktion mit zwei Parametern

Einige wenige Funktionen werden ohne Argumente aufgerufen. Die Funk-

tion HEUTE() beispielsweise gibt immer das aktuelle Datum zurück und

ZUFALLSZAHL() eine beliebige Dezimalzahl zwischen null und eins.

2.9.5 Zellbereiche

Bezieht sich eine Formel nicht nur auf eine einzelne Zelle, sondern auf ei-

nen zusammenhängenden Bereich, so kann man diesen Bereich als

von:bis formulieren. Soll in Feld A5 beispielsweise die Summe der Fel-

der A1 bis A4 ausgerechnet werden, so schreiben wir dies als

=SUMME(A1:A4) in A5 (Abb. 28).

Abb. 28: Bereichschreibweise

2.9.6 Fallunterscheidungen mit WENN

Innerhalb von Formeln können wir Entscheidungen auf der Grundlage lo-

gischer Aussagen treffen lassen. Der Funktion WENN übergeben wir dazu

drei Argumente: Erstens die zu untersuchende logische Aussage, zwei-

Martin Vogel: Bauinformatik mit Python, WS 2025/26 64

tens den Wert, den die Funktion zurückgeben soll, wenn die Aussage

wahr ist und drittens den Rückgabewert für den Fall, dass die Aussage

nicht wahr ist. Merkhilfe: Wenn(was; dann; sonst).

Falls wir keine Werte für „dann“ und „sonst“ angeben, so gibt die Wenn-

Funktion stattdessen den Wahrheitswert der Aussage als WAHR oder

FALSCH zurück.

Als Beispiel aus dem Ingenieurwesen seien in dem in Abb. 30 gezeigten

Tabellenblatt in Spalte E, von Zelle E4 an abwärts, einige Zugspannungs-

werte aus Bauteilmessungen oder statischen Berechnungen eingetragen.

In Spalte F soll nun von uns untersucht werden, ob diese Spannungen ei-

nen zulässigen Grenzwert überschreiten. Dieser steht in Zelle B1, der wir

der Lesbarkeit halber den Namen „Grenzwert“ zugewiesen haben.

Die auszuwertende logische Aussage für Zelle F4 lautet also

„E4 <= Grenzwert“. Der darzustellende Text für den Fall, dass die Aussa-

ge wahr ist, soll „Spannung zulässig“ lauten und der Text für den Fall,

dass die Aussage falsch ist, lautet „Grenzwert überschritten!“

Wir können die Struktur dieser Fallunterscheidung grafisch übersichtlich

als sogenanntes „Struktogramm“ darstellen:

Abb. 29: Fallunterscheidung

In Zelle F4 schreiben wir diese Fallunterscheidung als Formel:

=WENN(E4 <= Grenzwert; "Spannung zulässig"; "Grenzwert über-

schritten!").

Die Anführungszeichen setzen wir um alle Texte, die wir ausgeben wol-

len, um sie von Variablen wie Grenzwert oder Zelladressen wie E4 zu un-

terscheiden. Variablennamen schreiben wir immer ohne Anführungszei-

chen und auszugebende Texte immer mit Anführungszeichen.

An dieser Stelle möchte ich Sie dafür sensibilisieren, dass es unterschied-

liche Typen von Anführungszeichen gibt. In handschriftlichen Texten ver-

wenden Sie vermutlich seit Ihrer Grundschulzeit unterschiedliche öffnen-

Martin Vogel: Bauinformatik mit Python, WS 2025/26 65

E4 <= Grenzwert
wahr

"Spannung zulässig"

falsch

"Grenzwert überschritten!"

de und schließende „Gänsefüßchen“. Auf Computertastaturen gibt es

aber nur ein einziges Zeichen. Bitte verwenden Sie beim Programmieren

nur die simplen "Ersatz-Anführungszeichen" der Schreibmaschinentasta-

tur, nicht die ästhetisch ansprechenderen „typographischen Anführungs-

zeichen“!1

Abb. 30: Tabelle mit Fallunterscheidungen

1 Unter Microsoft Windows stellt sich das Problem nicht, weil es dort ohnehin nur das
gerade Ersatz-Anführungszeichen " auf der Tastatur gibt, wie es im 19. Jahrhundert
als Notlösung anstelle richtiger Anführungszeichen für die damals aufkommenden
Schreibmaschinen eingeführt wurde und wie es in der Sechzigerjahren des 20. Jahr-
hunderts in den ASCII-Code übernommen wurde.
Unter dem Betriebssystem Linux besitzt die Tastatur jedoch oft auch die zehn korrek-
ten typographischen Anführungszeichen („ “ ” ‚ ‘ ’ » « › ‹) auf den Belegungs-
ebenen mit [AltGr] und [⇧ AltGr].
Auch unter macOS können immerhin acht typographisch korrekte Anführungszeichen
auf den Belegungsebenen Option [⌥] und Option-Umschalten [⌥⇧] direkt eingegeben
werden. Siehe Kapitel 2.1. Die Wikipedia-Seite https://de.wikipedia.org/wiki/Anführun
gszeichen führt alle Tastenkombinationen zur Eingabe der Zeichen unter den drei
verbreiteten PC-Betriebssystemen auf.

Textverarbeitungen wie LibreOffice Writer oder Microsoft Word besitzen einen Auto-
matismus, der eingetippte ASCII-Anführungszeichen ungefragt durch typographische
Anführungszeichen ersetzt. Diese „Autokorrektur“ macht Textverarbeitungsprogram-
me zum Schreiben von Computerprogrammen und Tabellenkalkulationsformeln recht
ungeeignet. Glücklicherweise ist die Funktion abschaltbar.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 66

https://de.wikipedia.org/wiki/Anf%C3%BChrungszeichen#Direkte_Eingabe_per_Tastatur
https://de.wikipedia.org/wiki/Anf%C3%BChrungszeichen#Direkte_Eingabe_per_Tastatur

Falls wir zwischen mehr als zwei Fällen unterscheiden möchten, können

wir die Wenn-Funktion verschachteln. Anstelle eines direkten Wertes für

„dann“ oder „sonst“ setzen wir einfach eine komplette weitere Wenn-

Funktion ein.

Nehmen wir als Anwendungsbeispiel eine Stahlpreisliste. Sie enthält fol-

gende Formulierung: „Bei mehr als 16,1 Metern Länge ist (…) ein Auf-

preis von 10 Euro, bei mehr als 18,1 Metern 20 Euro und bei mehr als

22,1 Metern 30 Euro pro Tonne zu berücksichtigen.“ – wir müssen also

vier verschiedene Fälle unterscheiden. Dazu formulieren wir drei logische

Aussagen: „L > 22,1“, „L > 18,1“ und „L > 16,1“. Der Übersicht halber

stellen wir sie grafisch dar und schreiben unter jede Aussage, welche Ant-

wort wir erwarten oder welche Aussage wir als nächstes prüfen müssen,

wenn die jeweilige Aussage wahr oder falsch ist.

Abb. 31: Drei verschachtelte Fallunterscheidungen

In der Formelschreibweise einer Tabellenkalkulation stellen wir diesen

Entscheidungsbaum so dar:

=WENN(L > 22,1; 30; WENN(L > 18,1; 20; WENN(L > 16,1; 10; 0)))

Dabei müssen wir darauf achten, dass die unvollständige sprachliche

Konstruktion dieser Preisstaffelung so umgesetzt wird, dass nicht die Er-

füllung der ersten Bedingung („bei mehr als 16,1 Metern Länge“) schon

alle anderen Fälle einschließt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 67

L > 22,1
wahr

30

falsch

L > 18,1
wahr

20

falsch

L > 16,1
wahr

10

falsch

0

2.9.7 VERWEIS, SVERWEIS und WVERWEIS

Weil Fallunterscheidungen mit mehreren Alternativen recht unübersicht-

lich werden, empfiehlt es sich, stattdessen eine kleine Tabelle anzulegen

und zugehörige Werte daraus ablesen zu lassen. Deutschsprachige Tabel-

lenkalkulationen kennen dazu die Funktion VERWEIS sowie ihre nahen

Verwandten SVERWEIS und WVERWEIS.

Die Funktion VERWEIS(w; s; z) sucht einen Wert w in einem sortierten(!)

Suchbereich s und gibt den korrespondierenden Wert aus dem gleich gro-

ßen Zielbereich z zurück. Wenn w nicht in s enthalten ist, wird der größte

Wert aus s verwendet, der kleiner als w ist.

In Abb. 32 sehen wir einen Ausschnitt aus einer Stahlbau-Profiltabelle.

Der IPE-Bezeichnung in Spalte K ist dabei die Trägermasse in kg pro Me-

ter zugeordnet. Um nun beispielsweise den Massenwert eines IPE-140-

Trägers zu finden, verwenden wir die Formel =VERWEIS(140; K4:K10;

L4:L10) und erhalten den Wert 13,2.

Abb. 32: VERWEIS

Als kleine Vereinfachung dürfen Such- und Zielbereich zusammengefasst

werden, wenn sie unmittelbar benachbart sind. Die Formel

=VERWEIS(140; K4:L10) gibt also ebenfalls den Wert 13,2 zurück.

Etwas umständlicher zu verwenden sind die Funktionen SVERWEIS und

WVERWEIS, dafür kommen sie auch mit unsortierten Werten im Suchbe-

reich zurecht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 68

Die Funktion SVERWEIS(w; m; s; x) sucht einen Wert w (oder den

nächstkleineren) in der ersten Spalte der sortierten Matrix1 m und gibt

aus dieser Zeile den Wert in Spalte Nummer s der Matrix zurück. Die

ganz linke Spalte hat dabei die Nummer 1. Hat x den Wert 0 (oder

FALSCH), so zählen nur exakte Treffer. Die Matrix darf dann unsortiert

sein.

Das Beispiel in Abb. 32 berechnet in Spalte E die Aufpreise für Spalte D

gemäß der Untertabelle im Bereich A2:B5. Die Formel ist deutlich kürzer

als die Fallunterscheidung aus Kapitel 2.9.6!

Abb. 33: SVERWEIS

Das „S“ in SVERWEIS steht übrigens nicht für „Spalte“, sondern für „senk-

recht“. Entsprechend gibt es daher eine Funktion WVERWEIS(w; m; z;

x), diese sucht „waagerecht“ einen Wert w (oder den nächstkleineren) in

der ersten Zeile der Matrix m und gibt den zugehörigen Wert aus Zeile

Nummer z der Matrix zurück.

2.9.8 Zielwertsuche und Solver

Tabellenkalkulationen bieten die Möglichkeit, mit der sogenannten Ziel-

wertsuche einen Zellwert iterativ so lange zu verändern, bis das Ergebnis

einer linearen Formel einem gewünschten Wert entspricht.

1 Als „Matrix“ bezeichnen wir hier einen beliebigen rechteckigen Zellbereich, der min-
destens zwei mal zwei benachbarte Zellen umfasst.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 69

Beispiel (Abb. 34): A1 enthält die Höhe eines Rechtecks, A2 die Breite und

A3 die Formel für die Fläche, =A1*A2. Gesucht wird die Breite, die bei ei-

ner Höhe von 8 die Fläche 20 ergibt.

Abb. 34: Zielwertsuche

Die Zielwertsuche findet schnell das gesuchte Ergebnis, sie kann aber

nur eine einzige Zelle verändern. Sind mehrere Eingangswerte einer For-

mel zu variieren, um ein bestimmtes Ergebnis zu erhalten, so greifen wir

auf einen sogenannten „Solver“ zurück.

Angenommen, wir möchten herausfinden, welches die geringste Zahl von

Cent-Münzen ist, mit der wir einen Betrag von 12,37 Euro zusammenstel-

len können. In Abb. 35 sind dazu in der mittleren Spalte „Münzwert“ (in

den Feldern C2 bis C7) die Münzwerte von einem bis 50 Cent eingetra-

gen. Links daneben in den Feldern B2 bis B7 ist die jeweilige Anzahl ver-

zeichnet. In der Spalte „Produkt“ (D2 bis D7) wird das jeweilige Produkt

aus Anzahl und Münzwert berechnet. In der mit „Summe“ gekennzeich-

neten Zeile 8 der Tabelle werden schließlich die Summen der Einträge

der Spalten B und D gebildet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 70

Abb. 35: Solver

Der Solver variiert nun alle Felder im Bereich B2:B7 so lange, bis die An-

zahl der Münzen den kleinstmöglichen Wert erreicht, wobei stets die „Ne-

benbedingung“ einzuhalten ist, dass die Gesamtsumme der Münzwerte in

Feld D8 genau 1237 Cent beträgt. Weil abzählbare Mengen, wie die ge-

suchte Anzahl von Münzen, immer ganzzahlig und positiv sind, vermer-

ken wir dies zuvor in den Optionen des Solvers, da sonst keine Lösung ge-

funden werden kann.

Die beiden Funktionen „Zielwertsuche“ und „Solver“ sind in unterschied-

lichen Tabellenkalkulation mehr oder weniger gut zu finden.

In LibreOffice sehen wir sie im Menü „Extras“.

Wer Microsoft Office Excel 2019 verwendet, schaltet zum Menübandre-

gister „Daten“ um, klickt in der Icongruppe „Datentools“ in der dritten

Spalte auf das Icon „Was-wäre-wenn-Analyse“ und wählt dort den Unter-

menüeintrag „Zielwertsuche“ aus. In der Icongruppe „Analyse“ (falls vor-

handen) existiert mit etwas Glück auch der Eintrag „Solver“. Der Solver

ist in Microsoft Office Excel allerdings standardmäßig nicht enthalten und

muss dort üblicherweise als „Plugin“ nachinstalliert werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 71

2.9.9 Matrixformeln

Tabellenkalkulationen können sehr komplexe Berechnungen über recht-

eckige Bereiche ausführen, die der Matrizenrechnung in der Mathematik

entsprechen.

Angenommen, wir haben ein Gleichungssystem mit drei Unbekannten zu

lösen.

4 x −2 y +2 z = 184
−3 x +5 y +4 z = 29
4 x −7 y +12 z = 749

Diese Gleichungen können wir in Matrixschreibweise so formulieren:

(4 −2 2
−3 5 4
4 −7 12)⋅(xyz)=(184

29
749)

Um die Unbekannten auf die rechte Seite zu bekommen, bilden wir den

„Kehrwert“ (die Inverse) der Matrix auf der linken Seite.

(4 −2 2
−3 5 4
4 −7 12)

⁻ 1

⋅(184
29

749)=(xyz)
Um die Matrixgleichung zu lösen, brauchen wir also eine Funktion, die ei-

ne Matrix invertiert und eine Funktion, die eine Matrix mit einem Vektor

multipliziert. Wir finden diese Funktion in Calc und Excel als MINV und

MMULT.

Abb. 36: Matrixformeln

Martin Vogel: Bauinformatik mit Python, WS 2025/26 72

Das einzig wirklich Komplizierte an Matrixformeln ist ihre Eingabe. Sie

müssen dazu zuerst den Bereich markieren, in dem die Formel gelten soll

(hier die Zellen von E1 bis E3), dann tippen Sie die Formel ohne die um-

gebenden geschweiften Klammern ein und drücken schließlich die Tas-

tenkombination Steuerung–Umschalten–Eingabetaste (Strg ⇧ ↲).

Sie sollten nun die Lösung des Gleichungssystems vor sich sehen.

Abb. 37: Gelöstes Gleichungssystem

Die gesuchten drei Unbekannten lauten also x = 12, y = -23, z = 45.

2.9.10 Diagramme

Alle heutigen Tabellenkalkulationen bieten uns komfortable Möglichkei-

ten an, um einfache Diagramme aus eingetragenen oder berechneten

Zellinhalten zu erzeugen. In der Regel müssen wir dazu nur den zu visua-

lisierenden Datenbereich markieren (meistens genügt es schon, wenn

sich die zuletzt angeklickte Zelle im Datenbereich befindet) und im Menü

„Einfügen“ den Menüpunkt „Diagramm“ wählen.

Im Ingenieurwesen ist insbesondere die Diagrammform „x-y-Diagramm“

von Wert, da diese einen klaren Koordinatenbezug zwischen zwei Werte-

gruppen herstellen kann. In LibreOffice und Microsoft Office Excel wäh-

len wir dazu den Diagrammtyp „XY“ aus. In Apples Numbers ist entspre-

chend in der Rubrik für 2D-Diagramme die Auswahlschaltfläche mit

einzelnen Punkten anzuklicken.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 73

Abb. 38: x-y-Diagramm

2.9.11 CSV-Dateien und Tabellenkalkulationen

Tabellenkalkulationen unterstützen neben ihrem eigenen, vereinzelt ex-

trem komplizierten1, Dateiformat immer auch ein sehr simples und uni-

verselles Datenaustauschformat, in dem die einzelnen Daten (Zahlen oder

Texte) zeilenweise und durch Kommas getrennt vorliegen. Nach diesen

„kommagetrennten Werten“ oder „comma separated values“ heißen diese

Dateien CSV-Dateien.

Mustermann,Max,21,Bochum,44801

Exempel,Elvira,20,Gelsenkirchen,45879

Texte werden in CSV-Dateien in der Regel in ASCII-Anführungszeichen

gesetzt. Anstelle des Kommas ist als Trennzeichen oft auch ein Semikolon

oder ein Tabulatorzeichen üblich.

"Mustermann";"Max";21;"Bochum";44801

"Exempel";"Elvira";20;"Gelsenkirchen";45879

1 Die Beschreibung des unter abenteuerlichen Bedingungen (http://www.groklaw.net/
article.php?story=2008032913190768) zur internationalen Norm gewordenen Micro-
soft-Office-Dateiformats OOXML ist über 6000 Seiten lang. Und sie ist unvollständig.
https://de.wikipedia.org/wiki/Office_Open_XML

Martin Vogel: Bauinformatik mit Python, WS 2025/26 74

https://de.wikipedia.org/wiki/Office_Open_XML
https://web.archive.org/web/20230503180813/http://www.groklaw.net/article.php?story=2008032913190768
https://web.archive.org/web/20230503180813/http://www.groklaw.net/article.php?story=2008032913190768

Formeln, Formatierungen und Diagramme gehen beim Speichern einer

Tabelle als CSV-Datei verloren.

Beim Import von Daten aus CSV-Dateien müssen wir zahlreiche Informati-

onen ergänzen. Es muss klar sein, wie das Dezimaltrennzeichen aussieht,

ob und wie Datumswerte interpretiert werden, in welcher Zeichenkodie-

rung eventuell vorhandene Umlaute und Sonderzeichen vorliegen und

noch einiges mehr.

Abb. 39: CSV-Import-Dialog in LibreOffice Calc

Beim Öffnen einer CSV-Datei zeigt LibreOffice daher immer einen Textim-

port-Dialog an, in dem die aktuell benötigten Einstellungen überprüft

werden können. Die Wahl des Dezimal- und Tausendertrennzeichens wird

Martin Vogel: Bauinformatik mit Python, WS 2025/26 75

dabei indirekt über die Spracheinstellung vorgenommen. Ist das Dezimal-

zeichen ein Punkt anstelle eines Kommas, so sollte die Sprache auf „Eng-

lisch“ geändert werden.

Leider unterschlägt die verbreitete Tabellenkalkulation „Microsoft Office

Excel“, diesen Dialog und verwendet nicht dokumentierte „Standardein-

stellungen1“, was gelegentlich zu Schlagzeilen führt, wenn zum Beispiel

entdeckt wird, dass 20 % aller Gentechnik-Studien wegen Excels unver-

langter Datumsinterpretation importierter Daten fehlerhaft sind2.

In Excel darf eine CSV-Datei daher niemals einfach geöffnet werden, son-

dern sie muss mithilfe des Textimportassistenten, der im Menübandregis-

ter „Daten“ in der Gruppe „Externe Daten abrufen“ hinter dem Eintrag

„Aus Text“ versteckt ist, importiert werden.

Excels notorischer Drang, alle möglichen Kombinationen aus Zahlen und

Trennzeichen in CSV-Dateien als Datumsangabe fehlzuinterpretieren, hat

sogar schon zu diversen populären Memes geführt (Abb. 40).

Abb. 40: Meme „Incel vs. Excel“ auf Reddit

1 https://support.office.com/de-de/article/Importieren-oder-Exportieren-von-Textdatei-
en-TXT-oder-CSV-5250ac4c-663c-47ce-937b-339e391393ba – ich möchte mich übri-
gens an dieser Stelle gerne dahingehend korrigieren lassen, dass die Standardeinstel-
lungen doch irgendwo dokumentiert sind. Zuschriften mit Links auf die entsprechen-
de Dokumentation bitte per Mail!

2 Gene name errors are widespread in the scientific literature
Mark Ziemann, Yotam Eren und Assam El-Osta
Genome Biology 2016 17:177
https://doi.org/10.1186/s13059-016-1044-7
Abgerufen: 23 August 2016

Martin Vogel: Bauinformatik mit Python, WS 2025/26 76

https://doi.org/10.1186/s13059-016-1044-7
https://web.archive.org/web/20201126074931/https://support.microsoft.com/de-de/office/importieren-oder-exportieren-von-textdateien-txt-oder-csv-5250ac4c-663c-47ce-937b-339e391393ba?ui=de-de&rs=de-de&ad=de
https://web.archive.org/web/20201126074931/https://support.microsoft.com/de-de/office/importieren-oder-exportieren-von-textdateien-txt-oder-csv-5250ac4c-663c-47ce-937b-339e391393ba?ui=de-de&rs=de-de&ad=de

2.9.12 Anwendungsgrenzen

Obwohl Tabellenkalkulationen im Laufe der Jahrzehnte theoretisch immer

größere Datenmengen verarbeiten können, liegt ihr sinnvolles Hauptein-

satzgebiet weiterhin im Bereich überschaubarer Tabellengrößen. Für den

Umgang mit wirklich großen Datenmengen ist die Verwendung von Tabel-

lenkalkulationen in der Regel zu unhandlich und zu fehleranfällig.

US-Amerikanische IT-Forscher stellten in einer Metastudie fest, dass 88%

aller untersuchten Excel-Tabellen Fehler enthalten1. Für die Verwaltung

großer Datenbestände2 sind Datenbankprogramme besser geeignet und

für die ingenieurmäßige Verarbeitung und Analyse komplexer Daten und

großer Datenmengen lernen wir die Sprache Python als wesentlich ele-

ganteres und mächtigeres Werkzeug kennen.

Maximale Zeilenzahl

Excel 95 16.384 (214)

Excel 97 65.536 (216)

Excel 2007, LibreOffice 3.3 (2011) 1.048.576 (220)

Google Docs (Stand 2020) 1562 bis 400.000, je nach Spaltenzahl

Maximale Spaltenzahl

Excel 5, Google 256: A…Z, AA, AB…IV

LibreOffice 3.3 1024: A…AMJ

Excel 2007, LibreOffice 7.4 (2022) 16.384: A…XFD

Maximale Zellenzahl

Google Docs (Stand 2020) 400.000

LibreOffice 1.073.741.824 (230)

1 What We Know About Spreadsheet Errors
Raymond R. Panko
Journal of End User Computing's, Band 10, Nr. 2, Seiten 15-21
http://panko.shidler.hawaii.edu/SSR/Mypapers/whatknow.htm
Abgerufen: 27. August 2019

2 Excel: Why using Microsoft's tool caused Covid-19 results to be lost
BBC / Leo Kelion
https://www.bbc.com/news/technology-54423988
Abgerufen: 13. Oktober 2020

Martin Vogel: Bauinformatik mit Python, WS 2025/26 77

https://www.bbc.com/news/technology-54423988
http://panko.shidler.hawaii.edu/SSR/Mypapers/whatknow.htm

3 Hypertext
Bevor wir in Kapitel 4 diese Buches mit der Einführung in die Program-

mierung beginnen, wollen wir zunächst einmal einen Blick in die formell

strukturierte Welt einer typischen „Computersprache“ werfen.

Eine der bekanntesten Sprachen, mit denen Texte so geschrieben werden

können, dass sie sowohl von Menschen gelesen als auch von Computern

richtig interpretiert werden, trägt den Namen „HTML“.

Die „Hypertext Markup Language“ HTML stellt Möglichkeiten zur Verfü-

gung, Textstellen so zu markieren, dass Verbindungen zwischen ihnen

hergestellt werden können, dass ihre Struktur gut wiedergegeben wer-

den kann und dass Informationselemente wie Listen, Bilder und Tabellen

einfach und ohne besondere Werkzeuge eingefügt werden können.

Als Hypertext bezeichnen wir dabei einen strukturierten Text, der akti-

vierbare Komponenten enthält, mit denen eine Navigation von einer Text-

stelle zu einer bestimmten anderen Textstelle im selben oder einem ande-

ren Hypertext möglich ist.

Die Start- und Zielpunkte dieser Verweise nennen wir „Anker“.

Die Verweise selbst werden als „Links“ oder auch „Hyperlinks“ bezeich-

net. Da das englische Wort „link“ auch „Kettenglied“ bedeutet, finden

sich in Menüleisten oft Kettensymbole zum Einfügen eines Hyperlinks.

HTML ist zunächst einmal keine Programmiersprache: Sie ist nicht ohne

weiteres dazu geeignet, wiederkehrende Prozesse zu automatisieren oder

Berechnungen durchzuführen. Wir werden sie aber im Laufe dieses Se-

mesters immer wieder dazu verwenden, Texte zu strukturieren und Inhal-

te für Webbrowser darstellbar zu machen.

Hinter nahezu jeder Webseite steckt ein HTML-Text. Um diesen sichtbar

zu machen, genügt es in den meisten Webbrowsern unter Windows oder

Linux, die Tastenkombination Strg U zu drücken. Was auf den ersten

Blick wie ein chaotisches Gewimmel aus spitzen Klammern und krypti-

schen Abkürzungen anmutet, besitzt überraschend oft eine klare Struk-

tur.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 78

3.1 HTML-Tags

Die Markierungen, die in gewöhnliche Texte eingefügt werden müssen,

damit aus diesen Hypertexte werden, heißen „Tags“. In HTML-Dateien

sind sie auf den ersten Blick dadurch erkennbar, dass sie von spitzen

Klammern umschlossen werden.

Üblicherweise treten HTML-Tags paarweise auf. Zu einem öffnenden Tag

(Starttag) gehört ein schließendes Tag (Endtag), welches mit einem

Schrägstrich eingeleitet wird.

Das englische Wort „tag“ (Aussprache: „tähg“) bedeutet nicht nur Mar-

kierung, sondern auch Etikett oder Auszeichnung. Als „RFID-Tags“ ken-

nen Sie bestimmt die verbreiteten Funketiketten zur Diebstahlsicherung,

in Musikdateien werden die Informationen zu Titel und Künstler im „ID3-

Tag“ gespeichert und die Reviermarken von Sprühlackschmierern heißen

ebenfalls „Tags“.

Abb. 41: Nerdwitz. Foto: Markus Tacker, Lizenz: CC BY-ND 2.0

Martin Vogel: Bauinformatik mit Python, WS 2025/26 79

https://flickr.com/photos/tacker/9534194705
https://flickr.com/photos/tacker/9534194705

3.2 Hierarchische Ordnung

Starttag, Inhalt und Endtag bilden

gemeinsam ein HTML-Element.

Diese Elemente können ineinan-

der verschachtelt sein, dürfen sich

aber nicht überschneiden. Bevor

ein übergeordnetes Element

durch ein Endtag geschlossen

wird, müssen zuerst alle unterge-

ordneten Elemente geschlossen

werden.

Diese strenge Ordnung ist der

Sprache XML (Extensible Markup

Language) geschuldet, auf deren

Struktur HTML und viele andere

zur computerbasierten Verarbei-

tung entworfenen Sprachen auf-

bauen.

Ein einfaches Beispiel der hierar-

chischen Ordnung in einem

HTML-Text zeigt das Diagramm in

Abbildung 42. Das HTML-Element

umfasst den gesamten Inhalt und

gliedert sich in einen Kopfteil

(head) und einen Inhaltsteil

(body).

Der Kopfteil enthält hier nur das

Element „title“. Es legt den vorde-

ren Teil der Titelzeile des im nächsten Bild zu sehenden Webbrowsers

fest. Üblicherweise finden wir im Kopfteil Angaben zu Autor und Zeichen-

kodierung sowie Hinweise für Suchmaschinen und diverse andere Infor-

mationen, die auf der Webseite hinterher nicht direkt zu sehen sind.

Der Inhaltsteil enthält den darzustellenden Text. In diesem Fall ist es der

Ausruf „Schön, dass Sie da sind!“, welchem eine Überschrift ersten Gra-

des mit dem Inhalt „Hallo Welt” vorangestellt ist.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 80

Abb. 42: HTML-Struktur

Dass in dem Beispiel ausgerechnet das Wort „Schön“ so unschön als

„Schön“ daherkommt, hat den Grund, dass diese Ersatzdarstellung

auch unter ungünstigsten technischen Randbedingungen noch funktio-

niert. Mehr dazu in Kapitel 3.5.

Diese HTML-Datei wird in einem Webbrowser vermutlich so ähnlich dar-

gestellt werden, wie es Abbildung 43 zeigt1.

Abb. 43: Ein Browser stellt HTML-Seiten dar

Es ist gut möglich, dass das Erscheinungsbild in unterschiedlichen Brow-

sern variiert, denn welche Schriftart verwendet wird, welche Abstände

die Textbereiche untereinander haben und wie groß die verschiedenen

Texte sind, steht nicht in der HTML-Datei. Es ist auch keine gute Idee,

das durch „geschickte“ Verwendung von HTML-Strukturelementen festle-

gen zu wollen. Die Aufgabe der Sprache HTML liegt in der inhaltlichen

Strukturierung eines Textes. Für das Layouten gibt es geeignetere Mittel

(siehe Kapitel 3.6).

1 Solche Abbildungen eines Bildschirmfensters oder eines kompletten Bildschirms
nennt man „Bildschirmfoto” oder auch „Screenshot“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 81

3.3 Attribute

Manche HTML-Tags sind mit Zusatzinformationen versehen, die wir „At-

tribute“ nennen. Attribute haben einen Namen und ihnen kann mithilfe

eines Gleichheitszeichens ein Wert zugewiesen werden.

Eine Textstelle, die auf eine andere Webseite verweisen soll, benötigt bei-

spielsweise die Information, wie die Adresse der Seite lautet, die beim

Anklicken angesprungen werden soll. Wir verwenden dazu das Ankertag

a, indem wir ein HTML-Element anlegen, das aus dem zu markierenden

Text besteht, der mit einem Start- und Endtag umschlossen ist und wei-

sen im Starttag dem Attribut mit dem Namen href den Wert

„http://www.hs-bochum.de/” zu.

In einem geeigneten Texteditor sieht das fertige HTML-Element dann so

aus wie der Inhalt des grauen Feldes:

Abb. 44: Bestandteile eines HTML-Elements

Die Zeichenfolge „http://“ gibt dabei das URL-Schema an, das anzeigt, auf

welche Weise auf die Daten auf dem Webserver www.hs-bochum.de zuge-

griffen wird. In diesem Fall über eine Internetverbindung mithilfe des

„Hypertext-Transfer-Protokolls“ http.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 82

3.4 Grafiken

Grafiken binden wir mithilfe des Tags img ein. Wichtigstes Attribut ist die

Quellenangabe src.

Mit weiteren Attributen können wir die Größe des Bildes in „Pixeln“ (un-

gefähr ein viertel Millimeter) oder relativ zum verfügbaren Platz ange-

ben. Zusätzlich können wir festlegen, ob und wie breit ein Rahmen um

das Bild gezeichnet werden soll.

Wenn sich das Bild nicht in demselben Verzeichnis wie die einbindende

HTML-Datei befindet, muss sein Dateiname noch um den (relativen oder

absoluten) Pfadnamen ergänzt werden.

Wenn die Datei aus dem Internet geladen werden soll, ist ihrem Namen

das URL-Schema mit dem entsprechenden Protokoll, der Servername und

der Pfad zur Datei voranzustellen.

Wir können HTML-Tags beinahe beliebig verschachteln. Um ein Bild an-

klickbar zu machen, verwenden wir es als Inhalt eines Ankertags:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 83

3.5 HTML-Entitäten

HTML-Dateien müssen von unterschiedlichsten Rechnern verarbeitet

werden. Manche dieser Geräte unterstützen jedoch nur eingeschränkte

Einzelbyte-Zeichensätze mit wenig mehr als zweihundert unterschiedli-

chen Zeichen1.

In HTML-Dateien können wir auch dann sämtliche Unicode-Zeichen ver-

wenden, wenn die Datei selbst nur in einer Zeichenkodierung gespeichert

wird, die nur den minimalen 7-Bit-ASCII-Zeichensatz mit weniger als hun-

dert darstellbaren Zeichen kennt.

Den wichtigsten Sonderzeichen sind dabei kurze Namen zugeordnet. Die

Kombination aus solch einem Namen, einem einleitenden Ampersand und

einem abschließenden Semikolon nennen wir HTML-Entität.

Ein kleines β (Beta) lässt sich beispielsweise durch die HTML-Entität

β umschreiben, das größer-gleich-Zeichen ≥ wird durch ≥ darge-

stellt und das Unendlich-Symbol ∞ wird mit ∞ umschrieben.

Auf http://unicode.e-workers.de/entities.php finden Sie eine Tabelle mit

den wichtigsten HTML-Entitäten.

Eine vollständige sortierte Übersicht über sämtliche verfügbaren HTML-

Entitäten erhalten Sie mit dem folgenden Python-Programm:

import html.entities

for i,j in sorted(html.entities.html5.items(),

 key=lambda x:x[0].lower()):

try:

if ";" in i:

print(j+"\t&"+i)

except UnicodeEncodeError:

pass

1 Siehe auch Kapitel 6.2, Zeichenkodierung – von ASCII bis Unicode

Martin Vogel: Bauinformatik mit Python, WS 2025/26 84

http://unicode.e-workers.de/entities.php

3.6 CSS

Ein sauberes HTML-Dokument enthält nur Informationen und Struktur-

elemente wie Überschriften, Textabsätze oder Tabellen. Das Aussehen auf

dem Bildschirm oder Papier ist davon weitgehend unabhängig.

Um einem HTML-Dokument ein Layout mit bestimmten Schriftgrößen,

Fonts, Farben und Abständen zuzuordnen, verwendet man die sogenann-

ten „Cascaded Style Sheets“. Sie enthalten Anweisungen, wie bestimmte

HTML-Elemente zu formatieren sind.

Auf diese Weise können Form und Inhalt sauber getrennt werden und es

ist mit wenig Aufwand verbunden, denselben HTML-Text für ganz ver-

schiedene Ausgabemedien, vom Mobiltelefon bis zum A3-Blatt, anspre-

chend zu gestalten.

In dieser Auflage des Skripts gehen wir nicht weiter auf das Layouten von

HTML-Dokumenten durch CSS ein. Für das Selbststudium ist

https://wiki.selfhtml.org/wiki/CSS ein ganz guter Einstieg.

Wer einfach nur schnell eine nicht allzu wichtige HTML-Seite etwas hüb-

scher machen will, muss dazu nicht unbedingt CSS lernen. Die gängig-

sten Sprachmodelle, wie ChatGPT oder Gemini, können aus gut formulier-

ten Beschreibungen den zur verlangten Darstellung benötigten CSS-Code

in brauchbarer Qualität erzeugen. Das Problem besteht dann eher darin,

dass sehr viele Menschen gar nicht in der Lage sind, gut zu formulieren,

was sie eigentlich haben möchten1.

1 Kreativ tätige Menschen, die Auftragsarbeiten ausführen müssen, kennen das Pro-
blem.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 85

https://wiki.selfhtml.org/wiki/Einstieg_in_CSS/Stylesheets_einbinden#Warum_Layouts_mit_CSS.3F

4 Algorithmen und ihre Darstellung
Ein Algorithmus ist eine eindeutige Handlungsvorschrift, mit der sich ei-

ne Aufgabe in einer endlichen Zahl von Lösungsschritten abarbeiten

lässt.

Algorithmen haben zunächst einmal gar nichts mit Computern zu tun. Je-

de Verwaltungsvorschrift in einer Behörde kann ein Algorithmus sein,

wenn sie die oben genannte Definition erfüllt. Bevor Sie damit beginnen,

ein Computerprogramm zur Lösung eines Problems zu schreiben, ist es

eine gute Idee, wenn Sie sich zuerst über den zugrunde liegenden Algo-

rithmus Gedanken machen. Welche Schritte müssen in welcher Reihen-

folge ausgeführt werden? Gibt es Schritte, die wiederholt werden müs-

sen? Gibt es Schritte, die nur unter bestimmten Bedingungen ausgeführt

werden?

Durch eine grafische Darstellung dieses Algorithmus lässt sich die Umset-

zung in ein Programm oft erheblich vereinfachen. Für die Programm-

dokumentation ist ein Diagramm der Programmstruktur zudem ein unver-

zichtbarer Bestandteil, um eine gewählte Lösung nachvollziehbar

festzuhalten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 86

4.1 Flussdiagramm

Bei sehr einfachen Algorithmen lässt sich die Reihenfolge der auszufüh-

renden Schritte grafisch mit einem Flussdiagramm veranschaulichen.

Pfeile zeigen die Reihenfolge der Ausführung an. Berechnungen werden

durch Rechtecke dargestellt, Ein- und Ausgabevorgänge durch Parallelo-

gramme und Fallunterscheidungen mit Rauten.

Abb. 45: Ein einfaches Flussdiagramm

Bei komplexeren Algorithmen mit vielen Fallunterscheidungen oder mit

Schleifen, in denen Abschnitte wiederholt ausgeführt werden, verlieren

Flussdiagramme schnell ihre Übersichtlichkeit. Zur Darstellung von nicht

trivialen Algorithmen verwenden wir deshalb in der Regel die im folgen-

den Kapitel vorgestellten Struktogramme.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 87

lies die Zahlen
a und b ein

gib eine Fehler-
meldung ausgib c aus

ja

nein

teile a durch b,
speichere das
Ergebnis in c

ist b gleich
null?

4.2 Struktogramm

Auch, wenn es auf den ersten Blick anders erscheinen mag: Struktogram-

me stellen eine besonders übersichtliche Form dar, um Algorithmen unab-

hängig von der Programmiersprache, in der sie später1 umgesetzt wer-

den, grafisch darzustellen.

Die Bearbeitungsreihenfolge der einzelnen Arbeitsschritte wird im Struk-

togramm streng von oben nach unten abgebildet, Schleifen werden einge-

rückt und bei Fallunterscheidungen fächert sich das Struktogramm in

mehrere Spalten auf. Die im Flussdiagramm vorhandenen Richtungspfeile

zwischen den Arbeitsschritten gibt es in Struktogrammen nicht.

Struktogramme sind nach DIN 66261 genormt2. Nach ihren Erfindern

Isaac Nassi und Ben Shneidermann werden sie auch als Nassi-Shneider-

mann-Diagramme bezeichnet.

Gelegentlich findet man im Netz Struktogramme, in denen anstelle einer

sprachunabhängigen Darstellung eines Algorithmus Python- oder Java-

Programmcode enthalten ist. Das widerspricht dem Sinn dieser Darstel-

lungsart und sollte von uns nicht übernommen werden.

4.2.1 Reihenfolge der Arbeitsschritte

Arbeitsschritte, die nacheinander (sequenziell) ausgeführt werden sollen,

werden im Struktogramm als untereinander liegende Rechtecke von glei-

cher Breite dargestellt. In den Rechtecken steht der jeweilige Arbeits-

schritt in stichwortartiger Kurzform.

1 Lassen Sie mich hier bitte wenigstens so tun, als wüsste ich nicht, dass die meisten
kleineren Programme nicht so herum entstehen, sondern bei Bedarf schnell in die
Tastatur gehackt und, wenn überhaupt, erst danach dokumentiert werden.

2 Als Mitglied der Hochschule Bochum können Sie diese und viele weitere Normen für
Sie kostenlos von https://nautos.de/U2P/login herunterladen, solange sie sich im Netz-
werk der Hochschule befinden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 88

https://nautos.de/U2P/login

Abb. 46: Struktogramm: Sequenz von Arbeitsschritten

Um zu zeigen, dass in einem Arbeitsschritt einer Variable ein Wert zuge-

wiesen wird, verwenden wir als Zuweisungszeichen („… wird zu …“) ei-

nen nach links gerichteten Pfeil „←“. Wir vermeiden dadurch jede Ver-

wechslungsgefahr mit dem Vergleichsoperator „ist gleich“. Gelegentlich

findet man in Struktogrammen auch die auf Schreibmaschinen und PCs

ohne Compose-Taste1 leichter zu tippende Ersatzdarstellung „:=“ anstelle

eines Pfeils.

Anstelle von „Eingabe:“ und „Ausgabe:“ können wir auch kürzer „E:“ und

„A:“ schreiben.

4.2.2 Fallunterscheidung

Gibt es in einem Algorithmus zwei Ausführungsalternativen, die von einer

zu treffenden Entscheidung abhängen, so teilt sich das Struktogramm

darunter in zwei Spalten auf.

Abb. 47: Struktogramm: Fallunterscheidung

Die Kopfzeile der Fallunterscheidung ist dreigeteilt. Das obere Dreieck

enthält die Frage und die beiden unteren Dreiecke die beiden möglichen

Antworten.

1 Ich halte es für eine gute Idee, die für die meisten Menschen völlig überflüssige Fest-
stelltaste (⇩, links neben der Taste „A“) zur Compose-Taste umzuwidmen. Den Pfeil
nach links tippen Sie dann einfach mit der Tastenfolge „Compose < -“. Siehe auch htt-
ps://de.wikipedia.org/wiki/Compose-Taste.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 89

Eingabe: x

y ← f(x)

Ausgabe: y

a ≥ 10?
ja nein

A: „a ist
kleiner als

zehn“

A: „a ist größer
oder gleich

zehn“

https://de.wikipedia.org/wiki/Compose-Taste
https://de.wikipedia.org/wiki/Compose-Taste

Je nachdem, welche Antwort die richtige ist, wird der Ausführungszweig

in der linken oder in der rechten Spalte betreten.

Ausführungszweige dürfen auch leer sein.

Wird der Algorithmus im weiteren Verlauf wieder unabhängig vom ge-

wählten Ausführungszweig abgearbeitet, so werden die gemeinsamen

Ausführungsschritte wieder in voller Breite dargestellt.

4.2.3 Mehrfachauswahl

Gibt es mehr als zwei Wahlmöglichkeiten, von denen immer nur eine aus-

geführt wird, so gliedert sich das Struktogramm in entsprechend viele

Spalten auf.

Abb. 48: Struktogramm: Mehrfachauswahl

Die letzte Wahlmöglichkeit („sonst“) ergibt sich aus den anderen und

muss nicht mehr explizit abgefragt werden. Diese Spalte der Fallunter-

scheidung wird im Struktogramm gegenüber den anderen abgesetzt.

4.2.4 Abweisende Schleife

Schleifen sind Abschnitte in einem Algorithmus, die mehrmals hinterein-

ander wiederholt werden können.

Über die Anzahl der Wiederholungen entscheidet die im Schleifenkopf

formulierte Schleifenbedingung. Vor jedem Schleifendurchlauf wird die

Schleifenbedingung geprüft. Ist sie erfüllt, wird der Schleifendurchlauf

ausgeführt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 90

< 10

A: „x ist
größer als

zehn“

A: „x ist
kleiner als

zehn“

A: „x ist
gleich
zehn“

> 10 sonst

x ist …

Abb. 49: Struktogramm: Schleife

Wenn die Schleifenbedingung bereits bei der ersten Prüfung nicht erfüllt

ist, wird der Schleifenkörper niemals betreten. Man nennt diesen Schlei-

fentyp daher auch abweisende Schleife. Weil die Abfrage im Schleifen-

kopf erfolgt, werden abweisende Schleifen auch „kopfgesteuerte Schlei-

fen“ genannt.

Der zu wiederholende Schleifenkörper ist im Struktogramm stets einge-

rückt.

4.2.5 Nichtabweisende Schleife

Wenn die Schleifenbedingung erst zum Ende der Schleife geprüft wird

und der Schleifenkörper daher immer mindestens einmal durchlaufen

wird, spricht man von einer nichtabweisenden Schleife. Analog zur „kopf-

gesteuerten“ abweisenden Schleife werden nichtabweisende Schleifen

auch „fußgesteuerte Schleifen“ genannt.

Abb. 50: Struktogramm: Nichtabweisende Schleife

4.2.6 Endlosschleife

Endlosschleifen sind Schleifen, deren Schleifenbedingung immer erfüllt

ist. Sie werden in einem Struktogramm durch einen nach rechts einge-

rückten „schwebenden“ Block dargestellt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 91

solange x < 10:

x ← x + 1

A: x

x ← 1

bis x ≥ 10

A: x

x ← 0

x ← x + 1

Abb. 51: Struktogramm: Endlosschleife

Eigentlich dürften Endlosschleifen niemals Teil eines Algorithmus sein,

denn dessen Definition lautet ja, dass eine Aufgabe in endlich vielen

Schritten abzuarbeiten ist.

Ausbruch aus der Endlosschleife

Endlosschleifen in Struktogrammen besitzen daher eine Art Notausgang.

Dazu wird eine Abbruchbedingung im Schleifenkörper abgefragt. Ist sie

erfüllt, erfolgt ein gezielter Aussprung. Diesen Aussprung stellen wir im

Struktogramm durch ein leeres1 Feld dar, in dem durch zwei schräge Lini-

en ein Pfeil nach außen angedeutet ist.

Der Algorithmus wird nach dem Aussprung unterhalb der Schleife fortge-

setzt.

Abb. 52: Struktogramm: Endlosschleife mit Aussprung

Siehe dazu auch Kapitel „Aussprung mit break“ auf Seite 153.

Wenn der Aussprung den einzigen Zweck hat, eine nichtabweisende

Schleife zu formen, sollten wir es unbedingt vorziehen, diese im Strukto-

gramm wie in Kapitel 4.2.5 gezeigt darzustellen. Das ist übersichtlicher

1 In den Beispielen auf diesen Seiten ist es ausnahmsweise zusätzlich mit dem Wort
„Aussprung“ versehen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 92

E: x

y ← f(x)

A: y

x ← x + 1

A: x

x ≥ 10?
ja nein

-Aussprung

und sauberer. Denken Sie bitte immer daran, dass ein Struktogramm kei-

ne grafische Darstellung eines Computerprogramms ist, sondern die gra-

fische Darstellung des darunter liegenden Algorithmus.

4.2.7 Beispiel für ein vollständiges
Struktogramm

Das folgende Struktogramm stellt einen Algorithmus dar, mit dem sich in

höchstens zehn Versuchen jede von der Anwenderin oder dem Anwender

des Algorithmus ausgedachte ganze Zahl zwischen 1 und 1000 ermitteln

lässt. Die Rückmeldung erfolgt über einen Tastendruck. Ist die ausge-

dachte Zahl größer als die vom Algorithmus „geratene“, so soll ein Minus-

zeichen eingegeben werden, ist sie zu groß, soll ein Pluszeichen eingege-

ben werden und jede andere Eingabe zeigt an, dass der Algorithmus die

Ratezahl erfolgreich herausgefunden hat.

Der Algorithmus bestimmt dazu ein Suchintervall mit Ober- und Unter-

grenze. Anfangs liegen diese Werte bei 1 und 1000. Mit jedem Ratever-

such wird das Intervall halbiert. Die Funktion int sorgt durch Abschnei-

den der Nachkommastellen dafür, dass das Ergebnis der Halbierung

wieder eine ganze Zahl wird. Nach spätestens 10 Halbierungen hat das

Suchintervall die Größe 1 und die Zahl ist gefunden.

Abb. 53: Struktogrammbeispiel „Zahlenraten“

Martin Vogel: Bauinformatik mit Python, WS 2025/26 93

wiederhole zehn Mal:

„-“

Obergrenze ←
Ratezahl - 1

A: „Juhu!“

„+“ sonst

Untergrenze ← 1

Obergrenze ← 1000

Ratezahl ← int((Obergrenze + Untergrenze) / 2)

A: Ratezahl

E: Tastendruck

Untergrenze ←
Ratezahl + 1

Aussprung

Tastendruck ist …

4.2.8 Struktogramm-Editor

Es gibt diverse Programme zum Zeichnen von Struktogrammen. Sie benö-

tigen keines davon. Ein Stift, ein Lineal und ein Geodreieck oder ein ein-

faches Zeichenprogramm wie Dia1 oder LibreOffice Draw reichen völlig

aus.

Abb. 54: Der Struktogramm-Editor „Structorizer“

Wenn Sie unbedingt ein spezielles Programm wie Structorizer2 verwen-

den möchten, exportieren Sie die erzeugte Grafik bitte in einem Vektor-

format wie SVG oder PDF, damit das Ergebnis einigermaßen lesbar wird.

Die ganzen Überprüfungs-Einstellungen im Programm können Sie deakti-

vieren. Sie helfen Ihnen nur, wenn Sie versuchen, in dem Struktogramm-

Editor Java-Programme zu schreiben.

1 http://dia-installer.de/

2 https://structorizer.fisch.lu/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 94

https://structorizer.fisch.lu/
http://dia-installer.de/

5 Python
Zur Umsetzung unserer Algorithmen in von einem Computer ausführbare

Programme benötigen wir eine Programmiersprache. Die Auswahl der

zur Verfügung stehenden Sprachen ist riesig. Es gibt zahlreiche speziali-

sierte Programmiersprachen für die verschiedensten Anwendungsgebiete

von der kaufmännischen Buchhaltung bis zur künstlichen Intelligenz. Es

gibt aber auch Sprachen, die universell für eine Vielzahl von Aufgaben-

stellungen einsetzbar sind. Manche sind schwer zu erlernen, andere wie-

derum bieten so gut wie keine Einstiegshürden.

Gelegentlich werden Sprachen nur für ein bestimmtes Betriebssystem

oder für eine bestimmte Hardware (man sagt auch: für eine bestimmte

Plattform) angeboten, einige Sprachen funktionieren sogar nur innerhalb

eines bestimmten Softwarepakets. Es gibt jedoch auch Sprachen, die für

eine Vielzahl von Plattformen erhältlich sind. Nicht zuletzt kann man für

Programmiersprachen richtig viel Geld bezahlen – oder sie kostenlos her-

unterladen.

Aus all diesen Überlegungen heraus haben wir uns für eine Sprache ent-

schieden, die 1991 von Guido van Rossum veröffentlicht wurde: Python.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 95

Python ist kostenlos, läuft auf so

gut wie allen verbreiteten Be-

triebssystemen, ist sehr einfach zu

erlernen, eignet sich jedoch als

Vielzwecksprache für zahlreiche

unterschiedliche Anwendungsge-

biete. Sie ist objektorientiert und

besitzt nur wenige Sprachelemen-

te, kann aber durch Bibliotheken

fast beliebig modular erweitert

werden.

Außerdem ist Python eine Skript-

sprache, deren Programmtexte

unmittelbar vom Python-Interpre-

ter ausgeführt werden können.

Sprachen wie Java, C oder Fortran

benötigen dagegen einen Compi-

ler, welcher den Quelltext erst

mehr oder weniger aufwendig in

ein ausführbares Programm über-

setzt, das dann unter Umständen

nur auf der Plattform läuft, auf der es kompiliert wurde.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 96

Abb. 55: Guido van Rossum 2006 (dsearls,
CC-BY-SA 2.0)

http://www.flickr.com/photos/52614599@N00/199700290/
http://www.flickr.com/photos/52614599@N00/199700290/

5.1 Download und Installation

Python ist frei erhältlich. Die Downloadpakete für Windows und macOS

finden Sie auf http://www.python.org/download/. Wenn Sie eine Paketver-

waltung wie WinGet1 unter Windows oder Synaptic unter Linux einsetzen,

können Sie Python einfach damit installieren.

Für Mobilgeräte gibt es angepasste Entwicklungsumgebungen, beispiels-

weise Pydroid 3 für das Linux-Betriebssystem Android2 oder Pythonista 3

für iOS3. Leider sind diese üblicherweise nicht kostenlos.

Beachten Sie, dass es in der Vergangenheit zwei unterschiedliche Versio-

nen von Python gab, deren Quelltexte nicht ohne weiteres untereinander

austauschbar4 sind! Die Sprache wurde mit der 2008 erschienenen Ver–si-

on 3 erheblich aufgeräumt. Prüfen Sie vor allem ergoogelte Antworten

sorgfältig darauf, dass sich diese nicht auf die völlig veraltete Version 2.7

von Python beziehen! Einige Forenantworten im Internet halten sich ver-

blüffend hartnäckig.

Wir befassen uns in diesem Kurs nur mit der verbesserten Version Py-

thon 3. Die Unterversion (3.11 oder 3.12) spielt für uns keine große Rolle,

jedoch sollten Windows-Anwenderinnen und -anwender möglichst Versio-

nen von 3.6 an aufwärts installieren, um volle Unicode-Unterstützung zu

genießen. Auch die komfortablen F-Strings zur formatierten Zahlenausga-

be gibt es erst seit Version 3.6.

Unter Microsoft Windows kann Python sowohl mit als auch ohne Adminis-

trationsrechte installiert werden. Aus Gründen der Datensicherheit ist es

empfehlenswert, das Installationsprogramm immer mit Rechtsklick „als

Administrator“ zu starten und für alle Benutzerinnen und Benutzer des

Computers zu installieren. Im Installationsprogramm selber hat es sich

bewährt, die Option „Customize Installation“ zu wählen und ein paar

Häkchen zu setzen, die das nachträgliche Installieren von Modulen er-

leichtern. Im Zweifelsfall setzen Sie lieber ein Häkchen mehr als eines zu

wenig.

1 Im Anhang-Kapitel 7.3 finden Sie eine kurze Anleitung zu WinGet.

2 Pydroid 3 - Educational IDE for Python 3
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=de

3 Pythonista 3 – https://itunes.apple.com/de/app/pythonista-3/id1085978097?mt=8

4 In der EDV bezeichnet man solche Unverträglichkeit als „Inkompatibilität“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 97

https://itunes.apple.com/de/app/pythonista-3/id1085978097?mt=8
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=de
http://www.python.org/download/

Abb. 56: Wählen Sie „Customize installation“

Abb. 57: Setzen Sie ruhig alle Häkchen

Martin Vogel: Bauinformatik mit Python, WS 2025/26 98

Abb. 58: Installation für alle Benutzerinnen und Benutzer

Nach der Installation können Sie die integrierte Entwicklungsumgebung

IDLE unter Windows und Linux über das Startmenü aufrufen.

Unter Windows-Betriebssystemen finden Sie IDLE 3 unter „Start – (Alle)

Programme – Python 3.x – IDLE (Python GUI)“ oder Sie drücken die Win-

dowstaste ⊞ und tippen „id…“ (Abb. 59).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 99

Abb. 59: Das Startmenü von Windows 11

Unter Linux-Desktopumgebungen wie beispielsweise Ubuntu Linux ist die

Entwicklungsumgebung unter „Anwendungen – Softwareentwicklung –

IDLE 3“ einsortiert … oder Sie drücken die Super-Taste (Windowstaste)

und tippen „id…“.

Wenn Sie gerade nicht an Ihrem eigenen Rechner sitzen und daher keine

Software installieren können oder dürfen, müssen Sie trotzdem nicht auf

das Schreiben und Ausführen von Pythonprogrammen verzichten. Es gibt

inzwischen zahlreiche Webseiten, über die Python 3 direkt in einem Web-

browser ausgeführt werden kann1.

1 https://www.python.org/shell/
http://www.pythontutor.com/live.html
https://repl.it/languages/python3
https://www.jdoodle.com/python3-programming-online
https://www.tutorialspoint.com/execute_python3_online.php
https://www.onlinegdb.com/online_python_debugger

Martin Vogel: Bauinformatik mit Python, WS 2025/26 100

https://www.onlinegdb.com/online_python_debugger
https://www.tutorialspoint.com/execute_python3_online.php
https://www.jdoodle.com/python3-programming-online
https://repl.it/languages/python3
http://www.pythontutor.com/live.html
https://www.python.org/shell/

5.1.1 Module für wissenschaftliches Arbeiten

Für den Einsatz im wissenschaftlichen Bereich gibt es einige sehr interes-

sante Zusatzpakete für Python, namentlich die Module für Numerik, sym-

bolische Mathematik und wissenschaftlich anspruchsvolle Diagrammdar-

stellungen: NumPy, SymPy, SciPy und Matplotlib. Diese lassen sich mit

der Paketverwaltung des Betriebssystems (Abb. 60) oder dem Python-In-

stallationsprogramm PIP (Abb. 61) schnell installieren.

Abb. 60: Paketverwaltung Synaptic in Ubuntu Linux

Unter macOS öffnen Sie ein Terminalfenster und unter Windows die Ad-

ministrator-Eingabeaufforderung2 und geben dort „pip3 install Modulna-

me“ ein. Wenn sich auf dem Rechner keine alte Python-2-Installation

mehr befindet, genügt oft auch „pip install Modulname“.

2 Die Administrator-Eingabeaufforderung starten Sie, indem Sie die Windowstaste drü-
cken und „CMD“ tippen. Danach können Sie entweder das Wort „Eingabeaufforde-
rung“ rechtsklicken und „als Administrator ausführen“ wählen oder sie starten das
Programm mit etwas Fingerakrobatik über Strg-Umschalten-Eingabetaste.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 101

Abb. 61: Paketinstallation mit PIP unter Windows 10

Die importierbaren Module erweitern die Sprache Python um zusätzliche

Vokabeln und sind gelegentlich durchaus in anderen Sprachen als Python

geschrieben. Die Ausführungsgeschwindigkeit von C ist beispielsweise

der des Python-Interpreters oftmals (nicht immer) dramatisch überlegen

und für manche numerischen Aufgaben eignet sich das gute alte Fortran

besser.

Das Paket Numpy bringt sogar ein Programm namens f2py mit, das Fort-

ran- oder C-Quelltexte zu importierbaren Python-Modulen kompiliert.

Unter Windows kann es vorkommen, dass beim Versuch, PIP über die Ein-

gabeaufforderung zu starten, die Meldung „Der Befehl "PIP" ist entweder

falsch geschrieben oder konnte nicht gefunden werden“ erscheint. Dieses

Problem entsteht, wenn bei der Python-Installation das Häkchen bei „Add

Python to Path“ oder „Add Python to environment variables“ nicht gesetzt

wurde, denn dann findet die „Eingabeaufforderung“ von Windows das

Programm PIP nicht. Starten Sie in dem Fall die Python-Installation er-

neut, wählen Sie „Modify“ und setzen Sie das Häkchen.

Wenn Sie auf dem von Ihnen verwendeten Windows-Rechner nicht über

Administratorrechte verfügen, können Sie PIP dennoch verwenden. Star-

ten es dazu mit dem zusätzlichen Parameter „--user“ (siehe Abb. 62).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 102

Abb. 62: Paketinstallation ohne Administratorrechte

Falls Sie einmal versuchen sollten, Matplotlib mithilfe von PIP für eine ge-

rade neu herausgekommene Pythonversion zu installieren, und dabei sei-

tenweise rote Fehlermeldungen und gelbe Warnungen erhalten, könnte es

daran liegen, dass noch nicht alle benötigten Bibliotheken von ihren Ent-

wicklerinnen und Entwicklern auf die neue Version anpasst wurden. Blei-

ben Sie dann besser noch eine Weile bei der vorherigen Python-Version.

Solche Probleme werden üblicherweise recht bald behoben.

5.1.2 Virtuelle Umgebungen

Da es beim Nachinstallieren mancher neuer oder experimenteller Module

(derzeit vor allem im Bereich des maschinellen Lernens) zu Konflikten mit

anderen Modulen oder mit Sicherheitsmechanismen des Betriebssystems

kommen kann, ist es möglich, eine Pythoninstallation in einer sogenann-

ten virtuellen Umgebung (virtual environment) abzuschotten. Module, die

mittels PIP innerhalb einer virtuellen Umgebung installiert werden, sind

für die „normale“ Python-Installation außerhalb der virtuellen Umgebung

nicht sichtbar.

In diesem Kurs kommen wir noch gut ohne virtuelle Umgebungen aus

und gehen daher nicht weiter auf diese Technik ein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 103

5.2 Erste Schritte in der IDLE-Shell

Die Python-Entwicklungsumgebung IDLE begrüßt uns mit großer

Schlichtheit. Ein paar Zeilen Text mit Versionsnummern und drei dunkel-

rote Größer-als-Zeichen mit einem senkrechten Strich dahinter sind zu-

nächst scheinbar alles, was uns angeboten wird:

Abb. 63: Die Python-Shell der IDLE unter Windows

Abb. 64: Die IDLE-Shell unter Linux

Die drei größer-als-Zeichen >>> bilden den sogenannten Prompt. Mit

ihm gibt der Python-Interpreter zu erkennen, dass er alle Aufgaben bear-

beitet hat und nun auf neue menschliche Eingaben wartet. Der blinkende

senkrechte Strich dahinter ist der Cursor, der die aktuelle Schreibpositi-

on anzeigt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 104

Ohne einen einzigen Python-Befehl zu kennen, können Sie die Python-

Shell jetzt schon als eine Art einfachen Taschenrechner verwenden, der

immerhin Klammern kennt und die Priorität von Punktrechnung vor

Strichrechnung beherrscht. Außerdem protokolliert die Shell alle Ein-

und Ausgaben.

Tippen Sie einfach mal nacheinander folgende Zeilen ein und drücken Sie

am Ende jeder Zeile die Eingabetaste:

1 + 1

2 + 3 * 4

(2 + 3) * 4

1 / 7

"warum ist da kein Komma?"

Das Resultat sollte ungefähr so aussehen:

Abb. 65: Die IDLE-Shell als Taschenrechner

Bei der Division fallen zwei Dinge auf: die letzte Stelle des Ergebnisses ist

nicht gerundet, sondern abgeschnitten1 und als Dezimalzeichen wird der

Punkt und nicht das Komma verwendet.

1 Wer das bei 1/7 nicht erkennt, weil periodische Dezimalbrüche in der Schule nicht
behandelt wurden, möge das Experiment mit 2/3 wiederholen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 105

Die letzte Eingabezeile zeigt, dass Python auch mit Texten umgehen

kann. Sofern Zeichenfolgen mit Anführungszeichen oder Hochkommas

umschlossen werden, gibt Python sie unverändert wieder. Fehlen die An-

führungszeichen, so versucht Python, die Eingabe als Befehl oder Varia-

blenname zu verstehen.

Nur die unterste Zeile der IDLE-Shell nimmt Eingaben entgegen. Ältere,

im Protokoll bereits nach oben gerutschte Eingaben können wir nicht

nachträglich ändern. Wenn wir einmal auf eine frühere Eingabe zurück-

greifen wollen, können wir die Tastenkombinationen Alt-P und Alt-N ver-

wenden (Merkhilfe: P wie previous und N wie next). Damit lassen sich die

bisher vorgenommenen Eingaben durchblättern.

In der IDLE-Shell haben wir bei unseren Experimenten ganz nebenbei ei-

ne wichtige Eigenschaft von Programmcode kennengelernt. Dieser wird

innerhalb eines zusammengehörigen Blocks streng zeilenweise von oben

nach unten abgearbeitet. Während wir in der Mathematik, beispielsweise

beim Lösen eines Gleichungssystems, alle Angaben gleichzeitig beachten

müssen, genügt es beim Programmieren, immer nur eine einzige Zeile im

Blick zu behalten.

a = 1 # Der hier neu angelegten Variable a wird der

Wert 1 zugewiesen.

b = a + 1 # In dieser Zeile erzeugen wir eine Variable b

und weisen ihr den Wert 2 zu.

a = b + 1 # Nun wird a der Wert 3 zugewiesen. Der alte

 # Inhalt von a wird überschrieben.

a = a + 1 # Schließlich wird der Wert von a um 1 erhöht.

 # Rechts steht 3 + 1 und a erhält den Wert 4.

Viele Programmierneulinge erkennen diese Einfachheit nicht und versu-

chen oft, mehrere Zeilen eines Programms wie ein Gleichungssystem

gleichzeitig zu erfassen. Dadurch wirken Programmtexte viel komplizier-

ter als sie in Wirklichkeit sind, mitunter sogar widersinnig. Tatsächlich

geschehen dort Dinge einfach nur nacheinander.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 106

5.3 Fehlermeldungen

Auch wenn Python-Fehlermeldungen auf den ersten Blick vielleicht ein

bisschen alarmierend und unverständlich wirken mögen: sie sind eine

große Hilfe bei der Fehlersuche in einem Programm. So wird uns immer

die Zeile im Quelltext angegeben, an der der Fehler aufgetreten ist und

eine (englischsprachige) Beschreibung der Fehlerumstände hilft uns, die

Fehlerursache schnell zu erkennen.

Abb. 66: Python-Fehlermeldungen

Der einfachste und auch häufigste Fehler ist der sogenannte Syntaxfeh-

ler; man kann ihn als Grammatikfehler verstehen. Er tritt beispielsweise

auf, wenn Klammern fehlen oder ein Wort an einer vom Python-Interpre-

ter nicht erwarteten Stelle steht. Bei komplexeren Fehlern (diese werden

auch „Ausnahmen“ genannt) ist die Fehlermeldung länger. Die letzte Zei-

le der Fehlermeldung gibt dann den Grund für die Ausnahme an und in

der zweiten Zeile der Fehlermeldung finden wir die Zeile im Programm-

text, an der der Fehler aufgetreten ist. Hier oder in der Programmzeile

darüber ist meistens irgendetwas zu reparieren.

Wenn in der Zeile, deren Nummer in der Fehlermeldung angezeigt wird,

partout kein Fehler erkennbar ist, besteht die Ursache des Fehlers meis-

tens darin, dass irgendwo weiter oben eine schließende Klammer fehlt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 107

Anfangs ist es völlig normal, dass ein Programm anstelle der gewünsch-

ten Ergebnisse zahlreiche Fehlermeldungen ausgibt. Lassen Sie sich da-

durch nicht entmutigen, Fehler gehören zum Programmieren dazu. Nach

dem Schreiben eines Programms heißt die nächste Arbeitsphase immer

„Fehlersuche“ oder, weil Programmierfehler traditionell als Bugs bezeich-

net werden, „Debugging“. In IDLE gibt es dazu sogar einen eigenen Me-

nüpunkt in der Hauptmenüleiste.

Eine Tabelle mit den häufigsten Fehlermeldungen, ihrer Übersetzung und

Ratschlägen zur Vermeidung und Behebung befindet sich im Anhang die-

ses Lehrbuchs auf Seite 332.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 108

5.4 Konstanten

Konstanten sind feste Werte in einem Programmtext. Wir haben sie schon

kennengelernt, als wir in der IDLE Zeilen wie 2 + 3 * 4 oder "warum

ist da kein Komma?" eingegeben haben.

Der Wert einer Konstanten kann zum Beispiel eine ganze Zahl sein, eine

Gleitkommazahl (auch Dezimalzahl oder Fließkommazahl genannt), eine

komplexe Zahl, eine Zeichenkette oder ein Wahrheitswert. Wir nennen

diese Datentypen auch „Klassen“.

In Anlehnung an ihre englischsprachigen Bezeichnungen werden diese

fünf Klassen in Python kurz int, float, complex, str und bool ge-

nannt.

Deutsche
Bezeichnung

Englische
Bezeichnung

Python-
Klasse

Beispiel für eine Kon-
stante dieser Klasse

Ganzzahl integer int 42

Gleitkomma-
zahl

floating-point
number

float 3.141592653589793

Komplexe
Zahl

complex num-
ber

complex (1+1.4142135623730951j)

Zeichenkette
character
string

str "Hallo Bochum!"

Wahrheits-
wert

Boolean value bool True

Beim Schreiben von Gleitkommazahlen müssen wir darauf achten, dass in

Python als Dezimalzeichen ein Punkt erwartet wird. Dies ist in fast allen

anderen Programmiersprachen so und wird Ihnen später in vielen Anwen-

dungsprogrammen wie beispielsweise den CAD-Programmen AutoCAD

und BricsCAD begegnen. Das Komma hat in Python eine eigene Bedeu-

tung und wird als Trennzeichen verwendet.

Eine Zeichenkettenkonstante muss von Anführungszeichen umschlossen

werden, um nicht mit dem Namen einer Variable, einer Funktion oder ei-

nes anderen Objektes verwechselt zu werden. Sie haben die Auswahl zwi-

Martin Vogel: Bauinformatik mit Python, WS 2025/26 109

schen vier verschiedenen Arten von Anführungszeichen: einfache ' An-

führungszeichen, doppelte " Anführungszeichen, drei einfache ''' Anfüh-

rungszeichen und drei doppelte """ Anführungszeichen.

Die dreifach gesetzten Anführungszeichen erlauben es uns, Zeichenket-

tenkonstanten zu schreiben, die aus mehreren Zeilen Text bestehen.

Innerhalb einer Zeichenkettenkonstante dürfen wir nicht dieselben An-

führungszeichen verwenden, die wir zur Umgrenzung der Zeichenketten-

konstante gewählt haben. Falls doch, muss jedem „inneren“ Anführungs-

zeichen ein Rückwärtsschrägstrich \ vorangestellt werden. Mehr dazu in

Kapitel 5.21, „Zeichenketten“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 110

5.5 Variablen

Variablen gehören zu den wichtigsten Bestandteilen einer Programmier-

sprache. Allerdings verwenden wir sie hier ganz anders als in der Mathe-

matik.

In Programmiersprachen sind viele Variablen nichts anderes als eine Ver-

bindung eines Wertes mit einem Namen. Wir können sie uns zunächst als

eine Art benannte Behälter vorstellen, in denen wir einzelne Werte, wie

beispielsweise eine Zahl oder eine Zeichenkette, zur späteren Verwen-

dung aufbewahren können.

Abb. 67: Variablenmodell „beschriftete Kästchen“

Diese Behälter besitzen allerdings ein paar Besonderheiten. So kann je-

der Behälter nur genau einen Wert enthalten. Wird ein neuer Inhalt in

den Behälter gegeben, verschwindet der alte Inhalt augenblicklich. Wenn

wir einen neuen Behälter anlegen, indem wir einen neuen Namen verge-

ben und diesem neuen Behälter den Wert eines existierenden Behälters

zuweisen, so erzeugen wir eine Kopie des Inhalts. Der existierende Behäl-

ter behält seinen Inhalt.

Die Zuweisung eines Wertes zu einer Variable geschieht mit dem Zu-

weisungszeichen „=“ in der Form „Variablenname = Wert“. Da die Zu-

weisung ausschließlich von rechts nach links erfolgt, ist es eine gute Idee,

dieses Zuweisungszeichen als „wird zu“ und nicht als „ist gleich“ zu le-

sen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 111

Ein anderer wichtiger Unterschied zur Mathematik: Jeder Variable kann

beliebig oft ein neuer Wert zugewiesen werden, ohne dass dadurch ande-

re Variablen beeinflusst werden.

Python, wie viele andere Programmiersprachen auch, merkt sich nicht,

wie der Wert entstanden ist, der einer Variable zugewiesen wird. Ange-

nommen, wir weisen den beiden Variablen x und y die Werte 6 und 7 zu.

Eine dritte Variable heiße Antwort und erhalte das Ergebnis der Berech-

nung x * y. Der in der Variable Antwort gespeicherte Wert ist nun 42.

Ändern wir anschließend den Wert von x oder y, so hat das auf den Wert

von Antwort keinerlei Auswirkungen mehr.

>>> x = 6

>>> y = 7

>>> Antwort = x * y

>>> x

 6

>>> y

 7

>>> Antwort

 42

>>> x = 1

>>> y = 2

>>> x

 1

>>> y

 2

>>> Antwort

 42

Eine Besonderheit von Python ist es, mehreren Variablen gleichzeitig
denselben Wert zuweisen zu können.

a = b = c = 22.5

print(a, b, c)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 112

22.5 22.5 22.5

Wir können auch mehreren Variablen gleichzeitig mehrere Werte
zuweisen.

>>> a, b, c = 1, 2, "halb drei"

>>> a

 1

>>> b

 2

>>> c

 'halb drei'

In Python können wir sogar die Werte mehrerer Variablen in einer einzi-

gen Zeile gegeneinander austauschen.

>>> x = "X"

>>> u = "U"

>>> x, u = u, x

>>> x

 'U'

>>> u

 'X'

Martin Vogel: Bauinformatik mit Python, WS 2025/26 113

5.5.1 Variablennamen

Variablennamen dürfen aus einer ununterbrochenen Folge von Buch-

staben, Ziffern und Unterstrichen bestehen.

Das erste Zeichen darf keine Ziffer sein.

Im Gegensatz zu vielen anderen Programmiersprachen erlaubt Python

auch Buchstaben, die nicht im klassischen 26-Zeichen-Alphabet zu finden

sind.

Gültige Variablennamen sind beispielsweise:

x

x_min

 _

変数名
schalke05

öffnungsmaß

KamelSchreibweise

ich_habe_einen_langen_namen_und_ich_werde_ihn_benutzen

Der unscheinbarste Variablenname „_“ (einzeln stehender Unterstrich)

hat innerhalb der Entwicklungsumgebung IDLE eine besondere Stellung.

Er enthält dort die jeweils letzte Ausgabe des Python-Interpreters.

>>> 3 * 4

 12

>>> _ + 1

 13

Es hat sich der Brauch entwickelt, den Variablennamen „_“ in eigenen

Programmen nur dort zu verwenden, wo zwar aus syntaktischen Gründen

ein Variablenname angegeben werden muss, der Wert dieser Variable

aber im weiteren Programm gar nicht benötigt wird.

Der Unterstrich ist das einzige in einem Variablennamen erlaubte Zei-

chen, das kein Buchstabe und keine Ziffer ist. Operatoren wie „+“ oder

„-“, Emojis sowie das Leerzeichen „ “ können nicht Bestandteil eines Vari-

ablennamens sein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 114

Manche Variablennamen sehen aus, als enthielten sie einen Punkt. Dieser

Punkt hat jedoch eine ganz besondere Bedeutung (Kapitel 5.19). Verwen-

den Sie ihn nicht für Variablennamen!

>>> class x:

 min = 0

 max = 99

>>> x.min

 0

>>> x.max

 99

In sehr kurzen Variablennamen sollten die Zeichen I (großes i) und l (klei-

nes L) sowie 0 (Ziffer null) und O (großes o) vermieden werden, um Ver-

wechslungen zu vermeiden.

Es gibt Schriftarten wie die in diesem Text für Quelltexte verwendete De-

javu Sans Mono1, welche sich sehr um eine Unterscheidbarkeit dieser Zei-

chen bemühen.

I = 0

l = 1 + I

lO = 10

I0 = 1 + lO

Andere Schriftarten, wie Microsofts Arial, machen das Lesen von Quell-

texten zum Ratespiel.

I = 0

l = 1 + I

lO = 10

I0 = 1 + lO

1 Die Deja-Vu-Fontfamilie steht unter einer freien Lizenz und kann kostenlos von
https://dejavu-fonts.github.io/ heruntergeladen werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 115

https://dejavu-fonts.github.io/

Den Inhalt (Wert) einer Variable finden wir heraus, indem wir den Varia-

blennamen mit korrekter Groß- und Kleinschreibung am Prompt einge-

ben2 oder indem wir die Funktion print zur Ausgabe einer oder mehrerer

Variablen verwenden.

print(I, l, lO, I0)

0 1 10 11

2 „Eingeben“ heißt, etwas zu tippen und dann die Eingabetaste ↲ (Enter-Taste) zu drü-
cken.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 116

5.6 Rechenoperationen

Python unterstützt die Grundrechenarten und beachtet dabei die aus der

Mathematik bekannte Ausführungsreihenfolge: Punktrechnung (· und :)

geht vor Strichrechnung (– und +), eine noch höhere Priorität haben Po-

tenzen, und Klammern stehen über allem.

Alle Operatorsymbole folgen der im PC-Bereich üblichen Schreibweise,

die sich daraus ableitet, dass zur Eingabe in der Regel eine klassische

Schreibmaschinentastatur verwendet wird. Daher werden anstelle des

Multiplikationspunktes · der Stern * und anstelle des Divisionsdoppel-

punktes : der Schrägstrich / verwendet. Trotz der neuen Operatoren

gelten Multiplikation und Division weiterhin als Punktrechnung!

Der Multiplikationsoperator darf nicht entfallen, wenn Variablen mit Zah-

lenwerten multipliziert werden. Anstelle von 3x muss es daher beispiels-

weise stets 3 * x heißen.

Potenziert wird nicht durch Hochstellen, sondern mit einem Doppel-

sternchen **. Die Kubikzahl 2³ wird also in Python als 2 ** 3 geschrie-

ben1.

Beim Potenzieren von negativen Konstanten müssen wir darauf achten,

dass das Vorzeichen (unäres Minus) in Python mathematisch korrekt wie

ein Subtraktionsoperator behandelt wird. Der Ausdruck -2 ** 2 ist daher

gleichwertig mit 0 - 2 ** 2 und ergibt -4. Setzen Sie hier sicherheits-

halber Klammern: (-2) ** 2.

Vorsicht! Tabellenkalkulationen wie Microsoft Excel geben dem unären

Minus eine höhere Priorität als dem Potenzierungsoperator, was zu ge-

fährlichen Vorzeichenfehlern in einer Rechnung führen kann.

1 Die Verwendung des Doppelsternchens als Potenzierungsoperator wurde schon 1954
von John Backus für die Sprache Fortran festgelegt. Obwohl dieser Operator auch in
viele andere Sprachen, wie zum Beispiel COBOL, übernommen wurde, verwendeten
John Kemeny und Thomas Kurtz stattdessen in ihrer 1964 vorgestellten Sprache BA-
SIC als Potenzierungsoperator das Zirkumflex ^. Dessen ungeachtet führte Dennis
Ritchie ebendieses Zirkumflex in der 1972 von ihm verfassten Sprache C als Exklusiv-
oder-Operator ein, was später von James Gosling für Java und Guido van Rossum für
Python übernommen wurde (Quelle: https://softwareengineering.stackexchange.com/
questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#
331392).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 117

https://web.archive.org/web/20251105101849/https://softwareengineering.stackexchange.com/questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#331392
https://web.archive.org/web/20251105101849/https://softwareengineering.stackexchange.com/questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#331392
https://web.archive.org/web/20251105101849/https://softwareengineering.stackexchange.com/questions/331388/why-was-the-caret-used-for-xor-instead-of-exponentiation/331392#331392

Für ganzzahlige Divisionen mit Rest (zum Beispiel „14 durch 4 ergibt 3,

Rest 2“) verwendet Python die Operatoren // und %.

>>> 14 / 4

 3.5

>>> 14 // 4

 3

>>> 14 % 4

 2

Dabei erhalten wir mit dem Operator // den ganzzahligen Quotienten

zweier Zahlen und mit % den dazu gehörenden Divisionsrest. Weil der Di-

visionsrest in der Mathematik auch Modulo heißt, wird das Prozentzei-

chen % in diesem Zusammenhang Modulo-Operator genannt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 118

5.7 Funktionen und Module

Aus der Mathematik kennen wir bereits Funktionen wie sin(x) oder f(x,y),

die zu einem oder mehreren Eingangswerten einen bestimmten Funkti-

onswert zurückgeben.

Diese Eingangswerte werden auch Parameter oder Argumente der Funk-

tion genannt.

Abb. 68: Funktion mit Eingangswerten und Rückgabewert

Außer diesen „reinen“ Funktionen gibt es auch Funktionen, die eine Wir-

kung haben. Sie steuern beispielsweise ein Gerät oder geben etwas auf

dem Bildschirm aus.

Abb. 69: Funktion mit Wirkung

Die Wirkung einer Funktion wird manchmal auch „Nebenwirkung“ oder,

als Fehlübersetzung des englischen „side effect“, „Seiteneffekt“ oder so-

gar „Nebeneffekt“ genannt.

Funktionen in Python können wir beinahe als kleine eigenständige Pro-

gramme verstehen. Variablen, die innerhalb einer Funktion eingeführt

werden, sind üblicherweise außerhalb der Funktion nicht sichtbar. Auch

Zuweisungen zu Variablen, die unter gleichen Namen außerhalb der

Funktion verwendet werden, gelten nur innerhalb der Funktion. Wir sa-

gen dazu, dass die Funktion einen eigenen Namensraum besitzt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 119

Funktion
Eingangswert(e),

Parameter,
Argument(e)

Rückgabewert(e)

Funktion
Eingangswert(e),

Parameter,
Argument(e)

Rückgabewert(e)

Wirkung

Es gibt zwar die Möglichkeit, außerhalb der Funktion eingeführte Varia-

blen mithilfe des Schlüsselworts global zu verändern; im Sinne eines

sauberen Programmierstils ist jedoch die Verwendung globaler Variablen

wegen der damit verbundenen Nebenwirkungen verpönt. In diesem Text

wird daher auf globale Variablen nicht weiter eingegangen. Versuchen

Sie bitte, alle benötigten Werte als Parameter zu übergeben und lassen

Sie die Funktion alle von ihr berechneten Werte explizit zurückgeben.

Eine Funktion ohne definierten Rückgabewert gibt ein besonderes Objekt

zurück: None. Dadurch ist sichergestellt, dass wir keine Fehlermeldung

erhalten, wenn wir einer Variablen den Rückgabewert einer Funktion zu-

weisen.

Abb. 70: Funktionen mit und ohne Wirkung oder Rückgabewert

Martin Vogel: Bauinformatik mit Python, WS 2025/26 120

input(…) "gib eine Zeichenkette ein: "

Bildschirmausgabe:

gib eine Zeichenkette ein:

Eingegebene Zeichenkette

sum(…) (1, 2, 3)6

print(…) 1, 2, 3None

Bildschirmausgabe:

1 2 3

Beispiele für eingebaute Funktionen

Absolutwert einer Zahl abs(-4)

kleinster bzw. größter Wert einer Anzahl von Ele-

menten

min(a, b, c, …)

max(a, b, c, …)

Länge eines iterierbaren Objekts, beispielsweise

einer Zeichenkette
len("Text")

Summe der Zahlenwerte eines iterierbaren Ob-

jekts, beispielsweise einer Liste
sum([1, 2, 3])

Eine neue sortierte Liste aus einem iterierbaren

Objekt erzeugen
sorted([3, 1, 2])

Zahl a auf n Nachkommastellen runden round(a, n)

Ausgabe von Werten auf dem Bildschirm print("Text", 123)

Eingabe einer Zeichenkette input("Text: ")

Hilfe (englisch)
help("sum")

help("builtins")

Python verfügt im Verhältnis zu anderen Programmiersprachen über rela-

tiv wenige eingebaute Funktionen. Bei der Installation werden jedoch

zahlreiche Module mitgeliefert, die tausende von Funktionen für alle

möglichen Einsatzgebiete zur Verfügung stellen. Um diese Funktionen zu

nutzen, müssen wir sie lediglich importieren.

5.7.1 Funktionsweiser Import

Aus einem Modul können wir entweder alle darin vorhandenen Funktio-

nen auf einen Schlag importieren …

from Modulname import *

… oder wir beschränken uns beim Import auf einzelne ausgewählte Funk-

tionen.

from Modulname import Funktionsname

Martin Vogel: Bauinformatik mit Python, WS 2025/26 121

Das ist zwar etwas mehr Tipparbeit, aber sehr sinnvoll. Denn wenn meh-

rere Module die gleichen Funktionsnamen verwenden, kann es sonst pas-

sieren, dass die zuletzt importierten Module unkontrolliert bereits vor-

handene Funktionen überschreiben.

Die importierten Funktionen lassen sich direkt mit ihrem Namen anspre-

chen:

>>> from math import cos

>>> cos(0)

 1.0

Falls uns der Name einer zu importierenden Funktion unpassend er-

scheint, weil er beispielsweise unbequem lang oder der deutsche Name

angebrachter ist, können wir auch einen eigenen Namen für die Funktion

vergeben.

Das Modul math besitzt beispielsweise eine Funktion gcd(x, y), die den

greatest common denominator, also den größten gemeinsamen Teiler

zweier ganzer Zahlen x und y zurückgibt. In der Schule haben wir diese

Funktion als „ggT“ kennengelernt. Wir können die Funktion nun so im-

portieren, dass sie in unserem Programm nicht gcd, sondern ggt heißt:

from math import gcd as ggt

5.7.2 Modulweiser Import

Es ist auch möglich, alle Funktionen eines Moduls so zu importieren, dass

es dabei nicht zu Namenskonflikten kommt. Dazu verwenden wir die fol-

gende Schreibweise:

import Modulname

Nachdem ein Modul auf diese Art importiert wurde, können wir jede

Funktion des Moduls ansprechen, indem wir ihrem Funktionsnamen den

jeweiligen Modulnamen voranstellen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 122

Modulname.Funktionsname(Parameter)

Beispiel:

>>> import math

>>> math.cos(0)

 1.0

Das sorgt in den meisten Fällen für einen sehr lesbaren Quelltext, weil

immer klar ist, aus welchem Modul eine Funktion stammt.

Auch hier können wir beim Import einen kürzeren Namen vergeben.

Manche Abkürzungen sind sogar so etwas wie ein allgemeiner Standard

geworden. So wird das Modul zur Darstellung anspruchsvoller Diagram-

me matplotlib.pyplot üblicherweise als plt abgekürzt und die Nume-

rikbibliothek numpy als np.

import matplotlib.pyplot as plt

import numpy as np

Eine Liste aller in der aktuellen Python-Sitzung importierbaren Module

erhalten wir durch den Aufruf help("modules").

5.7.3 Das Mathematik-Modul: math

Weil im Bau- und Umweltingenieurwesen wohl kaum ein Berechnungspro-

gramm ohne Mathematikfunktionen auskommt, schauen wir uns dieses

Modul noch etwas genauer an.

Eine vollständige Übersicht über den Umfang des Mathematikmoduls lie-

fert uns die Funktion help. Leider ist sie nur für diejenigen richtig hilf-

reich, die einigermaßen gut Englisch können.

import math

help(math)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 123

Für alle anderen erklärt die folgende Tabelle deshalb einige ausgewählte

Funktionen des Moduls „math“:

Funktion Beschreibung

floor(x) Rundet x ab.

ceil(x) Rundet x auf.

trunc(x)
Schneidet die Nachkommastellen von x ab. Die Funkti-
on verhält sich also bei positiven Zahlen wie floor(x)
und bei negativen Zahlen wie ceil(x).

gcd(x, y) ggT der beiden ganzen Zahlen x und y.

sin(a)
cos(a)
tan(a)

Die Winkelfunktionen Sinus, Kosinus und Tangens. Der
Winkel ist stets in Bogenmaß anzugeben!

asin(x)

acos(x)

Die Umkehrfunktionen von Sinus und Kosinus (in der
Mathematik oft als sin-1(x) und cos-1(x) geschrieben) er-
mitteln zu einer Zahl x zwischen −1 und 1 den dazugehö-
rigen Winkel in Bogenmaß.

atan(s)

atan2(y, x)

Die Tangensfunktion hat gleich zwei Umkehrfunktionen:
atan(s) nimmt die Steigung s als einzelne Zahl entgegen
und gibt einen Winkel zwischen −π/2 und π/2 zurück.
atan2(y, x) benötigt zwei Zahlenwerte x und y und gibt
den Winkel der Polarkoordinaten des Punktes (x, y) zu-
rück. Da x und y unterschiedliche Vorzeichen haben dür-
fen, lassen sich alle Winkel von -π bis π ermitteln.

radians(w) Rechnet einen Winkel von Altgrad in Bogenmaß um.

degrees(a) Rechnet einen Winkel von Bogenmaß in Altgrad um.

sqrt(x)

Quadratwurzel (square root). Kann auch ohne Verwen-
dung des math-Moduls als x**0.5 geschrieben werden.
Bei negativen Werten von x wirft die Funktion sqrt(x)
eine Fehlermeldung vom Typ „ValueError“ aus, wogegen
x**0.5 eine komplexe Zahl zurückgibt.

exp(x) Exponentialfunktion ex

pow(a, b) Potenzfunktion ab – identisch mit a**b

log(x) Natürlicher Logarithmus (Basis e)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 124

Funktion Beschreibung

log(x, b) Logarithmus zur Basis b

log10(x)

log(x, 10)
Dekadischer Logarithmus (Basis 10)

5.7.4 Funktionszuweisungen

In Python ist es möglich, Funktionen genauso wie Zahlen oder Zeichen-

ketten einer Variable zuzuweisen. Die Funktion kann dann unter dem Na-

men der Variable ausgeführt werden.

>>> a = 44801

>>> b = "Bochum"

>>> c = print

>>> c(a, b)

 44801 Bochum

Vorsicht! Umgekehrt ist es auch möglich (wenn auch fast immer unsin-

nig), die Namen vorhandener Funktionen wie print oder input als Varia-

blennamen für Zahlenwerte oder Zeichenketten einzusetzen. Die Funkti-

on ist dann für den aktuellen Programmlauf verloren.

Bei der Zuweisung einer Funktion zu einer Variable dürfen keine Klam-

mern hinter dem Funktionsnamen stehen, sonst wird die Funktion sofort

ausgeführt und anstelle der Funktion selbst nur ihr Rückgabewert der Va-

riable links vom Gleichheitszeichen zugewiesen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 125

5.8 Eingabe mit input(…)

Unsere Programme sollen nicht immer mit denselben Werten rechnen,

sondern auch menschliche Eingaben entgegennehmen. Das können

Mausaktionen sein, zum Beispiel das Anklicken oder Verschieben von

Grafikelementen, aber auch im einfachsten Fall eine direkte Tastaturein-

gabe.

Um in einem Programm eine Zeichenfolge von der Tastatur einzulesen,

gibt es die Funktion input. Ihren Rückgabewert weisen wir üblicherweise

einer Zeichenkettenvariable zu.

>>> a = input()

 Hallo!

>>> b = input("Wie heißt Du? ")

 Wie heißt Du? Maggy Mustermann

>>> a

 'Hallo!'

>>> b

 'Maggy Mustermann'

Die Klammer nach einem Funktionsnamen ist zur Ausführung der Funkti-

on unbedingt notwendig. Sie darf leer sein, kann aber im Falle von input

auch einen in Anführungszeichen gesetzten Fragetext enthalten, um den

das Programm Bedienenden mitzuteilen, welche Eingabe erwartet wird.

5.8.1 Lesen aus Textdateien

Viel häufiger als über die Tastatur erhalten Programme in der Ingenieur-

praxis ihre Eingaben aus Dateien, die beispielsweise aus Messanlagen

stammen oder von anderen Programmen erzeugt wurden.

Um mit Python den Inhalt einer Datei zu lesen, melden wir beim Betriebs-

system an, dass wir die Datei zum Lesen öffnen wollen (Modus „r“ wie

„read“). Wir erhalten dann ein Dateiobjekt, das sogenannte Dateihandle.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 126

Dieses Dateihandle, nennen wir es der Einfachheit halber „meine_datei“,

besitzt die Methode read, mit der wir den gesamten Inhalt der Datei als

eine einzige lange Zeichenkette lesen.

Die folgenden Zeilen öffnen die Datei „Liste.txt“, lesen deren Inhalt in

eine Variable „Inhalt“ und geben diesen Inhalt auf dem Bildschirm aus.

with open("Liste.txt", "r") as meine_datei:

 Inhalt = meine_datei.read()

print("In der Datei „Liste.txt“ steht folgendes:")

print(Inhalt)

Da das Dateihandle ein iterierbares Objekt darstellt, können wir auch mit

Schleifen auf die Dateiinhalte zugreifen. Eine Vertiefung dieses Themas

finden Sie in Kapitel 5.22.1.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 127

5.9 Ausgabe mit print(…)

Die Funktion print gibt die ihr übergebenen Inhalte auf dem Bildschirm

aus und beginnt danach eine neue Zeile.

a = 3

b = 4

print("Die Variable a hat den Wert", a)

Die Variable a hat den Wert 3

print("Die Variable b hat den Wert", b)

Die Variable b hat den Wert 4

print("Die Summe beider Zahlen ist", a+b)

Die Summe beider Zahlen ist 7

Zwischen den Klammern dürfen beliebig viele durch Kommas getrennte

Funktionsparameter stehen. Wir bezeichnen diese Parameter auch als die

Argumente der Print-Funktion. Sie werden von ihr, voneinander jeweils

durch ein Leerzeichen getrennt, hintereinander ausgegeben.

Lassen wir die Klammer leer, so gibt der Aufruf print() nur eine Leerzei-

le aus.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 128

5.9.1 Ausgabe in Textdateien

Mit der Print-Funktion können wir nicht nur Texte auf dem Bildschirm

ausgeben; sie ist auch in der Lage, Texte in eine Datei zu schreiben. Wir

denken uns dazu einen Namen für die neue Datei aus (zum Beispiel

„Liste.txt“), öffnen die Datei zum Schreiben (Modus „w“ wie „write“)

und erhalten dabei, genau wie vorhin beim Lesen, ein Dateihandle. Nen-

nen wir es auch hier wieder „meine_datei“. Jeder Aufruf der Print-Funk-

tion, bei dem wir dieses Dateihandle angeben, schreibt nicht auf den Bild-

schirm, sondern in die Datei.

with open("Liste.txt", "w") as meine_datei:

 print("Dies ist eine Textdatei.", file=meine_datei)

 print("Sie ist zum Schreiben geöffnet.",

 file=meine_datei)

 print("Innerhalb der with-Einrückung kann ich "

 "beliebig oft in die Datei schreiben.",

 file=meine_datei)

print("Beim Verlassen der Einrückung wird sie geschlossen.")

Warnung!

Das Schreiben in eine Datei ist eine der wenigen Gelegenheiten, Schaden

auf einem Rechner anzurichten. Eine existierende Datei, die im Modus

„w“ erneut zum Schreiben geöffnet wird, verliert augenblicklich und ohne

jede Rückfrage ihren gesamten Inhalt. Seien Sie aufmerksam beim Über-

schreiben wichtiger Daten! Legen Sie außerdem regelmäßig Sicherheits-

kopien Ihrer wichtigsten Dateien auf nicht dauerhaft mit Ihrem Rechner

verbundenen lokalen Datenträgern an!

Martin Vogel: Bauinformatik mit Python, WS 2025/26 129

5.9.2 Alternatives Trennzeichen: sep

Die Print-Funktion trennt alle auszugebenden Elemente standardmäßig

mit einem Leerzeichen.

a = 3

b = 4

c = 5

print(a, b, c)

3 4 5

Anstelle des Leerzeichens können wir auch beliebige andere Zeichen

oder Zeichenfolgen als Trennzeichen zwischen den durch print auszuge-

benden Parametern verwenden.

Diese Trennzeichen nennt man auch Separatoren. Sie werden über den

zusätzlichen Parameter sep an die Funktion übergeben.

Um beispielsweise die Inhalte der drei Variablen a, b und c mit jeweils ei-

nem Semikolon getrennt hintereinander auszugeben, schreiben wir:

print(a, b, c, sep = ";")

3;4;5

Wird als Separator die leere Zeichenkette "" eingestellt, so gibt Python

die Werte der Parameter direkt hintereinander aus.

print(a, b, c, sep = "")

345

Martin Vogel: Bauinformatik mit Python, WS 2025/26 130

5.9.3 Alternatives Zeilenende: end

Wenn es uns stört, dass die Print-Funktion nach der Ausgabe eine neue

Zeile beginnt, oder wenn wir am Ende einer Zeile ein besonderes Zeichen

sehen wollen, so können wir dieses Verhalten mit dem Parameter end be-

einflussen.

Der Standardinhalt von end ist der Zeilenwechsel "\n", es ist aber auch

jede andere Zeichenfolge möglich.

Soll Python beispielsweise nach einer Print-Ausgabe ohne Zeilenwechsel

weiterschreiben, so veranlassen wir das, indem wir end="" schreiben.

a = 3

b = 4

c = 5

print("Drei Zahlen: ", end = "")

print(a, b, c)

Als Ergebnis erhalten wir:

Drei Zahlen: 3 4 5

Martin Vogel: Bauinformatik mit Python, WS 2025/26 131

5.10 Typumwandlung

In Python ist es möglich, den Typ einer Variable durch Zuweisung eines

neuen Inhalts zu ändern. Einer Variable, die eine Zeichenkette enthält,

können wir beispielsweise ohne weiteres eine Gleitkommazahl zuweisen.

Der alte Inhalt wird überschrieben und der Variablentyp ändert sich auto-

matisch. Viele andere Programmiersprachen erlauben eine solche dyna-

mische Typisierung nicht. Dort muss gegebenenfalls schon vor der Ver-

wendung einer Variable explizit deren Typ festgelegt werden.

Für den Fall, dass es in einem Python-Programm erforderlich ist, den Typ

einer Variable gezielt zu verändern, stehen dazu für die bisher behandel-

ten Variablentypen die Funktionen int, float, complex, str und bool zur

Verfügung.

Im folgenden Beispiel wird eine Zeichenkette, die das Zeichen „3“ ent-

hält, in eine Ganzzahl mit dem Zahlenwert 3 umgewandelt, woraufhin

sich ihr Verhalten grundlegend ändert.

>>> a = "3"

>>> a

 '3'

>>> 4 * a

 '3333'

>>> a = int(a)

>>> a

 3

>>> 4 * a

 12

Martin Vogel: Bauinformatik mit Python, WS 2025/26 132

Insbesondere Tastatureingaben durch die Funktion input müssen erst in

einen Zahlentyp umgewandelt werden, wenn sie als numerische Werte

weiterverarbeitet werden sollen, denn die input-Funktion gibt in Python

3 immer eine Zeichenkette zurück – selbst, wenn ausschließlich Ziffern

eingetippt wurden.

Wir können diese Umwandlung entweder in zwei getrennten Schritten

vornehmen …

z = input("Gib eine Zahl ein: ")

a = int(z)

… oder wir fassen die beiden Schritte elegant zusammen und sparen da-

durch sowohl eine Programmzeile als auch eine Hilfsvariable ein:

a = int(input("Gib eine Zahl ein: "))

Auf diese Art verschachtelte Funktionen werden vom Python-Interpreter

stets in der Reihenfolge „von innen nach außen“ ausgewertet. Hier wird

also zuerst die Funktion input aufgerufen und deren Rückgabewert an

die Funktion int weitergegeben. Der Rückgabewert von int wird schließ-

lich der Variable a zugewiesen.

5.10.1 Evaluation von Ausdrücken

Python-Ausdrücke, die als Zeichenkette vorliegen, wie beispielsweise

"13 * 17"

"'Zeichen' + 'kette'" oder

"sin(1/x)"

können mit der Funktion eval ausgewertet (evaluiert) werden.

>>> a = "13 * 17"

>>> eval(a)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 133

221

Entdeckt Python in der Zeichenkette Variablennamen, werden die aktuel-

len Werte dieser Variable dort eingesetzt; findet es Funktionen, so wer-

den diese ausgeführt.

>>> eval("a")

 '13 * 17'

>>> eval(a + a)

 378573

Die letzte Zahl, 378573, ist dabei das Ergebnis der Auswertung der Zei-

chenkette "13 * 1713 * 17", die das Ergebnis der Verknüpfung a + a dar-

stellt.

Die Funktion eval bietet sich als perfekte Ergänzung zur input-Funktion

an. Abhängig von der jeweiligen Eingabe hat der Rückgabewert von

eval(input(…)) immer den richtigen Typ1.

Die Fähigkeit von eval, ganz beliebige Funktionen auszuführen, kann zu

einem Sicherheitsrisiko werden, falls Pythonprogramme von böswilligen

Personen ausgeführt werden. Für Pythonprogramme auf öffentlich er-

reichbaren Webservern gilt daher ein striktes Verbot, eval zu benutzen.

Sie sollten eval auch nie verwenden, wenn Sie die Funktion auf Daten

aus unbekannten Quellen anwenden.

>>> a = eval(input("Gib Dein Alter ein: "))

 Gib Dein Alter ein: 22

>>> a

 22

>>> a = eval(input("Gib Dein Alter ein: "))

1 In Python 2 war diese Umwandlung noch in die input-Funktion eingebaut. Wer tat-
sächlich die buchstabengetreue Eingabe im Programm verwenden wollte, musste dort
auf die Funktion raw_input zurückgreifen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 134

 Gib Dein Alter ein: open("index.html","w").write("Pwned")

Der Fachausdruck für das ungewollte Einschleusen von ausführbaren Be-

fehlen an einer Stelle, die harmlose Daten erwartet, lautet „Code Injec-

tion“1.

Die Funktion eval erlaubt es, durch zusätzliche Parameter einzuschrän-

ken, welche Funktionen und Variablen in den auszuwertenden Ausdrü-

cken verwendet werden dürfen, das geht aber über den Stoff dieses Se-

mesters hinaus.

1 Jeder, der mit dem Thema zu tun hat, kennt Bobby Tables: https://xkcd.com/327/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 135

https://xkcd.com/327/

5.11 Das erste richtige Programm

Bis jetzt haben wir jeden Python-Befehl einzeln in die Shell getippt, damit

er ausgeführt wird. Um Befehle, die stets in einer bestimmten Reihenfol-

ge ausgeführt werden sollen, nicht immer wieder neu schreiben zu müs-

sen, können wir diese als Datei speichern. Die Folge von Befehlen nennen

wir „Programm“ und die Textdatei mit den Programmbefehlen ist dement-

sprechend eine „Programmdatei“.

Um in IDLE eine neue Programmdatei anzulegen, drücken wir die Tasten-

kombination Strg N oder wählen die Menüfolge „File – New File“.

Es erscheint ein leeres Fenster, in das wir nun unseren Programmtext

eintippen können.

print("Dieses Programm addiert zwei Zahlen.")

a = float(input("Gib einen Zahlenwert für a ein: "))

b = float(input("Gib einen Zahlenwert für b ein: "))

c = a + b

print("Die Summe von",a,"und",b,"ist",c)

Mit der Taste F5 oder über die Menüfolge „Run – Run Module“ können

wir das Programm starten. Vorher wird es automatisch gesichert.

Dieses Programm addiert zwei Zahlen.

Gib einen Zahlenwert für a ein: 23.45

Gib einen Zahlenwert für b ein: 56.78

Die Summe von 23.45 und 56.78 ist 80.23

Beim ersten Start werden wir gefragt, in welcher Datei das Programm ge-

speichert werden soll. IDLE ergänzt den eingegebenen Namen automa-

tisch um die Dateinamenerweiterung „.py“, damit sofort klar ist, dass es

sich dabei um ein Python-Programm handelt.

Falls die Dateiendung „.py“ unter Microsoft Windows nicht angezeigt

wird, empfiehlt sich in Blick in Kapitel 2.3.2.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 136

5.11.1 Python und der Windows-Explorer

Beim Doppelklicken von Pythondateien im Windows-Explorer öffnet sich

oft nur für Sekundenbruchteile ein schwarzes Fenster und das Programm

startet scheinbar gar nicht. Tatsächlich wird es ganz normal ausgeführt

und beendet. Beendete Programme werden von Windows automatisch

wieder geschlossen. Um das Fenster, in dem das Programm läuft, geöff-

net zu halten, könnte man als letzte Zeile einen Aufruf der Funktion

input() hinzufügen. Das Programm wartet dann auf das Drücken der

Eingabetaste und das Fenster bleibt bis dahin geöffnet, falls es nicht we-

gen eines nicht abgefangenen Fehlers zuvor beendet und geschlossen

wurde.

Um ein Pythonprogramm mit dem Editor der IDLE zu öffnen, ist im Win-

dows-Explorer seit Windows 11 ein etwas umständliches Verfahren not-

wendig, da das klassische Kontextmenü früherer Windows-Versionen hin-

ter einem in Windows 11 neu eingeführten vorgeschalteten Menü

versteckt wird. Rechtsklicken Sie dazu die Pythondatei, die Sie bearbei-

ten wollen, wählen Sie den untersten Menüpunkt „Weitere Optionen an-

zeigen“ aus, suchen Sie im sich öffnenden Untermenü den Eintrag „Edit

with IDLE“ und klicken Sie danach auf die gewünschte IDLE-Version (in

der Regel ist das die zuletzt installierte Version).

Abb. 71: Das versteckte Kontextmenü des Windows-11-Explorers

Martin Vogel: Bauinformatik mit Python, WS 2025/26 137

5.12 Quelltextformatierung

5.12.1 Kommentarzeilen

Um ein Programm für Andere oder uns selbst nachvollziehbar zu halten,

sollten wir zwischen die auszuführenden Zeilen hilfreiche Kommentare

schreiben. Während des Schreibens eines Programms scheint das Kom-

mentieren oft völlig überflüssig zu sein. Wir wissen ja schließlich genau,

warum wir jede einzelne Zeile genau so formuliert haben! In ein paar Wo-

chen wissen wir es aber vielleicht nicht mehr. Python gilt zwar als eine

der lesbarsten Programmiersprachen überhaupt, doch alte oder fremde

unkommentierte Quelltexte analysieren zu müssen, ist eine Strafarbeit.

Zur Kennzeichnung von Kommentaren wird das Doppelkreuz-Zeichen #

verwendet, welches oft auch „Nummernzeichen“, „Hash“ oder „Raute“

genannt wird1.

Sobald der Python-Interpreter dem Zeichen # außerhalb einer Zeichen-

kettenkonstante begegnet, wird der Rest der Zeile von ihm ignoriert.

#!/usr/bin/env python3

"""

Programm zur

Addition zweier

Zahlenwerte

"""

a = 4 # a festlegen

b = 7 # b festlegen

Addition durchführen und

Ergebnis in c speichern

c = a + b

Ergebnis ausgeben

print(c)

1 Die Bezeichnung „Hashtag“ für dieses Zeichen ist verbreitet, aber falsch. Ein Hash-
tag besteht immer aus der Kombination eines Doppelkreuzes mit einem Stichwort,
zum Beispiel #bochum.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 138

https://mastodon.social/tags/bochum

Kommentare in derselben Zeile unterzubringen, in der sich bereits Code

befindet, ist zwar erlaubt, jedoch nur bei sehr kurzen Zeilen sinnvoll.

Wir können sogar ganze Programmabschnitte „auskommentieren“, um sie

vorübergehend oder dauerhaft von der Ausführung auszuschließen. Der

IDLE-Editor hat dazu einen eigenen Menüpunkt „Comment Out Region“

im Menü „Format“.

Auch Zeichenkettenkonstanten, die ohne weiteren Bezug im Quelltext ste-

hen, können die Funktion eines Kommentars übernehmen. Mehrzeilige

Kommentare lassen sich dann mit drei Anführungszeichen einleiten und

abschließen.

Eine besondere Form des Kommentars wird dazu verwendet, einen kur-

zen Hilfstext zu selbstgeschriebenen Funktionen auszugeben. Wenn zu

Beginn einer Funktion eine Zeichenkettenkonstante ohne weitere Zuwei-

sung formuliert wird, so wird ihr Inhalt ausgegeben, wenn die Funktion

help mit dem Namen der Funktion aufgerufen wird (Siehe Kapitel 5.17).

Anfangs sind Kommentare hilfreich, die erklären, was in den auf den

Kommentar folgenden Zeilen geschieht. Sobald Sie Pythonprogramme

nicht nur schreiben, sondern auch lesen können, sind solche Kommentare

allerdings kaum noch notwendig. Eigentlich steht ja alles, was geschehen

soll, auch im Programmcode selbst. Nun ist es viel wichtiger, zu doku-

mentieren, warum das folgende Stück Code genau so aussieht, wie Sie es

geschrieben haben. Diese Information ergibt sich üblicherweise nicht al-

lein durch scharfes Hinsehen.

5.12.2 Zeilenlänge

Um unsere Programme lesbar zu halten, sollten wir stets darauf achten,

Quelltextzeilen nicht länger als 72, höchstens 79, Zeichen werden zu las-

sen.

Der Editor der Entwicklungsumgebung IDLE hat noch nicht einmal eine

Möglichkeit des horizontalen Scrollens vorgesehen. Das ist vielleicht et-

was eigenwillig, aber aus erzieherischen Gesichtspunkten sehr hilfreich.

Tatsächlich sind Sie durch diese Besonderheit kaum eingeschränkt, da

sich zu lange Python-Ausdrücke in der Regel gut auf mehrere Zeilen ver-

teilen lassen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 139

Bei der Ausgabe von Zeichenkettenkonstanten können Sie einfach ein An-

führungszeichen setzen und in der nächsten Zeile weiterschreiben.

print("eine sehr lange Zeile")

ist dasselbe wie

print("eine sehr "

 "lange Zeile")

Ebenso können Sie innerhalb von Klammern fast beliebige Zeilenumbrü-

che vornehmen. Lediglich innerhalb eines Schlüsselworts oder eines Be-

zeichners sind keine Zeilenumbrüche zugelassen.

Variable = (Wert1 + Wert2 * Wert3)

kann auch als

Variable = (Wert1 +

 Wert2 *

 Wert3)

geschrieben werden.

Auch ohne umschließende Klammern sind Zeilenumbrüche möglich. Dazu

trennen Sie die zu lange Zeile mit einem Rückwärtsschrägstrich.

Variable = Wert1 + \

 Wert2 * \

 Wert3

Martin Vogel: Bauinformatik mit Python, WS 2025/26 140

5.12.3 Groß- und Kleinschreibung

In diesem Skript wird die Groß- und Kleinschreibung von Variablennamen

und anderen Bezeichnern durchgehend willkürlich verwendet. Es gibt je-

doch auch Softwareentwickler, die hier nach einem strengen Schema vor-

gehen. Falls Sie einmal in einem Team arbeiten sollten und dort nicht nur

deshalb programmieren, um sich selbst die Arbeit zu erleichtern, sollten

Sie sich möglichst untereinander abstimmen, um Missverständnisse zu

vermeiden.

Es ist vielleicht keine schlechte Idee, hier der Gestaltungsrichtlinie PEP 8

zu folgen. Diese sieht folgende Namenskonventionen vor1:

Namensbeispiel Verwendung

kleinschreibung

mit_unterstrich

Für alle Namen von Modulen, Variablen, Attribu-
ten, Funktionen und Methoden. Zur besseren
Lesbarkeit zusammengesetzter Namen sind Un-
terstriche hilfreich.

KamelSchreibweise
Für die Namen von Klassen. Unterstriche wer-
den nicht verwendet, stattdessen Großbuchsta-
ben mitten im Wort.

GROSSBUCHSTABEN

MIT_UNTERSTRICH

Für Konstanten bzw. Variablen deren Wert wäh-
rend des gesamten Programmlaufs unverändert
bleibt.

Dies ist aber kein Zwang. Gerade, wenn Sie deutschsprachige Variablen-

namen verwenden, sieht eine konsequente Kleinschreibung eher be-

fremdlich aus und daran, dass Konstanten immer großgeschrieben wer-

den sollten, hält Python sich nicht einmal selbst mit seinen Bezeichnern

None, True und False oder der Konstanten pi im Modul math.

1 https://www.python.org/dev/peps/pep-0008/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 141

https://www.python.org/dev/peps/pep-0008/

5.12.4 Shebang und Zeichenkodierung

Unter Linux und macOS hat die erste Zeile eines Quelltextes eine beson-

dere Funktion: Diese auch im Deutschen Shebang1 genannte Zeile gibt

dem Betriebssystem an, mit welchem Programm der Quelltext ausgeführt

werden soll.

Möchten wir zum Beispiel als „ausführbar“ markierte Python-Dateien

beim Doppelklicken nicht nur in den Editor laden, sondern auch starten

können, so sollten wir sie mit der Shebang-Zeile

#!/usr/bin/env python3

einleiten, damit das Betriebssystem immer den aktuellen Python-Interpre-

ter für die Ausführung zur Verfügung stellt.

Unter Microsoft Windows gibt es diesen Schutz nicht. Python-Dateien

sind dort, wie viele andere Dateitypen auch, unmittelbar ausführbar und

werden in der Regel in einem Terminalfenster gestartet, das beim Pro-

grammende wieder geschlossen wird.

Leider ist unter Windows die Information, mit welchem Programm eine

Datei geöffnet wird, fest an die Dateinamenerweiterung gebunden, des-

halb gibt es dort in der Regel Probleme, wenn mehrere Versionen einer

Software installiert sind und eine Datei beispielsweise durch Doppelklick

im Windows-Explorer gestartet werden soll. Windows kennt zwar die

Möglichkeit, eine Datei im Explorer rechtszuklicken und über den Menü-

punkt „Öffnen mit …“ ein Programm auszuwählen, dieses Verfahren ver-

sagt jedoch, wenn die zu verwendenden Programme den gleichen Namen

haben und lediglich in unterschiedlichen Verzeichnissen abgelegt sind.

Unter Windows ist es daher üblich, nur eine einzige Version jeder instal-

lierbaren Software zu verwenden.

1 Man könnte das englische Wort „Shebang“ mit „Gedöns“ übersetzen, aber das führt
zu nichts.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 142

5.13 Verzweigungen

Nicht immer sind Programmabläufe so linear wie in den vorangegange-

nen Beispielen. Die interessanteren Programme führen je nach Ausgangs-

situation ganz unterschiedliche Programmteile aus.

So ist es zur Vermeidung von Fehlern während der Programmausführung

(sogenannte Laufzeitfehler) sinnvoll, vor bestimmten Berechnungen die

Eingangswerte zu überprüfen. Nur wenn diese Eingangswerte überhaupt

plausibel sind, sollten wir unser Programm rechnen lassen. Wenn nicht,

sollten wir stattdessen eine hilfreiche (und nicht allzu unfreundliche) Feh-

lermeldung ausgeben.

Beispiel: wenn wir versuchen, durch die Wurzelfunktion sqrt aus der Bi-

bliothek math die Wurzel aus einer negativen Zahl zu ziehen,

math.sqrt(-1)

so bricht Python die Programmausführung mit einer Fehlermeldung vom

Typ „math domain error“ ab. Dasselbe geschieht, wenn der Arkussinus ei-

ner Zahl ausgerechnet werden soll, die nicht im Intervall [-1, 1] liegt.

Die Entscheidung darüber, ob ein Programm bestimmte Befehle ausführt

oder nicht, wird mithilfe der sogenannten logischen Ausdrücke getroffen.

Das sind Ausdrücke, denen eindeutig einer beiden booleschen Wahrheits-

werte True oder False entspricht.

Wenn Sie gerne etwas mehr über logische Ausdrücke erfahren möchten,

als in den folgenden Beispielen behandelt wird, ist ein Ausflug in Kapitel

5.27 das Richtige für Sie.

5.13.1 Fallunterscheidungen: if … elif … else

Mit dem Schlüsselwort if (wenn) können wir einen logischen Ausdruck

dazu nutzen, den Programmlauf zu beeinflussen. Nur wenn der Ausdruck

hinter dem if eine wahre Aussage oder ein gleichwertiger Ausdruck ist,

wird der darauf folgende Programmblock ausgeführt. Wir sprechen von

einer „bedingten Ausführung“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 143

Ein „Programmblock“ ist dabei ein Abschnitt eines Programms, der aus

einer oder mehreren zusammengehörenden Programmzeilen besteht.

In Python wird der auf die if-Bedingung folgende Programmblock da-

durch festgelegt, dass die Zeilen dieses Blocks mit vier Leerzeichen ein-

gerückt werden.1

z = float(input("Gib eine Zahl ein: "))

if z < 0:

 print("Die Zahl ist negativ.")

Die eingerückte Print-Funktion wird also nur dann ausgeführt, wenn die

Bedingung „z < 0“ wahr ist.

Was aber können wir tun, um auch dann eine passende Meldung auszuge-

ben, wenn die Bedingung „z < 0“ nicht wahr ist? Wir könnten zum Bei-

spiel zwei Abfragen hintereinander durchführen.

if z < 0:

 print("Die Zahl ist negativ.")

if z >= 0:

 print("Die Zahl ist positiv oder null.")

1 In den bisher ersonnenen Programmiersprachen gibt es ganz unterschiedliche
Schreibweisen, um die Zusammengehörigkeit eines Programmblocks zu kennzeich-
nen. Verbreitet ist die Verwendung von Begrenzern in Form von Schlüsselwörtern
oder Klammern. In Pascal (Delphi) beginnt ein mehrzeiliger Programmblock immer
mit dem Schlüsselwort begin und endet mit end;. In Java und C beginnt ein mehrzei-
liger Programmblock mit { und endet mit };. Einzeilige Programmblöcke werden in
allen drei genannten Sprachen nicht notwendigerweise mit Begrenzern versehen. Sie
enden am obligatorischen Semikolon.
Der große Vorteil von Pythons Blockbildung durch Einrückung liegt in einer hervorra-
genden Lesbarkeit des Programmtextes. Python gilt nicht ohne Grund als eine der
lesbarsten Programmiersprachen überhaupt.
Üblicherweise beträgt das Maß der Einrückung 4 Leerzeichen. Es sind auch andere
Werte möglich, Sie dürften theoretisch sogar Tabulatorzeichen zum Einrücken ver-
wenden; die Einrückung innerhalb eines Blocks muss aber stets einheitlich sein.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 144

Das funktioniert zwar, ist aber viel zu kompliziert. Denn daraus, dass die

Bedingung „z < 0“ nicht erfüllt ist, ergibt sich ja bereits, dass „z ≥ 0“

wahr sein muss. Wir erinnern uns an die Fallunterscheidungen im Struk-

togramm (Kapitel 4.2.2):

Abb. 72: Fallunterscheidung im Struktogramm

Hier ist nur eine einzige Abfrage notwendig. Würden wir den Algorithmus

dazu verwenden, einem Menschen einen Auftrag zu geben, so würden wir

ihm sagen: „Wenn z kleiner als null ist, dann schreibe »Die Zahl ist nega-

tiv«, sonst schreibe »Die Zahl ist positiv oder null«“.

Ein Schlüsselwort mit der Bedeutung „sonst“ gibt es in Python auch. Es

heißt hier „else“. Wir können unser Programm also vereinfachen:

if z < 0:

 print("Die Zahl ist negativ.")

else:

 print("Die Zahl ist positiv oder null.")

Was aber, wenn wir drei oder mehr Fälle zu unterscheiden haben?

if z < 0:

 print("Die Zahl ist negativ.")

else:

 if z > 0:

 print("Die Zahl ist positiv.")

 else:

 print("Die Zahl ist null.")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 145

z < 0?
ja nein

A: „Die Zahl
ist positiv
oder null“

A: „Die Zahl
ist negativ“

Mit jeder zusätzlichen Abfrage müssen wir einen neuen Programmblock

einrücken. Irgendwann würde der Platz knapp. Wir wollen ja keine Zeilen

erhalten, die länger als 72, höchstens 79 Zeichen lang sind.

In Python dürfen wir daher auf die Einrückung verzichten, wenn direkt

auf ein else wieder ein if folgt und wir beides mit dem Schlüsselwort

elif1 zusammenfassen.

Mit elif wird eine Abfrage in Python nur dann gestartet, wenn die voran-

gegangene Abfragebedingung nicht erfüllt wurde. Es können beliebig vie-

le elif-Abfragen hintereinander ausgeführt werden. Ganz am Ende einer

Kette von Abfragen können wir schließlich mit else alle übriggebliebenen

Fälle einfangen, die bisher nicht berücksichtigt wurden.

Unser Programmbeispiel formulieren wir nun so:

z = float(input("Gib eine Zahl ein: "))

if z < 0:

 print("Die Zahl ist negativ.")

elif z > 0:

 print("Die Zahl ist positiv.")

else:

 print("Die Zahl ist null.")

Im Struktogramm sieht diese Fallunterscheidung so aus wie in Abb. 73.

Abb. 73: if … elif … else im Struktogramm

Eine abschließende Bemerkung: Auch, wenn Fallunterscheidungen fast

1 Dass sowohl Else als auch Elif weibliche Vornamen sind, ist reiner Zufall.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 146

< 0 sonst

A: „Die
Zahl ist
nega-
tiv“

E: z

z

A: „Die
Zahl ist
positiv“

A: „Die
Zahl ist

null“

> 0

ein bisschen aussehen wie Schleifen: sie sind es nicht. Bitte, blamieren

Sie sich nicht im Gespräch durch die Verwendung der Formulierung „If-

Schleife“!

5.13.2 Mehrfachunterscheidungen match … case

Wenn viele Entscheidungen vom Wert einer einzigen Variable abhängen,

können wir seit Python 3.10 einen neuen Verzweigungstyp verwenden.

Sportart = "Fußball"

Schneehöhe = 0

match Sportart:

 case "Fußball":

 ort = "Stadion"

 case "Wasserball" | "Turmspringen":

 ort = "Schwimmbad"

 case "Eisschnellauf" | "Eishockey" | "Eiskunstlauf":

 ort = "Eislaufhalle"

 case "Skifahren" if Schneehöhe == 0:

 ort = "Skihalle"

 case "Skifahren" if Schneehöhe > 0:

 ort = "Skipiste"

 case _:

 ort = f"Der Ort für {Sportart} ist unbekannt."

Der erste passend case-Block wird ausgeführt, alle folgenden Überein-

stimmungen werden ignoriert.

Mit „|“ lassen sich einzelne Ausdrücke als Alternativen setzen. Eine nach-

gestellte if-Bedingung schränkt eine Auswahl ein und der Unterstrich _

wird oft als letzte Vergleichsoption anstelle eines else-Zweiges verwen-

det.

Ein Unterstrich ist ja eigentlich ein gültiger Variablenname, und tatsäch-

lich werden Variablen nach dem Schlüsselwort case ganz anders verwen-

det, als man es vielleicht erwartet. Trifft Python dort auf einen anderen

Variablennamen als _, so wird nicht der hinter match stehende Wert mit

Martin Vogel: Bauinformatik mit Python, WS 2025/26 147

dem aktuellen Wert der Variable verglichen, sondern Python versucht, ihn

in diese Variable hineinzuschreiben(!). Ist das erfolgreich, weil die Struk-

tur der zu untersuchenden Daten mit der Struktur des case-Ausdrucks

übereinstimmt, so wird der Zweig ausgewählt.

Werkzeug = "Säge", "Zange", "kleiner Hammer", "großer Hammer"

for Gegenstand in Werkzeug:

 match Gegenstand.split():

 case ["Säge"]:

 print(Gegenstand, "zum Sägen")

 case ["Zange"]:

 print(Gegenstand, "zum Greifen")

 case [größe, "Hammer"]:

 print(Gegenstand, "zum Hämmern", größe, "Nägel")

Die Ausgabe dazu sieht so aus:

Säge zum Sägen

Zange zum Greifen

kleiner Hammer zum Hämmern kleiner Nägel

großer Hammer zum Hämmern großer Nägel

5.13.3 Fehlerbehandlung

Um unsere Programme nicht dadurch unnötig kompliziert zu machen,

dass wir versuchen, alle möglichen Fehler vorherzusagen und durch

kunstvoll geschachtelte if-elif-else-Konstruktionen abzufangen, kön-

nen wir Python auch einfach anweisen, zu versuchen, einen Programmteil

auszuführen und uns nur für den Fall, dass das schiefgeht, eine gute Re-

aktion überlegen.

Den Programmblock, dessen Ausführung versucht werden soll, leiten wir

dabei mit try: ein (anschließend die Einrückung nicht vergessen!) und

den Programmzeilen zur Fehlerbehandlung wird das Schlüsselwort

except: vorangestellt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 148

Das könnte für den Versuch, die Wurzel aus dem Quotienten zweier Zah-

len auszugeben (was bekanntlich immer dann schiefgeht, wenn der Nen-

ner null oder der Bruch negativ ist), beispielsweise so aussehen:

try:

 print(sqrt(a/b))

except:

 print("Fehler! Variable b ist 0 oder a/b ist negativ.")

Wenn der try-Block ohne Fehler durchläuft, wird der except-Block nicht

ausgeführt.

Die häufigste Fehlerquelle in einem laufenden Programm ist die Eingabe

von Werten durch den Benutzer oder die Benutzerin. Hier kann von Leer–

eingaben über Texteingaben und falsche Dezimalzeichen bis hin zu völlig

unvorhergesehener Kreativität alles mögliche passieren. Das folgende

Programmbeispiel fragt daher hartnäckig solange nach, bis es endlich ei-

nen gültigen Zahlenwert erhält. Die in der ersten Zeile angelegte boole-

sche Variable ungültigeEingabe bestimmt dabei, wie lange die Schleife1

ausgeführt wird. Sie wird anfangs auf True gesetzt und verändert ihren

Wert erst dann zu False, wenn die Umrechnung der Eingabe durch float

keinen Fehler hervorruft.

ungültigeEingabe = True

while ungültigeEingabe:

 try:

 a = float(input("Gib eine Zahl ein: "))

 ungültigeEingabe = False

 except:

 print("Das ist keine Zahl.")

1 Wie Sie die in Kapitel 4.2.4 vorgestellten Schleifen in Python realisieren können, er-
fahren Sie in Kapitel 5.14 auf Seite 151.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 149

Wer eine Neigung zu Tippfehlern hat, sollte bei der Verwendung der hier

vorgestellten universellen Fehlerbehandlung allerdings vorsichtig sein, da

auch Syntaxfehler den Sprung in den except-Block auslösen.

Um das zu vermeiden, gibt es in Python die Möglichkeit, für verschiedene

Fehlerarten eigene Fehlerbehandlungsroutinen zu formulieren. Wer nur

auf Zahlenumwandlungsfehler testen will, schreibt oben besser except

ValueError: anstelle von except: hin.

Damit unser Programm auf mehrere Fehlerbedingungen unterschiedlich

reagieren kann, ordnen wir mehrere except-Blöcke untereinander an.

Der Programmblock nach except ValueError: behandelt dann eine

misslungene Zahlenumwandlung oder einen verfehlten Definitionsbe-

reich, Nulldivisionen werden im Block nach except ZeroDivisionError:

einer Fehlerbehandlung zugeführt und die eingerückten Programmzeilen

nach except KeyboardInterrupt: kümmern sich um den Versuch der

Anwenderin oder des Anwenders, das laufende Programm durch Drücken

der Tastenkombination Strg C abzubrechen.

Wollen wir mit einem einzigen except-Block mehrere Fehlerbedingungen

behandeln, so fassen wir diese zu einem Tupel zusammen.

try:

 print(sqrt(a/b))

except (ValueError, ZeroDivisionError):

 print("Fehler! Variable b ist 0 oder a/b ist negativ.")

Eine Liste mit häufigen Fehlermeldungen finden Sie im Anhang auf Seite

332 dieses Textes.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 150

5.14 Programmschleifen

Wenn unser Programm bestimmte Vorgänge wiederholen soll, dann ist es

sinnvoll, die Programmbefehle dazu nicht mehrfach hintereinander zu

schreiben, sondern nur einmal einen Programmblock zu formulieren, der

dann mehrfach ausgeführt wird. In Python bilden wir einen Programm-

block dadurch, dass wir ihn einrücken.

Diesem Programmblock stellen wir eine Zeile voran, die aussagt, wie oft

oder unter welchen Bedingungen der Block wiederholt werden soll.

Die gesamte Konstruktion aus einleitender Bedingung und zu wiederho-

lendem Programmblock nennen wir „Programmschleife“.

Python kennt zwei Schleifentypen: die bedingte Schleife, bei der die Wie-

derholung an den Wahrheitsgehalt einer logischen Aussage (Kapitel 5.27)

gebunden ist, und die Zählschleife.

5.14.1 Bedingte Schleifen mit „while“

Eine bedingte Schleife wiederholt eine Anweisungsfolge solange, wie eine

dazugehörige logische Aussage wahr ist. Sie wird mit dem Schlüsselwort

while eingeleitet.

Als Beispiel diene ein einfacher Countdown-Zähler, der einen Zahlenwert

i beginnend bei 3 so lange verkleinert, wie dieser größer oder gleich null

ist.

Abb. 74: Bedingte Schleife im Struktogramm

Die Umsetzung in einem Pythonprogramm sieht diesem Struktogramm

bemerkenswert ähnlich:

i = 3

Martin Vogel: Bauinformatik mit Python, WS 2025/26 151

solange i ≥ 0:

A: i

i ← i - 1

i ← 3

while i >= 0:

 print(i)

 i = i-1

Das Programm erzeugt folgende Ausgabe:

3

2

1

0

Vor der Schleife wird die Zählvariable i auf einen Startwert gesetzt. In

der Schleife wird ihr Inhalt bei jedem Durchlauf erneut ausgegeben und

anschließend um 1 verkleinert.

Schließlich springt die Programmausführung wieder zur Abfrage im

Schleifenkopf oberhalb des eingerückten Schleifenkörpers, um erneut zu

entscheiden, ob die Schleife wiederholt oder verlassen wird.

Damit die Schleife jemals wieder verlassen wird, muss innerhalb des

Schleifenkörpers der Wahrheitswert der logischen Aussage in der einlei-

tenden if-Abfrage geändert werden. Hängt diese Aussage allein von i ab,

ist also irgendwo im Schleifenkörper der Wert von i zu ändern. Geschieht

dies aufgrund eines Programmierfehlers nicht, läuft die Schleife endlos

weiter. Eine recht häufige Fehlerursache ist das Testen zweier Gleitkom-

mazahlen auf Gleichheit, da hier schon geringste Rundungsfehler dafür

sorgen, dass die Zahlen als unterschiedlich angesehen werden. Siehe Ka-

pitel 5.27.3.

Endlosschleifen in Computerprogrammen können schlimmstenfalls, je

nach verwendeter Programmiersprache, den ganzen Rechner lahmlegen.

Python ist da zum Glück recht umgänglich. Ein in eine Endlosschleife ge-

ratenes Python-Programm lässt sich mit der Tastenkombination Strg-C

stoppen oder über den Fenster-Schließen-Button des Betriebssystems be-

enden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 152

Aussprung mit break

Im Gegensatz zu anderen Programmiersprachen, die zwischen abweisen-

den und nicht abweisenden Schleifen unterscheiden, gibt es in Python

nur einen einzigen bedingten Schleifentyp.

Die Konsequenz daraus scheint zu sein, dass wir alle Algorithmen vom

Typ „wiederhole etwas, solange eine Bedingung erfüllt ist“ so umformu-

lieren müssen, dass sie als „solange eine Bedingung erfüllt ist, wiederho-

le etwas“ gelesen werden können.

Sie können ja mal versuchen, die nicht abweisende Schleife aus Abb. 75

in eine abweisende Schleife umzubauen, die dasselbe tut. Wie stellen Sie

sicher, dass der Schleifenkörper mindestens ein Mal ausgeführt wird?

Abb. 75: Nicht abweisende Schleife im Struktogramm

Es wäre aber doch schade, wenn wir vorhandene Algorithmen extra um-

bauen müssten, um sie in Python umsetzen zu können.

Tatsächlich müssen wir das nicht und die Lösung ist auch gar nicht

schwer. Damit die Schleife auf jeden Fall betreten wird, formulieren wir

eine Schleifenbedingung, die immer erfüllt ist.

while True:

Nun schreiben wir den Programmblock des Schleifenkörpers und ganz

am Ende formulieren wir eine if-Abfrage, die die Schleife beenden kann.

Python erlaubt es, eine Schleife jederzeit zu verlassen, indem wir das

Schlüsselwort break verwenden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 153

solange Rechnung erwünscht

lies a und b ein

c ← a + b

Gib Begrüßungstext aus

gib c aus

Gib Abschiedstext aus

print("Der unermüdliche Addierer für a + b = c")

while True:

 a = float(input("Gib einen Zahlenwert für a ein: "))

 b = float(input("Gib einen Zahlenwert für b ein: "))

 c = a + b

 print("Die Summe von",a,"und",b,"ist",c)

 jn = input("Noch eine Berechnung (j/n)? ")

 if jn in ("n", "N"):

 break

print("Es war mir ein Vergnügen, für Dich zu addieren.")

Zum Vergleich hier ein ähnliches Programm, aber diesmal mit einer ab-

weisenden Schleife ohne break. Nun ist zwar eine Hilfsvariable (Berech-

nung_erwünscht) notwendig, die zuerst einmal auf True gesetzt werden

muss, damit die abweisende Schleife überhaupt betreten werden kann,

das Programm wirkt jedoch aufgeräumter und lesbarer:

print("Der unermüdliche Addierer für a + b = c")

Berechnung_erwünscht = True

while Berechnung_erwünscht:

 a = float(input("Gib einen Zahlenwert für a ein: "))

 b = float(input("Gib einen Zahlenwert für b ein: "))

 c = a + b

 print("Die Summe von",a,"und",b,"ist",c)

 jn = input("Noch eine Berechnung (j/n)? ")

 Berechnung_erwünscht = jn not in ("n", "N")

print("Es war mir ebenfalls ein Vergnügen.")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 154

Unstrukturierte Programmierung

Grundsätzlich sollten wir eine Schleife durch die Verwendung von break

nur dann verlassen, wenn unser Programm dadurch wirklich lesbarer

wird. Dasselbe gilt für das Zurückspringen zum Schleifenkopf mithilfe des

ähnlichen Befehls continue. Ein Nachteil beider Sprungbefehle ist, dass

sich die damit verbundenen Algorithmen nicht mehr strukturiert durch

Nassi-Shneidermann-Diagramme darstellen lassen, was in der Informatik-

ausbildung oft dazu führt, sie aus erzieherischen Gründen zu verbieten.

Ebenso verhält es sich mit dem vorzeitigen Herausspringen aus einer

Funktion mithilfe von return.

Mit Flussdiagrammen lassen sich die damit verbundenen „Abkürzungen“

im Programmlauf zwar noch darstellen, die damit verbundenen Überkreu-

zungen der Ablaufpfade führen aber bei intensiver Verwendung zu einem

unleserlichen Programmierstil, der als „Spaghetticode“ verrufen ist.

5.14.2 Verkürzte Arithmetiknotation

Um ein wenig Tipparbeit zu sparen – und um unsere Programme lesbarer

zu gestalten – können wir bei Zuweisungen, bei denen ein Variablenname

beiderseits des Zuweisungszeichens = auftauchen würde, eine verkürzte

Schreibweise anwenden. Dazu dürfen wir den Variablennamen auf der

rechten Seite der Zuweisung fortlassen. Stattdessen stellen wir den ver-

bleibenden Operator nun dem Zuweisungszeichen voran.

Folgende Schreibweisen sind jeweils gleichwertig:

ausführlich verkürzt Resultat

x = x + 1 x += 1 x wird um 1 erhöht (inkrementiert)

x = x - 1 x -= 1 x wird um 1 vermindert (dekrementiert)

x = x * 2 x *= 2 x wird verdoppelt

x = x / 2 x /= 2 x wird halbiert

x = x ** 2 x **= 2 x wird quadriert

Martin Vogel: Bauinformatik mit Python, WS 2025/26 155

5.14.3 Iterationsschleifen mit „for“

Eine Iterationsschleife wiederholt einen Programmblock für jedes einzel-

ne Element einer aus mehreren Elementen bestehenden Sequenz, bei-

spielsweise einer Liste.

for a in [1, 2, 3, "Hut", "Stock", "Regenschirm"]:

 print("•", a)

Ergebnis:

• 1

• 2

• 3

• Hut

• Stock

• Regenschirm

Iterierbare Objekte begegnen uns in der Datenverarbeitung überaus häu-

fig. Auch die Buchstaben einer Zeichenkette, die Zeilen einer Textdatei

oder die Dateien eines Verzeichnisses können sequenziell mit einer for-

Schleife abgearbeitet werden.

5.14.4 Die Funktion range

Der Rückgabewert der Funktion range entspricht keinem der uns bereits

bekannten Datentypen. Das erzeugte Bereichsobjekt verhält sich jedoch

wie ein iterierbares Objekt aus einer Folge ganzzahliger Werte, über die

wir beispielsweise eine for-Schleife laufen lassen können.

Im einfachsten Fall wird range mit der gewünschten Zahl der Folgenele-

mente als einzigem Parameter aufgerufen. Der Aufruf range(Anzahl) er-

zeugt ein Bereichsobjekt, das uns alle ganzen Zahlen von null bis

Anzahl-1 liefert:

for a in range(5):

 print("•", a)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 156

Ergebnis:

• 0

• 1

• 2

• 3

• 4

Soll die Zahlenfolge nicht bei null beginnen, so geben wir einen Startwert

vor: range(Startwert, Grenzwert).

for a in range(3, 7):

 print("•", a)

Ergebnis:

• 3

• 4

• 5

• 6

Als dritten Parameter können wir schließlich noch eine ganzzahlige

Schrittweite angeben, um den Startwert um einen anderen Wert als eins

zu erhöhen: range(Startwert, Grenzwert, Schrittweite). Die letzte

erzeugte Zahl ist bei positiver Schrittweite immer kleiner als der Grenz-

wert.

for a in range(5, 11, 2):

 print("•", a)

Ergebnis:

• 5

• 7

• 9

Martin Vogel: Bauinformatik mit Python, WS 2025/26 157

5.14.5 Generatoren

Funktionen wie range können wir uns leicht selbst schreiben. Anstelle

des Schlüsselwortes return, welches üblicherweise1 die Funktion been-

det und einen Wert zurückgibt, müssen wir lediglich das Schlüsselwort

yield verwenden. Solche Funktionen nennen wir Generatorfunktionen

oder kurz Generatoren.

Der Aufruf einer Generatorfunktion erzeugt einen Iterator, über den wir

eine for-Schleife laufen lassen können.

Als einfaches Beispiel diene die folgende Generatorfunktion, die ganz

ähnlich wie range funktioniert, jedoch auch mit Gleitkommazahlen umge-

hen kann.

def floatrange(von, bis, schrittweite):

 x = von

 while x < bis:

 yield x

 x += schrittweite

Rufen wir diese Generatorfunktion im Kopf einer for-Schleife auf …

for f in floatrange(1.5, 4.5, 0.5):

 print(f)

… so erhalten wir folgendes Ergebnis:

1.5

2.0

2.5

3.0

3.5

4.0

1 Siehe Kapitel 5.17

Martin Vogel: Bauinformatik mit Python, WS 2025/26 158

Generatorausdrücke und Comprehensions

Wir können Generatoren auch ohne eine eigene Funktion dadurch erzeu-

gen, dass wir einen Generatorausdruck formulieren. Das ist ein beliebiger

Python-Ausdruck, dem in einer Klammer ein Schleifenausdruck nachge-

stellt ist.

Der Generatorausdruck

(i**2 for i in range(1, 11))

liefert zum Beispiel einen Generator für alle Quadratzahlen von 1 bis 100.

Wir können die Schreibweise für Generatorausdrücke unmittelbar zur

Listenerzeugung verwenden, indem wir eckige anstelle runder Klammern

verwenden. Wir sprechen dann von „Listenbildung durch Abstraktion“

oder kürzer von List Comprehension.

Entsprechend erhalten wir durch Verwendung geschweifter Klammern

Set Comprehensions oder Dictionary Comprehensions.

(i**2 for i in range(1, 11))

<generator object <genexpr> at 0x7f4468ce5a50>

[i**2 for i in range(1, 11)]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

{i**2 for i in range(1, 11)}

{64, 1, 4, 36, 100, 9, 16, 49, 81, 25}

{i: i**2 for i in range(1, 11)}

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81,

10: 100}

Pythons Schreibweise bei Comprehensions kommt der mathematischen

Notation von Mengen sehr nahe. In der Mathematik definiert man die

Quadratzahlen der natürlichen Zahlen ℕ beispielsweise mit der Mengen-

Martin Vogel: Bauinformatik mit Python, WS 2025/26 159

abstraktion {x² | x ∈ ℕ} und in Python als {x**2 for x in N} – mit

dem Unterschied, dass N hier nicht unendlich groß sein darf, sondern eine

endliche Menge von Zahlen enthalten muss.

Zusätzlich zur obligatorischen Schleife kann bei Comprehensions noch ei-

ne Auswahlbedingung formuliert werden. Das Ergebnis erhält dann nur

diejenigen Werte, welche diese Bedingung erfüllen.

Wollen wir beispielsweise eine Liste aller natürlichen Zahlen kleiner als

20 erzeugen, die weder durch 2 noch durch 3 teilbar1 sind, so schreiben

wir:

[i for i in range(20) if i%2 and i%3]

Heraus kommt diese Liste:

[1, 5, 7, 11, 13, 17, 19]

5.14.6 Else und die Schleifen

Schleifen können regulär oder irregulär beendet werden.

For-Schleifen werden regulär beendet, nachdem ihre Laufvariable alle

Werte des zu durchlaufenden iterierbaren Objekts angenommen hat. Whi-

le-Schleifen werden regulär beendet, nachdem die Schleifenbedingung

den Wert False annimmt.

Der Aussprung mit break beendet eine Schleife dagegen irregulär.

Um einen Programmblock nur dann auszuführen, wenn eine Schleife re-

gulär beendet wurde, können wir dieser Schleife einen else-Zweig an-

hängen.

1 Den zur Feststellung der Teilbarkeit verwendeten Modulo-Operator % haben wir in
Kapitel 5.6 auf Seite 117 kennengelernt – falls Sie sich nicht mehr an ihn erinnern,
schauen Sie dort schnell nochmal nach.
Wenn Sie sich darüber wundern, dass in der Codezeile nur „i%2“ steht, obwohl Sie ei-
gentlich „i%2 != 0“ erwartet haben, finden Sie die Auflösung in Kapitel 5.27.1.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 160

Ein Beispiel: Ein Programm soll ein Passwort abfragen. Wenn das Pass-

wort drei Mal falsch eingegeben wurde, soll eine Meldung ausgegeben

werden.

for i in range(3):

 if input("Gib das Passwort ein: ") == "12345":

 print("Passwort korrekt!")

 break

else:

 print("Passwort wurde drei Mal falsch eingegeben.")

Achten Sie auf die Einrückungen! Das Schlüsselwort else steht auf der-

selben Einrückungsebene wie for und gehört daher nicht zu dem if dar-

über.

Je nachdem, ob die Schleife regulär oder irregulär beendet wird, kommt

der Else-Zweig zur Ausführung oder nicht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 161

Abb. 76: Else-Zweig einer For-Schleife

5.14.7 Verschachtelte Schleifen

Schleifen dürfen andere Schleifen enthalten.

Der folgende Vierzeiler verwendet zwei ineinander verschachtelte Schlei-

fen:

for a in range(1, 4):

 print(f"Vielfache von {a}:")

 for b in range(1, 4):

 print(f" {a} mal {b} ergibt {a*b}")

Bei jedem einzelnen Durchlauf der äußeren Schleife (a) werden sämtliche

Durchläufe der inneren Schleife (b) erneut ausgeführt:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 162

Vielfache von 1:

 1 mal 1 ergibt 1

 1 mal 2 ergibt 2

 1 mal 3 ergibt 3

Vielfache von 2:

 2 mal 1 ergibt 2

 2 mal 2 ergibt 4

 2 mal 3 ergibt 6

Vielfache von 3:

 3 mal 1 ergibt 3

 3 mal 2 ergibt 6

 3 mal 3 ergibt 9

Das Struktogramm in Abb. 77 zeigt dieselben beiden verschachtelten

Schleifen wie das Programm oben.

Abb. 77: Verschachtelte Schleifen im Struktogramm

Für den Algorithmus unwesentliche Details, wie die genaue Formulierung

der Print-Ausgaben, sind in Struktogrammen fehl am Platz.

In Kapitel 4.2 finden Sie eine Übersicht der Möglichkeiten, mit denen

Struktogramme Ihnen helfen können, Algorithmen programmiersprachen-

unabhängig darzustellen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 163

für a von 1 bis 3:

für b von 1 bis 3:

A: a, b, a·b

5.15 Sequenzen

Sequenzen sind Objekte, die aus mehreren Elementen zusammengesetzt

sind.

Einer Klasse von Sequenzen sind wir bereits kurz begegnet: der Zeichen-

kette. In den folgenden Kapiteln lernen wir zunächst weitere Sequenzty-

pen wie Listen, Tupel, Mengen und Dictionarys kennen, bevor wir uns die

Zeichenketten in Kapitel 5.21 noch einmal etwas näher ansehen.

5.15.1 Listen

Listen sind sehr praktische Datenstrukturen, mit denen wir eine große

Anzahl von Werten in einer einzigen Variable speichern können. Die Ele-

mente von Listen dürfen beliebige Objekte, wie zum Beispiel Zahlen, Zei-

chenketten, Funktionen oder sogar andere Listen sein.

Eine Liste wird in Python durch eckige Klammern dargestellt, zwischen

denen sich die durch Kommas getrennten Listenelemente befinden.

Zahlen = [1, 5, 3, 2, 3]

Tiere = ["Hund", "Katze", "Maus"]

Mischmasch = [1, "Tisch", 2/3, False, Tiere, print]

Listen sind veränderlich. Es ist möglich, nachträglich Elemente anzuhän-

gen, zu löschen oder auszutauschen.

>>> A = [2, 3, 5]

>>> A

 [2, 3, 5]

>>> A.append(7)

>>> A

 [2, 3, 5, 7]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 164

>>> A.remove(3)

>>> A

 [2, 5, 7]

>>> A[1] = 6

>>> A

 [2, 6, 7]

Listen aus Listen

Wenn Sie eine Liste haben, die auch wieder aus Listen besteht, so können

Sie auf jedes einzelne Element sowohl der äußeren Liste als auch der in-

neren Listen über Indizes zugreifen.

Angenommen, Sie arbeiten mit einer Liste, die aus Listen mit den Eigen-

schaften Name, Hülle und Länge einzelner Tiere zusammengesetzt ist,

L = [["Hund", "Fell", 75], ["Fisch", "Schuppen", 25],

 ["Wal", "Haut", 450]]

so finden Sie in dieser Tierliste demnach die drei Eigenschaftenlisten

L[0] mit dem Wert ["Hund", "Fell", 75]

L[1] mit dem Wert ["Fisch", "Schuppen", 25]

und

L[2] mit dem Wert ["Wal", "Haut", 450]

und Sie können über Indizes auf alle Eigenschaften jedes einzelnen Tieres

zugreifen.

L[0][0] hat den Wert "Hund"

L[0][1] hat den Wert "Fell"

L[1][1] hat den Wert "Schuppen"

und

L[2][2] hat den Wert 450.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 165

Sie können auch mit einer Schleife auf die Elemente zugreifen:

for Tier in L:

 print("Ein", Tier[0], "hat", Tier[1],

 "und ist", Tier[2], "cm lang.")

Dasselbe lässt sich noch kompakter so schreiben:

for Name, Hülle, Länge in L:

 print("Ein", Name, "hat", Hülle,

 "und ist", Länge, "cm lang.")

Gelegentlich kann es auch sinnvoll sein, durch Indizes auf die Listenele-

mente zuzugreifen:

for i in range(len(L)):

 print("Ein", L[i][0], "hat", L[i][1],

 "und ist", L[i][2], "cm lang.")

5.15.2 Tupel

Ein Tupel kann grundsätzlich wie eine Liste verwendet werden, ist im Ge-

gensatz zu dieser aber unveränderlich. Geschrieben werden Tupel als

durch Kommas getrennte Werte in runden Klammern.

Liste = [1, 5, 3, 2, 3]

Tupel = (1, 5, 3, 2, 3)

5.15.3 Mengen (Sets)

Mengen sind nahe Verwandte von Listen, zeichnen sich aber dadurch aus,

dass jedes Element nur genau einmal in ihnen vorkommen darf. Geschrie-

ben werden Mengen als durch Kommas getrennte Werte in geschweiften

Klammern.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 166

>>> Menge = {1, 5, 3, 2, 3}

>>> Menge

 {1, 2, 3, 5}

Die Reihenfolge der Elemente einer Menge ist nicht bestimmt. Mengen

sind ungeordnete Sequenzen.

Mehrere Mengen können verknüpft werden, indem wir beispielsweise

Vereinigungsmengen oder Schnittmengen bilden.

>>> A = {1, 3, 6, 5, 2}

>>> B = {4, 2, 6, 8, 3}

>>> A | B

 {1, 2, 3, 4, 5, 6, 8}

>>> A & B

 {2, 3, 6}

5.15.4 Dictionarys

Dictionarys sind, wie Mengen, ungeordnete Sequenzen, sie bestehen aber

nicht aus einzelnen Elementen, sondern aus Schlüssel-Werte-Paaren. Je-

der Schlüssel ist einmalig. Ihm können wir beliebige Werte zuordnen.

Über den Schlüssel greifen wir auch wieder auf die einzelnen Werte des

Dictionarys zu.

>>> Student = {"Name":"Kevin", "Alter":21}

>>> Student["Name"]

 'Kevin'

>>> Student["Alter"]

 21

Martin Vogel: Bauinformatik mit Python, WS 2025/26 167

Dictionarys können wir jederzeit erweitern, indem wir neuen Schlüsseln

Werte zuweisen.

>>> Student["Hobby"] = "Tauchen"

>>> Student

 {'Name': 'Kevin', 'Alter': 21, 'Hobby': 'Tauchen'}

Wenn wir versuchen, einen Wert abzufragen, zu dem kein Schlüssel exis-

tiert, wirft Python die Fehlermeldung KeyError aus. Wir können das ver-

meiden, indem wir den Wert nicht direkt, sondern über die Methode get

des Dictionarys abfragen. Zu nicht vorhandenen Schlüsseln wird dann der

Wert None zurückgegeben.

>>> print(Student.get("Geld"))

 None

5.15.5 Indizes

Jedes Element einer geordneten Sequenz (Liste, Tupel, Zeichenkette)

lässt sich über seine Position in der Sequenz ansprechen.

Die Indexierung der Elemente beginnt bei null. Besitzt eine Liste L zehn

Elemente, so können diese in der Indexschreibweise mit L[0] bis L[9]

adressiert werden.

Zahlen = [1, 2, 3]

Tiere = ["Hund", "Katze", "Maus"]

Mischmasch = [1, "Tisch", 2/3, False, Tiere, print]

print(Zahlen[0], Tiere[1], Mischmasch[2])

Ausgabe:

1 Katze 0.6666666666666666

Martin Vogel: Bauinformatik mit Python, WS 2025/26 168

Python erlaubt auch negative Indizes. Sie dienen dazu, auf die hinteren

Elemente einer Sequenz zuzugreifen. L[-1] ist dabei das letzte Element

der Liste L, L[-2] das vorletzte und so weiter.

5.15.6 Schleifen über Sequenzen

Sequenzen sind iterierbare Objekte. Eine besonders einfache Art, alle

Elemente einer Sequenz zu verarbeiten, besteht darin, eine Schleife über

die einzelnen Elemente laufen zu lassen. Die Schleifenvariable nimmt da-

bei nacheinander alle Werte der in der Sequenz enthaltenen Elemente an:

Tierliste = ["Hund", "Katze", "Maus"]

for Tier in Tierliste:

 print("•", Tier)

Ausgabe:

• Hund

• Katze

• Maus

Eine Besonderheit bilden Dictionarys. Hier läuft die Schleife nicht über

die Werte, sondern die Schlüssel des Dictionarys.

Student = {'Name': 'Kevin', 'Alter': 21, 'Hobby': 'Tauchen'}

for Schlüssel in Student:

print(Schlüssel, Student[Schlüssel])

Ausgabe:

Name Kevin

Alter 21

Hobby Tauchen

Martin Vogel: Bauinformatik mit Python, WS 2025/26 169

Da wir bei Dictionarys eigentlich immer zwei zusammengehörige Elemen-

te haben, die uns interessieren, nämlich den Schlüssel und den dazugehö-

rigen Wert, ist es nicht ganz ungeschickt, die Schleife gleich über beides

laufen zu lassen.

Student = {'Name': 'Kevin', 'Alter': 21, 'Hobby': 'Tauchen'}

for Schlüssel, Wert in Student.items():

print(Schlüssel, Wert)

Die Ausgabe ist dieselbe wie vorhin:

Name Kevin

Alter 21

Hobby Tauchen

5.15.7 Sequenzabschnitte (Slices)

Kopien einzelner Abschnitte einer geordneten Sequenz nennen wir „Sli-

ces“. Wir erzeugen sie, indem wir anstelle einer einzelnen Indexzahl ei-

nen Bereich [von:bis] angeben.

Die Angabe bis ist dabei der Indexwert des ersten Elementes, das nicht

mehr zum Slice gehört. Wir kennen das ja schon von der Range-Funktion

(Kapitel 5.14.4). Es ist daher mitunter intuitiver, sich die Indizes nicht so

vorzustellen, dass sie auf die einzelnen Elemente zeigen, sondern auf die

Trennlinie dazwischen.

Abb. 78: Merkhilfe für Sequenzabschnitte

Martin Vogel: Bauinformatik mit Python, WS 2025/26 170

H a l l o B o c h u m !
1 2 4 5 6 7 8 9 10 11 120 3

1 2 4 5 6 7 8 9 10 11 120 3 13

-13 -12 -10 -9 -8 -7 -6 -5 -4 -3 -2-11 -1

Slices enthalten standardmäßig eine Gruppe direkt aufeinander folgender

Elemente. Es ist aber auch die Angabe einer Schrittweite erlaubt:

L [von : bis : Schrittweite]

Jede der drei Angaben dürfen wir weglassen. Anstelle von von wird dann

0 verwendet, anstelle von bis wird len(L) angenommen und die Schritt-

weite ist standardmäßig auf 1 gesetzt. Der Ausdruck L[:] erzeugt eine

vollständige Kopie der Sequenz L.

Einige Beispiele:

Monat = ("Jan", "Feb", "Mär", "Apr", "Mai", "Jun",

 "Jul", "Aug", "Sep", "Okt", "Nov", "Dez")

print(Monat[3:6])

print(Monat[1:12:2])

print(Monat[::3])

Ergebnis:

('Apr', 'Mai', 'Jun')

('Feb', 'Apr', 'Jun', 'Aug', 'Okt', 'Dez')

('Jan', 'Apr', 'Jul', 'Okt')

5.15.8 Kopieren einer Sequenz

Im Gegensatz zu einfachen Datentypen wie Ganzzahlen oder Zeichenket-

ten werden Sequenzen wie Listen, Mengen oder Dictionarys intern immer

nur als Verweis auf einen Speicherbereich behandelt, an dem die eigentli-

chen Inhalte liegen.

Das erhöht zwar die Verarbeitungsgeschwindigkeit von Python sehr, führt

aber zu dem unerwarteten Phänomen, dass die Zuweisung einer Sequenz

zu einer Variable keine neue unabhängige Sequenz erzeugt, sondern nur

einen Aliasnamen für die bereits vorhandenen Inhalte.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 171

Um wirklich unabhängige Kopien unserer Daten zu erhalten, können wir

die im vorigen Kapitel vorgestellten Slices verwenden.

Ein Beispiel: Angenommen, wir haben drei Listen A, B und C. Liste A ent-

hält die drei Zahlen 1, 2 und 3. Liste B ist eine Kopie durch einfache Zu-

weisung und Liste C ist eine Kopie durch Slice-Bildung.

>>> A = [1, 2, 3]

>>> B = A

>>> C = A[:]

Nun weisen wir dem Element an der Indexposition 1 von Liste A einen

neuen Wert zu.

>>> A [1] = "oh!"

Was passiert nun?

>>> A

[1, 'oh!', 3]

Das haben wir erwartet. An Indexposition 1 befindet sich das zweite Ele-

ment von Liste A. Wir wissen ja, dass die Zählung bei null beginnt.

>>> B

[1, 'oh!', 3]

Das ist jetzt vielleicht überraschend. Liste B haben wir schließlich gar

nichts explizit zugewiesen. Da sie aber ebenfalls nur auf die Inhalte der

Liste A zeigt, und diese Inhalte von uns verändert wurden, betrifft die Än-

derung auch Liste B.

>>> C

[1, 2, 3]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 172

Liste C zeigt sich davon völlig unbeeindruckt. Sie ist eine „echte Kopie“

der Inhalte von Liste A.

Auf der Website „Pythontutor“ wird das Phänomen grafisch recht an-

schaulich dargestellt:

Abb. 79: www.pythontutor.com

Kopien verschachtelter Sequenzen

Wenn eine Sequenz wiederum Sequenzen enthält, genügt es nicht, eine

Kopie der übergeordneten Sequenz mithilfe von Slices zu erzeugen, denn

die untergeordneten Sequenzen verweisen ja immer noch auf dieselben

Speicherbereiche wie zuvor. Um wirklich sicher zu sein, unabhängige Da-

ten zu erhalten, müssen wir auch alle untergeordneten Sequenzen sorg-

fältig kopieren. Glücklicherweise bleibt es uns erspart, das selbst zu pro-

grammieren. Wir verwenden stattdessen die Funktion deepcopy aus dem

Modul copy.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 173

5.15.9 Umwandlung eines Generator-Objektes in
eine Liste

Mit der Funktion list können wir nicht nur andere Sequenzen, sondern

auch die von einem Generator (Kapitel 5.14.5) oder der Range-Funktion

(Kapitel 5.14.4) erzeugten Objekte zu einer Liste zusammenfassen.

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(floatrange(5.0, 7.1, 0.25))

[5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0]

5.15.10 Sequenzen sprengen

Wenn wir Sequenzen als Parameter an eine Funktion übergeben, so er-

hält die Funktion die Sequenz „am Stück“. Die Print-Funktion beispiels-

weise gibt eine Liste als Ganzes aus.

>>> Motto = ["per", "aspera", "ad", "astra"]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 174

Abb. 80: deepcopy

>>> print(Motto)

['per', 'aspera', 'ad', 'astra']

Wir können aber auch dem Sequenznamen ein Sternchen „*“ voranstel-

len, um die Sequenz zu sprengen. Der Funktion werden die einzelnen Se-

quenzelemente dann so übergeben, als seien sie beim Aufruf der Funkti-

on einzeln, wie mit Kommas getrennte Parameter, geschrieben worden.

>>> print(*Motto)

per aspera ad astra

5.15.11 Das enumerate-Objekt

Wenn wir eine Schleife über alle Elemente einer Liste laufen lassen, ha-

ben wir oft den Wunsch, neben dem gerade betrachteten Listenelement

auch dessen Indexwert zu kennen.

In vielen Programmiersprachen muss man sich damit behelfen, eine

Schleife über die Indexwerte laufen zu lassen und mit der Laufvariable

der Schleife wieder auf die Liste zugreifen:

A = ["alpha", "beta", "gamma"]

for i in range(len(A)):

 print(i, A[i])

Das ist in Python eher unüblich, denn hier gibt es die einzigartige Mög-

lichkeit, gleichzeitig mehrere Variablen als Laufvariablen zu verwenden.

Das enumerate-Objekt unterstützt uns zusätzlich, indem es die Elemente

einer vorhandenen Liste gemeinsam mit deren Indexwerten zu Tupeln zu-

sammenfasst.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 175

Nun können wir zwei Variablen gleichzeitig über die von enumerate er-

zeugten Tupel laufen lassen und haben so in jedem Schleifendurchlauf

beide Informationen zur Verfügung:

A = ["alpha", "beta", "gamma"]

for i, a in enumerate(A):

 print(i, a)

Das Resultat beider Programme ist dasselbe:

0 alpha

1 beta

2 gamma

Für den Fall, dass unser Zähler i nicht bei null beginnen soll, können wir
seinen Startwert festlegen:

A = ["alpha", "beta", "gamma"]

for i, a in enumerate(A, start=1):

 print(i, a)

Das Resultat ist nun:

1 alpha

2 beta

3 gamma

5.15.12 Reißverschlussverfahren: das Zip-Objekt

Wir können eine beliebige Zahl von Sequenzen zu einer neuen Sequenz

zusammenschnüren, in der jedes Element aus einem Tupel der korrespon-

dierenden Elemente aller ursprünglichen Sequenzen besteht. Das erste

Tupel besteht also aus den ersten Elementen aller Sequenzen, das zweite

Tupel aus den zweiten Elementen und so weiter.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 176

Obst = ["Kirsche", "Banane", "Apfel"]

Farbe = ["rot", "gelb", "grün"]

Obstfarben = list(zip(Obst, Farbe))

Die Liste „Obstfarben“ hat nun den Inhalt:

[('Kirsche', 'rot'), ('Banane', 'gelb'), ('Apfel', 'grün')]

Der Name der Funktion zip leitet sich aus dem englischen Wort für Reiß-

verschluss (zipper) ab. Genau wie beim Reißverschluss wird abwechselnd

jeweils ein Element aus der einen und aus der anderen Liste miteinander

kombiniert.

Der Aufruf von zip erzeugt noch keine neue Sequenz, sondern nur ein

Zip-Objekt, das Daten aus den ursprünglichen Listen ausliest. Über dieses

können wir in einer Schleife iterieren oder es durch list in eine neue

Liste umformen.

Vorsicht: dass der alleinige Aufruf von zip noch keine neuen Listen er-

zeugt, hat zur Konsequenz, dass Änderungen in zuvor „gezippten“ Listen

auch in den danach von zip erzeugten Daten zu sehen sind.

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = zip(a,b)

>>> a[1] = 999

>>> list(c)

[(1, 4), (999, 5), (3, 6)]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 177

Ein Gegenstück zu zip in Form eines eigenen Unzip-Objekts gibt es

nicht1. Stattdessen verwenden wir zip auch zum Entpacken:

Obst, Farbe = zip(*Obstfarben)

Die Zip-Funktion ermöglicht es sogar, gleichzeitig zwei getrennte Sequen-

zen zu sortieren, beispielsweise, weil deren jeweilige Elemente einen Be-

zug zueinander haben. Die dritte Zeile im folgenden Beispiel fügt die bei-

den Listen Obst und Farbe zusammen, sortiert das Ergebnis und trennt

die sortierte Liste wieder in zwei einzelne Listen:

Obst = ["Kirsche", "Banane", "Apfel"]

Farbe = ["rot", "gelb", "grün"]

Obst, Farbe = zip(*sorted(zip(Obst, Farbe)))

Das Ergebnis sieht nun so aus:

>>> Obst

('Apfel', 'Banane', 'Kirsche')

>>> Farbe

('grün', 'gelb', 'rot')

1 Wer unbedingt eine Unzip-Funktion haben will, kann sie sich selbst schreiben:
def unzip(x):
 return zip(*x)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 178

5.15.13 Funktionen für Sequenzen

Auf Sequenzen können wir eine Reihe von nützlichen Standardfunktionen

anwenden. Die in der folgenden Tabelle aufgeführten Funktionen liefern

die in der rechten Spalte beschriebenen Rückgabewerte, wenn ihnen als

Argument eine Sequenz (S) übergeben wird:

Funktion Rückgabewert

len(S) Anzahl der Elemente in der Sequenz

sum(S)
Summe der Elemente, wenn alle Elemente aus Zahlen-
werten bestehen

min(S) Kleinstes Element

max(S) Größtes Element

sorted(S)
Erzeugt aus den Elementen der Sequenz eine neue Lis-
te in sortierter Form, wenn dies möglich ist.

all(S) True, wenn alle Elemente True oder gleichwertig2

any(S) True, wenn irgendein Element True oder gleichwertig

5.15.14 Löschen von Sequenzen

Sequenzen können recht große Gebilde werden und eine Menge RAM be-

legen. Erzeugen wir zu viele große Objekte, beginnt das Betriebssystem,

Inhalte aus dem RAM auf die Festplatte auszulagern. Dabei wird der

Rechner unter Umständen bis zur Unbedienbarkeit verlangsamt.

Damit uns das nicht passiert, können wir mit dem Schlüsselwort del Se-

quenzen oder Teile davon löschen. Ein mit del gelöschtes Objekt verliert

auch seinen Namen.

>>> Tiere = ["Hund", "Schnitzel", "Fußball", "Maus"]

>>> Student = {'Name':'Kim', 'Alter':21, 'Hobby':'Tauchen'}

>>> Gigabyte = list(range(111_111_100))

2 Siehe Kapitel 5.27.1

Martin Vogel: Bauinformatik mit Python, WS 2025/26 179

>>> del Tiere[1:3]

>>> Tiere

 ['Hund', 'Maus']

>>> del Student["Hobby"]

>>> Student

 {'Name': 'Kim', 'Alter': 21}

>>> del Gigabyte

>>> Gigabyte

Traceback (most recent call last):

 File "<pyshell#127>", line 1, in <module>

 Gigabyte

NameError: name 'Gigabyte' is not defined

In den meisten Fällen wird es niemals nötig sein, dass wir uns um das

Ausgehen des freien Speichers Gedanken machen müssen. Objekte, die

tatsächlich Speicher in der Größenordnung von mehreren Gigabyte bele-

gen, sind in alltäglichen Projekten eher selten.

5.15.15 Methoden von Listen

Es gibt Funktionen in Python, die wir nur auf Listen anwenden können.

Solche an bestimmte Objekte gebundene Funktionen nennen wir „Metho-

den“ dieser Objekte. Sie werden mit der Schreibweise Objektname.Me-

thodenname(Argumente) aufgerufen.

In der folgenden Tabelle sind einige Methoden aufgeführt, die uns die Ar-

beit mit Listen erleichtern.

Methode und Beschrei-
bung

Anwendungsbeispiel

.append(Element)

Hängt ein neues Element
an eine Liste an.

Baustoffe = ["Marmor", "Stein",

 "Eisen"]

Baustoffe.append("Holz")

print(Baustoffe)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 180

Methode und Beschrei-
bung

Anwendungsbeispiel

↓

['Marmor', 'Stein', 'Eisen',

'Holz']

.count(Element)

Gibt zurück, wie oft ein be-
stimmter Elementwert in
einer Liste vorkommt.

Obst = ["Apfel", "Apfel", "Feige",

 "Birne", "Apfel", "Banane"]

print(Obst.count("Apfel"))

print(Obst.count("Zucchini"))

↓

3

0

.index(Element)

Gibt die Position der ers-
ten Fundstelle eines Ele-
mentwerts zurück.

Enthält die Liste kein pas-
sendes Element, tritt ein
Fehler vom Typ
ValueError auf.

Ziffern = ["null", "eins", "zwei",

 "drei", "vier"]

print(Ziffern.index("zwei"))

↓

2

Martin Vogel: Bauinformatik mit Python, WS 2025/26 181

Methode und Beschrei-
bung

Anwendungsbeispiel

.insert(index, Element)

Fügt ein neues Element an
der Stelle index in die Lis-
te ein. Dahinter liegende
Listenelemente werden um
eine Position verschoben.

Wird eine Indexposition
außerhalb der bestehen-
den Liste adressiert, so
wird das neue Element bei
positiven index-Werten an
die Liste angehängt und
bei negativen index-Wer-
ten am Anfang der Liste
eingefügt.

Fische = ["Hering", "Makrele",

 "Scholle"]

Fische.insert(2, "Blauwal")

print(Fische)

↓

['Hering', 'Makrele', 'Blauwal',

'Scholle']

.pop(index)

Gibt das Element an der
Stelle index zurück und
entfernt es aus der Liste.
Dahinter liegende Elemen-
te rücken um eine Position
auf. Wird für index kein
Wert übergeben, entnimmt
.pop() das letzte Element
der Liste.

Ist die Liste leer oder wird
eine nicht vorhandene In-
dexposition adressiert,
tritt ein Fehler vom Typ
IndexError auf.

Fische = ["Hering", "Makrele",

 "Blauwal", "Scholle"]

Säugetier = Fische.pop(2)

print(Fische)

print(Säugetier)

↓

['Hering', 'Makrele', 'Scholle']

Blauwal

Martin Vogel: Bauinformatik mit Python, WS 2025/26 182

Methode und Beschrei-
bung

Anwendungsbeispiel

.remove(Element)

Löscht das erste Vorkom-
men eines Elementwertes
aus einer Liste.

Fische = ["Hering", "Makrele",

 "Blauwal", "Scholle"]

Fische.remove("Blauwal")

print(Fische)

↓

['Hering', 'Makrele', 'Scholle']

.reverse()

Kehrt die Reihenfolge ei-
ner Liste um.

Schlagzeile = ["Hund", "beißt",

 "Mann"]

Schlagzeile.reverse()

print(*Schlagzeile)

↓

Mann beißt Hund

.sort()

Sortiert die Elemente einer
Liste.

Die Listenelemente müs-
sen alle vom selben Typ
sein.

Zahlen = [3, 1, 72, 21, 0, 20, 34,

 2, 12, 96, 44, 61]

Zahlen.sort()

print(Zahlen)

↓

[0, 1, 2, 3, 12, 20, 21, 34, 44,

61]

Die Methoden index und count sind hierbei die einzigen, die auch auf Tu-

pel angewendet werden können.

5.15.16 Eine für alle: das map-Objekt

Die Funktion map(f, S) wendet eine Funktion f auf alle Elemente eines

iterierbaren Objekts S an und gibt ein iterierbares map-Objekt zurück.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 183

Dies können wir zum Beispiel dazu nutzen, um sehr einfach eine Liste auf

eine andere Liste abzubilden.

Quadratzahlen = [1, 2, 4, 9, 16, 25, 36, 49, 64, 81, 100]

from math import sqrt

list(map(sqrt, Quadratzahlen))

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 184

5.16 Anwendung von Listen: Vektoren

Vektoren können in Python ganz einfach als Listen von Zahlenwerten dar-

gestellt werden.

Anstelle der mathematischen Notation …

a⃗=(123
4
)

… schreiben wir in Python:

a = [1, 2, 3, 4]

5.16.1 Vektoraddition

Um Vektoren zu addieren, benötigen wir eine Schleife, die nacheinander

alle Elemente zweier Listen (die Summandenvektoren) addiert und dar-

aus eine dritte Liste (den Summenvektor) zusammensetzt.

Angenommen, wir haben die Listen A und B, die jeweils 5 Elemente auf-

weisen.

A = [1, 2, 3, 4, 5]

B = [20, 30, 40, 50, 60]

Um eine neue Liste C zu erhalten, könnten wir zunächst eine leere Liste

anlegen …

C = []

… und anschließend schrittweise die Summe der fünf Listenelemente

A[0] + B[0] bis A[4] + B[4] als neues Listenelement (daher mit ecki-

gen Klammern umschlossen) an die im Verlauf der Abarbeitung immer

länger werdende Liste C anhängen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 185

c⃗=a⃗+ b⃗

for i in range(5):

 C.append(A[i]+B[i])

Dies entspricht der klassischen Vorgehensweise in den meisten Program-

miersprachen. In Python geht es eleganter, kürzer und übersichtlicher,

wenn wir uns die Möglichkeiten der funktionalen Listenerzeugung zunut-

ze machen. Das Zip-Objekt, dem wir gerade in Kapitel 5.15.12 begegnet

sind, hilft uns dabei, indem es Tupel aus den korrespondierenden Elemen-

ten beider Listen A und B erzeugt. Die Summen dieser Tupel bauen wir

nun zu einer neuen Liste zusammen:

C = [a+b for a, b in zip(A, B)]

5.16.2 Skalarprodukt

Das Skalarprodukt zweier Vektoren ist die Summe der Produkte ihrer kor-

respondierenden Elemente.

Auch diese Berechnung können wir entweder als klassische Schleife for-

mulieren, indem eine vor der Schleife auf null gesetzte Summe schritt-

weise um das Produkt der einzelnen Listenelemente erhöht bzw. verrin-

gert wird …

A = [1, 2, 3, 4, 5]

B = [20, 30, 40, 50, 60]

SP = 0

for i in range(5):

 SP += A[i] * B[i]

… oder wir geben abermals der funktionalen Listenerzeugung den Vor-

zug, indem wir zunächst einen Generatorausdruck für alle Einzelprodukte

formulieren und anschließend deren Summe über Pythons eingebaute

Funktion sum ermitteln:

A = [1, 2, 3, 4, 5]

B = [20, 30, 40, 50, 60]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 186

SP = sum(a*b for a, b in zip(A, B))

5.16.3 Formatierte Ausgabe eines Vektors

Mit der in Kapitel 5.21.5 auf Seite 217 vorgestellten formatierten Zahlen-

ausgabe mit Platzhaltern können wir die einzelnen Zahlenwerte eines

Vektors gut lesbar geordnet untereinander ausgeben.

Die Funktion druckeVektor gibt die Elemente eines als Argument über-

gebenen Vektors mit jeweils 4 Nachkommastellen und 10 Stellen Gesamt-

breite untereinander aus.

v = [2/7, 3.14, 0, 1000/13]

def druckeVektor(v):

 for x in v:

 print(f"{x:10.4f}")

druckeVektor(v)

Resultat:

 0.2857

 3.1400

 0.0000

 76.9231

Haben wir da gerade eine eigene Funktion definiert? Das sollten wir uns

näher anschauen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 187

5.17 Eigene Funktionen definieren

In einem Programm mehrmals benutzte Formeln oder Programmteile

können wir als Funktion definieren. Die Lesbarkeit unseres Programms

erhöht sich dadurch erheblich, und wir vermeiden Redundanz durch sich

mehrfach wiederholenden Programmcode.

Die Funktionsdefinition erfolgt durch das Schlüsselwort def, gefolgt vom

Funktionsnamen, einem Klammerpaar und einem Doppelpunkt. Das

Klammerpaar enthält eine Reihe von nur innerhalb der Funktion sichtba-

ren Variablen, in denen für die Dauer der Ausführung der Funktion die

der Funktion übergebenen Eingangswerte gespeichert sind.

Auf die Funktionsdefinition folgt ein eingerückter Programmblock, der

mit dem Schlüsselwort return und dem zurückzugebenden Wert oder den

zurückzugebenden Werten abgeschlossen wird.

def addiere(a, b):

 "Gibt das Ergebnis der Addition von a und b zurück."

 c = a + b

 return c

print(addiere(17, 4))

Resultat:

21

Die Funktion addiere(a, b) nimmt genau zwei Eingangswerte entgegen,

nennt diese a und b und gibt das Ergebnis der Addition dieser beiden

Werte zurück.

In Python müssen wir uns keine besonderen Gedanken über die Typen

der Eingangswerte machen. Solange die mit den übergebenen Werten

durchgeführten Operationen gültig sind, können wir beliebige Daten-

typen an die Funktion übergeben.

>>> addiere("super", "klasse")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 188

 'superklasse'

Unsere Additionsfunktion funktioniert, wie man sieht, sowohl mit Zahlen-

werten als auch mit Zeichenketten.

Eine einmal definierte Funktion kann immer wieder aufgerufen werden,

indem im Programmtext ihr Name, gefolgt von den jeweiligen Eingangs-

werten in Klammern, verwendet wird.

An der Farbe des Funktionsnamens erkennen wir in IDLE, ob die Funkti-

on zu den eingebauten Funktionen wie print oder sorted gehört, oder

ob sie wie addiere neu definiert wurde. Die Namen eingebauter Funktio-

nen werden purpurfarben dargestellt, die Namen neuer Funktionen in

der Kopfzeile der Definition blau, ansonsten schwarz.

Die Textkonstante in der ersten Zeile unserer Funktion hat eine besonde-

re Bedeutung. Sie ist deren offizieller Hilfetext. Mit der Funktion help

kann der Hilfetext zu einer Funktion abgerufen werden.

>>> help(addiere)

Help on function addiere in module __main__:

addiere(a, b)

 Gibt das Ergebnis der Addition von a und b zurück.

5.17.1 Eingangswerte (Argumente)

Die Eingangswerte einer Funktion heißen auch „Argumente“ oder „Para-

meter“ dieser Funktion. Alle Argumente müssen beim Aufruf einer Funk-

tion in der richtigen Reihenfolge angegeben werden. Sind sie unvollstän-

dig, gibt Python eine Fehlermeldung aus.

>>> def addiere(a, b, c):

 return a + b + c

>>> addiere(1, 2, 3)

6

Martin Vogel: Bauinformatik mit Python, WS 2025/26 189

>>> addiere(17, 4)

Traceback (most recent call last):

 File "<pyshell#46>", line 1, in <module>

 addiere(17, 4)

TypeError: addiere() missing 1 required positional argument:

'c'

5.17.2 Vorbelegte Eingangswerte

Eingangswerte einer Funktion können mit einem Standardwert vorbelegt

werden. Beim Aufruf der Funktion dürfen diese vorbelegten Werte, von

der rechten Seite beginnend, weggelassen werden.

>>> def addiere(a=0, b=0, c=0):

 return a + b + c

>>> addiere(1, 2, 3)

6

>>> addiere(1, 2)

3

>>> addiere(1)

1

>>> addiere()

0

Im gezeigten Beispiel werden beim ersten Aufruf alle drei Funktionsvaria-

blen verwendet, im zweiten Aufruf nur a und b (c bleibt auf null), im drit-

ten Aufruf nur a und im vierten Aufruf wird überhaupt kein Parameter

übergeben – alle drei Eingangswerte der Funktion bleiben auf ihrer Vor-

einstellung null.

5.17.3 Beliebig viele Argumente

Wenn wir dem letzten (oder einzigen) Argumentnamen in der Funktions-

definition ein Sternchen * voranstellen, so wird der Funktion ein Tupel

mit beliebig vielen Werten übergeben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 190

Innerhalb der Funktion kann dieses Tupel beispielsweise durch eine

Schleife Element für Element abgearbeitet werden

>>> def addiere(*args):

 summe = 0

 for zahl in args:

 summe += zahl

 return summe

>>> addiere()

0

>>> addiere(1,2,3)

6

>>> addiere(100, 231, 675, 76234, 11384)

88624

>>> addiere(*range(101))

5050

Das der Funktion range vorangestellte Sternchen beim letzten Aufruf der

Funktion ist das Gegenstück zum Sternchen innerhalb der Funktion.

Beim Aufruf zerlegt es eine Sequenz in einzelne Werte, wogegen es inner-

halb der Funktion Einzelparameter zu einem Tupel vereint.

5.17.4 Reihenfolge von Funktionsargumenten

Beim Aufruf einer Funktion müssen wir ihre Argumente üblicherweise ge-

nau in der Reihenfolge angeben, die bei der Definition der Funktion fest-

gelegt wurde.

Ein Abweichen von dieser Regel ist möglich; dann müssen wir aber expli-

zit die Namen der Funktionsargumente angeben.

>>> def dividiere(zähler, nenner):

 return zähler/nenner

Martin Vogel: Bauinformatik mit Python, WS 2025/26 191

>>> dividiere(3, 4)

0.75

>>> dividiere(4, 3)

1.3333333333333333

>>> dividiere(nenner=4, zähler=3)

0.75

Auch solche Schlüssel-Werte-Paare können wir gesammelt verarbeiten.

Dazu stellen wir bei der Funktionsdefinition dem „Sammelargument“ ein

doppeltes Sternchen voran. In der Funktion kommt dann ein Dictionary

an:

>>> def test(**kwargs):

 print(kwargs)

>>> test(a=1, b=2, c=3)

{'a': 1, 'b': 2, 'c': 3}

Eine Funktion kann auch beide Arten von Argumenten verarbeiten:

>>> def test(*args, **kwargs):

 print(args)

 print(kwargs)

>>> test(18, 20, 2, 0, 4, a=1, b=2, c=3)

(18, 20, 2, 0, 4)

{'a': 1, 'b': 2, 'c': 3}

Martin Vogel: Bauinformatik mit Python, WS 2025/26 192

5.18 Sichtbarkeit von Variablen

Auf Variablen, die innerhalb einer Funktion eingeführt wurden, kann von

außen nicht zugegriffen werden. Wir sprechen davon, dass der Namens-

raum dieser Variablen auf die Funktion begrenzt ist. Wenn solche lokalen

Variablen dieselben Namen tragen wie Variablen, die vor Ausführung der

Funktion bereits außerhalb dieser Funktion angelegt wurden, so bleiben

die außerhalb der Funktion verwendeten Variablen unverändert.

>>> def Demo(A, B):

 C = A + B

 A = 22

 B = 33

 return A, B, C

>>> A = B = C = 123

>>> A, B, C

(123, 123, 123)

>>> Demo(10, 20)

(22, 33, 30)

>>> A, B, C

(123, 123, 123)

Das Programmbeispiel zeigt eine Funktion namens Demo, die drei lokale

Variablen A, B und C verwendet. Diese Variablen sind völlig unabhängig

von den namensgleichen Variablen A, B und C außerhalb der Funktion. De-

ren Wert (123) bleibt auch nach dem Aufruf der Funktion unverändert.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 193

5.19 Klassen und Objekte

Wir sind bereits einer ganzen Menge unterschiedlicher Objekte begegnet

und erinnern uns zum Beispiel an Listen, Tupel oder Zeichenketten. Jedes

dieser Objekte gehört einer bestimmten Klasse an. Objekte einer Klasse

verfügen über gemeinsame Attribute und Methoden.

Wie können in Python eigene Klassen definieren und von diesen anschlie-

ßend einzelne Objekte ableiten.

Abb. 81: Vorbild für ein Objekt: Ein Einfeldträger

Angenommen, wir wollen ein Programm schreiben, das mit verschiede-

nen Einfeldträgern umgehen soll. Jeder dieser Einfeldträger soll über

zwei Attribute verfügen: Länge und Last. Weiterhin sollen unsere Ein-

feldträger-Objekte in der Lage sein, Auskunft über ihr Biegemoment

maxM zu geben.

Mit dem Schlüsselwort class definieren wir die neue Klasse

Einfeldträger und legen darin die beiden Attribute Länge und Last

an.

class Einfeldträger:

 Länge = 0

 Last = 0

Martin Vogel: Bauinformatik mit Python, WS 2025/26 194

Schon sind wir in der Lage, durch Aufruf von Einfeldträger() neue Ob-

jekte der Klasse Einfeldträger zu erzeugen und diese einer Variable

zuweisen. So eine Variable bezeichnen wir als „Instanz“ dieser Klasse.

Die öffentlich sichtbaren Attribute des neuen Objektes können wir mit der

Konstruktion Objektname.Attributname wie gewöhnliche Variablen an-

sprechen.

T = Einfeldträger()

T.Länge = 5

T.Last = 2.5

Bevor wir unseren Einfeldträger dazu bringen, sein eigenes Biegemoment

auszurechnen, schauen wir uns die Attribute eines Objektes noch etwas

genauer an.

5.19.1 Attribute von Objekten

Als Attribute bezeichnen wir die innerhalb eines Objektes verwendeten

Variablen. Bei unserem Einfeldträger würden die Attribute Last und

Länge zweckmäßigerweise zwei Gleitkommavariablen sein.

Viele Informatiker vertreten die Ansicht, dass in der objektorientierten

Programmierung niemals direkt auf die Attribute eines Objektes zuge-

griffen werden dürfe, sondern dies ausschließlich über die Methoden ei-

ner Klasse zu erfolgen habe. Es gibt viele gute Gründe1, sich bei umfang-

reichen Projekten streng an dieses Geheimnisprinzip der Datenkapselung

zu halten.

In Python sind Attribute zunächst einmal öffentlich. Wir können aber

durch Voranstellen eines Unterstrichs vor den Attributnamen zum Aus-

druck bringen, dass der direkte Zugriff zumindest unerwünscht ist. Las-

sen wir einem Attributnamen gar mit einem zweifachen Unterstrich be-

ginnen, so ist das so benannte Attribut tatsächlich von außen unter

diesem Namen unerreichbar.

1 Siehe http://de.wikipedia.org/wiki/Datenkapselung_(Programmierung)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 195

>>> class Geheimnisträger:

 erstes_Attribut = "öffentlich"

 _zweites_Attribut = "mit Vorsicht zu behandeln"

 __drittes_Attribut = "streng geheim"

>>> Geheimnisträger.erstes_Attribut

'öffentlich'

>>> Geheimnisträger._zweites_Attribut

'mit Vorsicht zu behandeln'

>>> Geheimnisträger.__drittes_Attribut

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 Geheimnisträger.__drittes_Attribut

AttributeError: type object 'Geheimnisträger' has no

attribute '__drittes_Attribut'

Öffentliche Attribute können einem Objekt und sogar einer Klasse auch

nachträglich noch hinzugefügt werden. Wir könnten ohne weiteres für un-

seren Einfeldträger noch ein Attribut Farbe einführen und dies entweder

an ein bestehendes Objekt oder an die ganze Klasse binden. Mit T.Farbe

= "grün" würden wir das konkrete Objekt T um das Attribut Farbe be-

reichern und mit Einfeldträger.Farbe = "rot" würden wir allen neu-

en und bereits existierenden Objekten der Klasse Einfeldträger das At-

tribut Farbe hinzufügen, falls sie es noch nicht besitzen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 196

>>> T = Einfeldträger()

>>> T.Farbe = "grün"

>>> T2 = Einfeldträger()

>>> Einfeldträger.Farbe = "rot"

>>> T3 = Einfeldträger()

>>> T.Farbe

'grün'

>>> T2.Farbe

'rot'

>>> T3.Farbe

'rot'

Wegen der Möglichkeit, damit auf einfache Weise ein schwer nachvoll-

ziehbares Chaos anzurichten, sollten Sie auf das nachträgliche Hinzufü-

gen von Attributen zu Objektklassen weitestgehend verzichten.

5.19.2 Methoden von Objekten

Als „Methoden“ bezeichnen wir die Funktionen einer Objektklasse. Sie

werden gemeinsam mit der Klasse definiert.

Damit eine Methode auf die Attribute eines Objektes zugreifen kann,

muss sie wissen, um welches konkrete Objekt es sich handelt. In Python

wird dazu traditionell der Bezeichner self gewählt, wenn es sich um die

Attribute desselben Objektes handelt, zu dem auch die jeweilige Methode

gehört.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 197

Schauen wir uns dazu einmal noch einmal unseren Einfeldträger an:

>>> class Einfeldträger:

 Länge = 0

 Last = 0

 def maxM(self):

 return self.Last * self.Länge ** 2 / 8

Wenn wir einem aus dieser Klasse abgeleiteten Objekt die Attribute Länge

und Last zuweisen, gibt die Methode maxM uns das maximale Biegemo-

ment zurück:

>>> T = Einfeldträger()

>>> T.Länge = 5

>>> T.Last = 2.5

>>> T.maxM()

7.8125

Anfangs ist es bestimmt etwas gewöhnungsbedürftig, dass der Bezeich-

ner self nur innerhalb einer Klassendefinition aufgeführt wird, nach au-

ßen aber nicht in Erscheinung tritt.

Der Sinn des „self-Bezuges“ wird uns vielleicht ein wenig klarer, wenn wir

uns vorstellen, die Funktion maxM sei keine Methode der Objektklasse

Einfeldträger, sondern unabhängig von dieser definiert. Dann müssten

wir bei jedem Aufruf explizit sagen, auf welches Objekt die Funktion an-

zuwenden sei:

>>> def maxM(Objekt):

return Objekt.Last * Objekt.Länge ** 2 / 8

>>> T = Einfeldträger()

>>> T.Länge = 5

>>> T.Last = 2.5

>>> maxM(T)

7.8125

Martin Vogel: Bauinformatik mit Python, WS 2025/26 198

5.19.3 Die Methode __init__

Wenn in einer Klassendefinition eine Methode auftaucht, die den Namen

__init__ mit jeweils zwei Unterstrichen vorn und hinten trägt, so wird

diese Initialisierungsfunktion direkt nach dem Erzeugen eines neuen Ob-

jekts dieser Klasse aufgerufen.

Diese spezielle Methode dient dazu, an das Objekt übergebene Argumen-

te anzunehmen und das neue Objekt in einen definierten Zustand zu ver-

setzen. Wie bei allen Methoden einer Objektklasse wird das Objekt selbst

wieder mit self referenziert.

Da die Funktion __init__ das neue Objekt gewissermaßen „konstruiert“,

wird sie „Konstruktor“ der Klasse genannt. Die erzeugten Objekte nennen

wir „Instanzen“ der Klasse.

>>> class Einfeldträger:

 def __init__(self, Länge, Last):

 self.Länge = Länge

 self.Last = Last

 def maxM(self):

 return self.Last*self.Länge**2/8

>>> T = Einfeldträger(5, 2.5)

>>> T.maxM()

7.8125

Methoden mit zwei Unterstrichen am Anfang und Ende des Namens ha-

ben in Python eine spezielle Bedeutung. Sie gelten als sogenannte „magi-

sche Methoden“, mit denen das Verhalten von Objekten bis tief in die

Sprachsyntax hinein beeinflusst werden kann.

5.19.4 Vererbung

Wir können neue Klassen von bereits vorhandenen Klassen ableiten, um

sie beispielsweise um neue Methoden zu erweitern, ohne dabei den gan-

zen schon vorhandenen Code noch einmal schreiben zu müssen. Bei der

Definition unserer neuen Klasse geben wir dazu an, welche vorhandene

Martin Vogel: Bauinformatik mit Python, WS 2025/26 199

Klasse wir „beerben“ wollen. Unsere neue Klasse „Deckenträger“ soll bei-

spielsweise alles können, was auch die schon weiter oben definierte Klas-

se „Einfeldträger“ vermag und soll zusätzlich noch die Auflagerkräfte Av

und Bv zurückgeben.

Um eine Klasse von einer anderen Klasse abzuleiten, übergeben wir den

Namen der übergeordneten Klasse als Argument:

class Deckenträger(Einfeldträger):

Unsere „magische“ Initialisierungsfunktion hat nun allerdings noch die

Aufgabe, alle Argumente, die bei der Objekterzeugung mitgegeben wer-

den (im Beispiel sind das die beiden Argumente Last und Länge) an die

übergeordnete Funktion durchzureichen.

Wir bauen uns eine Durchreiche

Hierzu hat sich eine Schreibweise etabliert, die sicherstellt, dass ganz un-

abhängig von der Zahl der übergebenen Argumente und ganz unabhängig

davon, ob diese mit oder ohne Schlüsselworte angegeben wurden, alle Ar-

gumente unverändert weitergereicht werden. Unsere Initialisierungsme-

thode leiten wir dazu so ein:

def __init__(self, *args, **kwargs):

Das Tupel args enthält dabei alle einzelnen Argumente, beispielsweise

(5, 2.5), und das Dictionary kwargs enthält alle übergebenen Schlüssel-

Werte-Paare, beispielsweise {Länge: 5, Last: 2.5}. Welche Inhalte ge-

nau in den beiden Sequenzen enthalten sind, müssen wir zum Glück gar

nicht untersuchen; wir reichen beides einfach an die übergeordnete Klas-

se weiter. Deren Namen brauchen wir auch nicht explizit anzugeben, son-

dern wir verwenden dazu die Funktion super1.

Der folgende Aufruf sieht daher komplizierter aus, als er in Wirklichkeit

ist. Tatsächlich bedeutet er nur, dass alle unserer Klasse übergebenen Ar-

gumente unverändert an die übergeordnete Klasse durchgereicht wer-

1 Das lateinische Wort „super“ heißt soviel wie „über“ oder „oberhalb“. Die Super-
Funktion ist also lediglich die übergeordnete Funktion und besitzt nicht notwendiger-
weise besonders atemberaubende Fähigkeiten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 200

den:

super().__init__(*args, **kwargs)

Nachdem diese Formalien erledigt sind, können wir uns um unsere eige-

ne Klasse kümmern. Diese soll ja schließlich noch die Auflagerkräfte lie-

fern. Das können wir nun mit einer einzigen Codezeile erreichen:

self.Av = self.Bv = self.Länge * self.Last / 2

Die gesamte Klassendefinition sieht nun also so aus:

class Deckenträger(Einfeldträger):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.Av = self.Bv = self.Länge*self.Last/2

In der IDLE-Shell können wir die neue Klasse gleich ausprobieren:

>>> D = Deckenträger(10, 5)

>>> D.Av

25.0

>>> D.Bv

25.0

>>> D.maxM()

62.5

Wie sollten nun noch darüber nachdenken, welche Konsequenzen es hat,

dass maxM als Methode formuliert wurde und Av sowie Bv als Attribute.

Was passiert bei einer Änderung der Attribute Länge und Last? Bauen Sie

die Klassendefinitionen doch mal so um, dass die Auflagerkräfte mit zwei

Methodenaufrufen Av() und Bv() abgefragt werden können …

Martin Vogel: Bauinformatik mit Python, WS 2025/26 201

5.20 Eigene Module

Wollen wir unsere selbstgeschriebenen Funktionen und Objektklassen in

verschiedenen Programmen einsetzen, so ist es nicht nötig, deren Defini-

tionen immer wieder in den Quelltext neuer Programme hineinzukopie-

ren. Stattdessen binden wir die Python-Datei, in der sich die gewünschte

Funktionsdefinition befindet, als Modul in unser neues Programm ein.

Angenommen, wir haben soviel Gefallen an unserer Funktion addiere aus

Kapitel 5.17 gefunden, dass wir sie zukünftig immer wieder verwenden

wollen. Zusätzlich sollen außerdem noch die Funktionen subtrahiere,

multipliziere und dividiere zur ständigen Verfügung stehen.

Wir schreiben dann einfach alle Funktionsdefinitionen hintereinander in

eine Datei, die wir zum Beispiel labermath.py nennen können.

Fortan stehen uns in allen neuen Programmen die Funktionen unseres

ersten selbstgeschriebenen Python-Moduls zur Verfügung, sobald wir die

Zeile from labermath import * in unser Programm aufgenommen ha-

ben.

Wenn wir die Funktionen immer sorgfältig mit Doc-Strings versehen, das

sind Zeichenketten unmittelbar in der ersten Zeile einer Funktionsdefini-

tion, dann stellt die Funktion help sogar einen eigenen Hilfstext für unser

Modul zusammen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 202

Abb. 82: Das Arithmetikmodul „labermath“

Damit das Betriebssystem unser Modul findet, ist es am einfachsten, es

im selben Verzeichnis wie unsere anderen Pythonprogramme abzulegen.

Wenn Module in anderen Verzeichnissen liegen, müssen diese Verzeich-

nisse der Liste der von Python zu durchsuchenden Modulpfade hinzuge-

fügt werden; siehe Kapitel 5.20.1.

Obwohl Importanweisungen an nahezu jeder beliebigen Stelle eines Pro-

gramms stehen dürfen, ist es im Interesse der Lesbarkeit und Übersicht-

lichkeit des Quelltextes eine gute Idee, sie gesammelt an den Anfang zu

setzen.

Übrigens können wir jedes beliebige Pythonprogramm einfach dadurch

zu einem Modul machen, indem wir es in einem anderen Programm im-

portieren. Allerdings würde das Programm dabei auch gleich gestartet1.

Wenn wir jedoch nicht wollen, dass beim Import mehr passiert als dass

1 Berühmtes Beispiel: import antigravity

Martin Vogel: Bauinformatik mit Python, WS 2025/26 203

Python die Funktionsdefinitionen „lernt“, können wir dem Ausführungs-

teil eine Abfrage voranstellen, die sicherstellt, dass die dort aufgeführten

Programmbefehle beim Importieren des Moduls nicht ausgeführt werden.

Um Programmcode in einer Pythondatei nur dann auszuführen, wenn die-

se als Hauptprogramm direkt gestartet wird, nicht aber, wenn diese Datei

als Modul eingebunden wird, können wir den betroffenen Programmbe-

fehlen die Abfrage

if __name__ == "__main__":

voranstellen. Innerhalb eines Moduls enthält die Variable __name__ stets

den Namen des jeweiligen Moduls. Nur im Hauptprogramm lautet dieser

Wert "__main__".

5.20.1 Modulpfade

Ein Python-Interpreter, der einer import-Anweisung begegnet, durch-

sucht der Reihe nach bestimmte Verzeichnisse:

1. das Verzeichnis des aktuell laufenden Python-Programms

2. alle Modulverzeichnisse der Python-Installation

3. weitere an die Liste sys.path angehängte Verzeichnisse

Punkt 1 ist der Grund, warum es eine schlechte Idee ist, ein eigenes Py-

thon-Programm etwa math.py zu nennen. Alle anderen Pythonprogramme

im selben Verzeichnis werden dann vermutlich ein Problem mit Sinus und

Kosinus bekommen.

Die Liste der Modulverzeichnisse einer Python-Installation erhalten wir,

indem wir uns die Variable path im Modul sys anschauen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 204

Abb. 83: Anzeige der Modulverzeichnisse unter Windows XP

5.20.2 Funktionsüberschreibungen

Die in Kapitel 5.7.1 angesprochenen Funktionsüberschreibungen können

wir auch gezielt einsetzen. Angenommen, wir schreiben gerade ein Be-

rechnungsprogramm, in dem sehr viele trigonometrische Berechnungen

in Altgrad ausgeführt werden sollen.

Anstatt immer wieder in die für die Funktionen des Moduls math erforder-

liche Einheit Bogenmaß umzurechnen, definieren wir einfach einen Satz

trigonometrischer Funktionen, die diese Umrechnung bereits eingebaut

haben und verwenden diese stattdessen. Dazu schreiben wir alle Definiti-

onen in ein neues Modul altgrad.py.

import math

def sin(x):

 return math.sin(math.radians(x))

def cos(x):

 return math.cos(math.radians(x))

Martin Vogel: Bauinformatik mit Python, WS 2025/26 205

def tan(x):

 return math.tan(math.radians(x))

def asin(x):

 return math.degrees(math.asin(x))

def acos(x):

 return math.degrees(math.acos(x))

def atan(x):

 return math.degrees(math.atan(x))

def atan2(dy,dx):

 return math.degrees(math.atan2(dy,dx))

Bei der Verwendung unserer neuen Altgradfunktionen müssen wir ledig-

lich darauf achten, dass wir unser neues Modul altgrad erst nach dem

Modul math importieren, damit die Überschreibungen wirksam werden.

from math import *

from altgrad import *

print("Trigonometrie")

print("~~~~~~~~~~~~~")

print("Der Sinus von 30° ist",sin(30))

print("Der Kosinus von 0° ist",cos(0))

print("Der Tangens von 45° ist",tan(45))

print("Ein Sinuswert von 1 tritt bei",asin(1),"Grad auf.")

print("Bei 10% Steigung ist der Winkel",atan(0.1),"Grad.")

print("Eine Steigung von 1:2 entspricht",atan2(1,2),"Grad.")

Der Programmlauf zeigt, dass nun tatsächlich alle Winkelfunktionen mit

Altgrad anstelle von Bogenmaß berechnet werden:

Trigonometrie

~~~~~~~~~~~~~

Martin Vogel: Bauinformatik mit Python, WS 2025/26 206



Der Sinus von 30° ist 0.49999999999999994

Der Kosinus von 0° ist 1.0

Der Tangens von 45° ist 0.9999999999999999

Ein Sinuswert von 1 tritt bei 90.0 Grad auf.

Bei 10% Steigung ist der Winkel 5.710593137499643 Grad.

Eine Steigung von 1:2 entspricht 26.56505117707799 Grad.

Wie man die vielen Nachkommastellen am einfachsten los wird, steht üb-

rigens in Kapitel 5.21.5.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 207



5.21 Zeichenketten

Zeichenketten sind Sequenzen von Buchstaben, Ziffern, Satz- und Son-

derzeichen sowie Steuerzeichen von nahezu beliebiger Länge. Seit  Py-

thon 3 können Zeichenketten alle weltweit verwendeten Unicode-Schrift-

zeichen enthalten.

5.21.1 Anführungszeichen in Zeichenketten

Zeichenkettenkonstanten dürfen wir wahlweise mit 'einzelnen' oder "dop-

pelten" Anführungszeichen umgeben. 

Den jeweils anderen Anführungszeichentyp können wir als gewöhnliches 

Zeichen im auszugebenden Text verwenden: 

print("Conny's Frittenranch")

print('Sprich "Freund" und tritt ein!')

Wenn derselbe Typ von Anführungszeichen, der auch zur Umgrenzung 

verwendet wird, in der Zeichenkette enthalten sein soll, dann ist diesen 

Anführungszeichen jeweils ein Rückwärtsschrägstrich \ voranzustellen:

print("Man kann auch \"Backslash\" dazu sagen.")

Eine Besonderheit  sind  Anführungszeichen innerhalb  der  geschweiften 

Klammern von f-Strings. Diese dürfen seit Python 3.12 ohne Rücksicht 

auf die Anführungszeichen außerhalb der geschweiften Klammer verwen-

det werden1.

print(f"Die Syntaxhervorhebung der meisten Editoren hat damit 

jedoch häufig noch {int("1")} Problem.")

Es ist daher wohl keine schlechte Idee, zugunsten der Lesbarkeit mög-

lichst einen anderen Anführungszeichentyp innerhalb als außerhalb der 

geschweiften Klammern von f-Strings zu verwenden.

1 https://peps.python.org/pep-0701/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 208

https://peps.python.org/pep-0701/


5.21.2 Der Rückwärtsschrägstrich

Das Zeichen „\“ hat in Zeichenketten eine besondere Bedeutung. 

Steht es vor den Kleinbuchstaben „t“, „n“ oder „r“, so werden „\t“, „\n“ 

und „\r“ durch Tabulatorzeichen, Zeilenumbruch und Wagenrücklaufzei-

chen ersetzt. 

Die Kombinationen von „\x“ gefolgt von einer zweistelligen Hexadezimal-

zahl, „\u“ gefolgt von einer vierstelligen Hexadezimalzahl und „\U“ ge-

folgt von einer achtstelligen Hexadezimalzahl stehen für das Unicodezei-

chen mit der entsprechenden Codeposition.

Der Großbuchstabe „N“ hinter einem Rückwärtsschrägstrich erlaubt es, 

jedes Unicodezeichen über seinen genormten Namen1 azusprechen. Das 

Eurozeichen € wird beispielsweise als „\N{EURO SIGN}“ umschrieben.

Um einen auszugebenden Rückwärtsschrägstrich oder ein Anführungszei-

chen innerhalb einer Zeichenkettenkonstante zu verwenden, stellen wir 

diesen Zeichen einen weiteren Rückwärtsschrägstrich voran.

>>> print("Die Zeichen \xe4, \xf6 und \xfc kann man "

          "auch\nals \"\\xe4\", \"\\xf6\" und \"\\xfc\" "

          "schreiben.")

Die Zeichen ä, ö und ü kann man auch 

als "\xe4", "\xf6" und "\xfc" schreiben.

Der Rückwärtsschrägstrich wird gelegentlich auch im Deutschen mit sei-

nem englischsprachigen Namen „Backslash“ bezeichnet.

5.21.3 Mehrzeilige Ausgabe

Umschließen wir eine Textkonstante mit jeweils drei Anführungszeichen, 

so darf der Text sich über mehrere Zeilen erstrecken und sowohl 'einzel-

ne' als auch "doppelte" Anführungszeichen enthalten.

1 Eine umfassende Liste von Unicode-Zeichen, ihrer Codepositionen und Namen findet 
sich unter anderem auf https://www.unicode.org/charts/nameslist/.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 209

https://www.unicode.org/charts/nameslist/


print("""

           SI-Maß: 1,12 m

           US-Maß: 3'8" 

""")

Innerhalb  der  Anführungszeichen  muss  (darf)  keine  Rücksicht  auf  Py-

thons Einrückungen genommen werden. Dies macht Programmabschnit-

te,  die  mehrzeilige  Zeichenkettenkonstanten  innerhalb  von  Schleifen, 

Funktionsdefinitionen  oder  Fallunterscheidungen  enthalten,  mitunter 

schwer lesbar, sodass wir abwägen sollten, ob wir hier lieber der Einfach-

heit oder besser doch der Übersichtlichkeit den Vorzug geben.

>>> print("""

             __________

            |          |

            |  Python  | 

            |    ist   |

            |  klasse! | 

            |__________| 

            (\__/)|| 

            (• •ㅅ )|| 

            / 　  づ
""")

             __________

            |          |

            |  Python  | 

            |    ist   |

            |  klasse! | 

            |__________| 

            (\__/)|| 

            (• •ㅅ )|| 

            / 　  づ

>>> http://knowyourmeme.com/memes/sign-bunny

Martin Vogel: Bauinformatik mit Python, WS 2025/26 210

http://knowyourmeme.com/memes/sign-bunny


5.21.4 Zeichenketten-Methoden

Es gibt Funktionen in Python, die wir nur auf  Zeichenketten anwenden 

können. Solche an bestimmte Objekte gebundene Funktionen nennen wir 

„Methoden“ dieser Objekte. Sie werden mit der Schreibweise Objektna-

me.Methodenname(Argumente) aufgerufen. 

Einige häufig verwendete Zeichenkettenmethoden sind im Folgenden auf-

geführt.

.count(Suchtext)

gibt an, wie oft ein Suchtext in der zu durchsuchenden Zeichenket-

te vorkommt. Die einzelnen Fundstellen dürfen sich nicht überlap-

pen.

A = "Elefantentanten"

A.count("nt")

3

.encode(Kodierung, Fehlerbehandlung)

wandelt eine Zeichenkette in eine Bytefolge um. Wenn Sie keine Ko-

dierung angeben, verwendet Python die Standardkodierung UTF-8.

A = "Der Winkel α beträgt 45°."

A.encode()

b'Der Winkel \xce\xb1 betr\xc3\xa4gt 45\xc2\xb0.'

Wenn die Zeichenkette in der gewählten Kodierung nicht darstellbar ist 

(die in Mitteleuropa unter Windows übliche Kodierung „Windows-1252“ 

kennt beispielsweise kein „α“), muss festgelegt werden, wie auf den Feh-

ler reagiert werden soll. Das Standardverfahren ist  strict, dabei bricht 

das  Programm  mit  einer  Fehlermeldung  ab.  Andere  Verfahren  sind 

ignore, replace und xmlcharrefreplace.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 211



A.encode("windows-1252", errors="ignore")

b'Der Winkel  betr\xe4gt 45\xb0.'

A.encode("windows-1252", errors="replace")

b'Der Winkel ? betr\xe4gt 45\xb0.'

A.encode("windows-1252", errors="xmlcharrefreplace")

b'Der Winkel &#945; betr\xe4gt 45\xb0.'

.endswith(Suchtext)

gibt an, ob die Zeichenkette mit dem Suchtext endet.

A = "Dateiname.csv"

A.endswith(".csv")

True

.find(Suchtext)

gibt an, an welcher Stelle ein Suchtext in der zu durchsuchenden 

Zeichenkette erstmalig vorkommt. Wird der Suchtext nicht gefun-

den, lautet der Rückgabewert -1. 

Soll  nicht die erste, sondern die letzte Fundstelle zurückgegeben 

werden, verwenden wir die Methode rfind.

A = "Elefantentanten"

A.find("nt")

5

A.find("xy")

-1

Martin Vogel: Bauinformatik mit Python, WS 2025/26 212



A.rfind("nt")

11

.isalnum()

gibt an, ob die Zeichenkette alphanumerisch ist, also nur aus Zif-

fern und Buchstaben besteht.

A = "123Test"

A.isalnum()

True

A = "123 Test"

A.isalnum()

False

.isalpha()

gibt an, ob die Zeichenkette nur aus Buchstaben besteht.

A = "Dortmund"

A.isalpha()

True

A = "Schalke04"

A.isalpha()

False

.isascii()

gibt an, ob die Zeichenkette nur aus ASCII-Zeichen besteht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 213



A = "Krefeld, Bochum, Alabama"

A.isascii()

True

A = "Münster, Αθήνα, Москва"

A.isascii()

False

.isdecimal()

gibt an, ob die Zeichenkette nur aus den Ziffern von 0–9 besteht.

A = "12345"

A.isdecimal()

True

A = "12.345"

A.isdecimal()

False

.join(iterierbares Objekt)

verwendet eine Zeichenkette, um damit die Elemente eines iterier-

baren Objekts,  beispielsweise  einer  Liste,  zu  verbinden.  Die  Ele-

mente  des  iterierbaren  Objektes  müssen ebenfalls  Zeichenketten 

sein.

A = ["Hund", "Katze", "Maus"]

", ".join(A)

'Hund, Katze, Maus'

Martin Vogel: Bauinformatik mit Python, WS 2025/26 214



.lower()

wandelt Buchstaben einer Zeichenkette in Kleinbuchstaben um.

A = "99 GRÜNE LuftBallons"

A.lower()

'99 grüne luftballons'

.replace(alt, neu)

erzeugt eine neue Zeichenkette, in der die Zeichenfolge alt gegen 

die Zeichenfolge neu ersetzt wurde.

A = "12,345 $"

A.replace("$", "€")

'12,345 €'

A.replace(",", ".")

'12.345 $'

A.replace(",", ".").replace("$", "€")

'12.345 €'

.split(Trennzeichen)

wandelt eine lange Zeichenkette in eine Liste aus kürzeren Zeichen-

ketten um, wobei die erzeugten Listenelemente in der ursprüngli-

chen Zeichenkette durch ein Trennzeichen oder eine bestimmte Zei-

chenfolge getrennt sein müssen.

A = "Hund;Katze;Maus"

A.split(";")

['Hund', 'Katze', 'Maus']

Martin Vogel: Bauinformatik mit Python, WS 2025/26 215



Wenn wir kein Trennzeichen angeben, trennt .split() die zugehö-

rige Zeichenkette  an allen Leerzeichen,  Tabulatorzeichen  \t und 

Zeilenwechseln  \n,  dem  sogenannten  „Leerraum“  oder  „White-

space“1.

.startswith(Suchtext)

gibt an, ob die Zeichenkette mit dem Suchtext anfängt.

A = "IPE-400-Stahlträger"

A.startswith("IPE-")

True

.strip(abzustreifende Zeichen)

entfernt  Zeichen am Anfang und Ende einer Zeichenkette.  Wenn 

keine Zeichenkette aus abzustreifenden Zeichen übergeben wird, 

werden standardmäßig Leerzeichen, Tabulatorzeichen und Zeilen-

umbrüche2 entfernt.

A = "/t/t# Inhalt/n"

A.strip()

'# Inhalt'

A.strip("/t/n #")

'Inhalt'

.upper()

wandelt Buchstaben einer Zeichenkette im Großbuchstaben um.

1 Streng genommen gehören auch die historischen Steuerzeichen „Wagenrücklauf“ \r 
und „Seitenvorschub“ \f zu den Whitespace-Zeichen. Seitdem Drucker nicht mehr 
wie Schreibmaschinen funktionieren, sind diese Zeichen praktisch bedeutungslos. 
Das hält Microsoft Windows allerdings auch heute noch nicht davon ab, Textzeilen 
nicht nur wie andere Betriebssysteme mit einem Zeilenwechsel abzuschließen, son-
dern es stellt diesem immer auch noch einen Wagenrücklauf voran.

2 … und alle anderen Whitespace-Zeichen …

Martin Vogel: Bauinformatik mit Python, WS 2025/26 216



A = "99 grüne Luftballons"

A.upper()

'99 GRÜNE LUFTBALLONS'

5.21.5 Formatierung mit Platzhaltern

Bei der Ausgabe von Fließkommazahlen stellen wir gelegentlich fest, dass 

15 Nachkommastellen zwar ganz schön für die Rechengenauigkeit sind, 

aber nicht unbedingt zur Lesbarkeit von numerischen Ergebnissen beitra-

gen. Zwei oder drei Nachkommastellen reichen in der Praxis meistens 

aus.

Wenn wir mehrere Werte mit einem Aufruf der print-Funktion ausgeben 

wollen, geben wir sie üblicherweise als kommagetrennte Parameterliste 

an. Dabei können wir verschiedene Typen von Variablen, Konstanten oder 

ganzen Python-Ausdrücken beliebig mischen. Jedes Komma der Parame-

terliste wird standardmäßig durch ein Leerzeichen ersetzt.

a = "Länge"

b = 11/7

print("Die", a, "beträgt", b, "Meter.")

Die Länge beträgt 1.5714285714285714 Meter.

Die oben zu sehende Zahl  hat  16 Nachkommastellen.  Wir könnten  sie 

zwar durch Aufruf der Funktion  round(Zahlenwert, Stellenzahl) auf 

die gewünschte Stellenzahl runden, aber jeden einzelnen auszugebenden 

Zahlenwert in einem Programm durch Aufruf dieser Funktion zu runden, 

wäre viel zu umständlich. Python besitzt eine viel elegantere und vielseiti-

gere Möglichkeit, Zahlenwerte mit fester Nachkommastellenzahl auszu-

geben: die Formatierung durch Platzhalter. 

Ungewöhnlicherweise gibt es hier in Python zwei verschiedene Verfah-

ren. Die ältere, zur Funktion printf in der Programmiersprache C kompa-

tible, Formatierung ist sehr einfach aufgebaut, soll aber in kommenden 

Python-Versionen nicht mehr unterstützt werden. Sie wird in einem späte-

Martin Vogel: Bauinformatik mit Python, WS 2025/26 217



ren  Kapitel  (5.21.9) nur  noch  der  Vollständigkeit  halber  beschrieben. 

Stattdessen sollten wir F-Strings einsetzen, die eine mit Python 3.6 neu 

eingeführte Verbesserung der Zeichenkettenmethode .format() darstel-

len.

5.21.6 F-Strings

F-Strings sind Zeichenkettenkonstanten, die Platzhalter für andere Kon-

stanten, Variablen oder  zusammengesetzte Python-Ausdrücke enthalten. 

Als Kennzeichnung für solche Platzhalter werden geschweifte Klammern 

verwendet. Ihren Namen haben F-Strings von dem ihnen vorangestellten 

Buchstaben „f“.

a = "Länge"

b = 11/7

print("Die", a, "beträgt", b, "Meter.")

print(f"Die {a} beträgt {b} Meter.")

Die Länge beträgt 1.5714285714285714 Meter.

Die Länge beträgt 1.5714285714285714 Meter.

Die  Rundung  der  Zahlenwerte  können  wir  einfach  dadurch  festlegen, 

dass wir innerhalb der geschweiften Klammern, hinter dem auszugeben-

den Wert, die gewünschte Stellenzahl angeben. Wollen wir beispielsweise 

die in der Variable a enthaltene Gleitkommazahl (float) mit drei Nachkom-

mastellen anzeigen, so schreiben wir {a:.3f}. Um anstelle der Nachkom-

mastellen die Zahl der signifikanten Stellen auf drei festzulegen, lassen 

wir  das  „f“  innerhalb  der  geschweiften  Klammer  fort  und  schreiben: 

{a:.3}.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 218



Wir können auch die Gesamtbreite der Zahl angeben. Das ist ganz prak-

tisch, wenn wir in einer mehrzeiligen Ausgabe alle Dezimalpunkte ordent-

lich untereinander sehen wollen.  Diese Breite tragen wir direkt hinter 

dem Doppelpunkt ein:

for i in range(7):

    a = 10**i

    b = a/7

    print(f"{a:8}/7 = {b:10.3f}")

       1/7 =      0.143

      10/7 =      1.429

     100/7 =     14.286

    1000/7 =    142.857

   10000/7 =   1428.571

  100000/7 =  14285.714

 1000000/7 = 142857.143

Der Dezimalpunkt und ein eventuell vorhandenes Vorzeichen werden da-

bei als eigenständige Zeichen mitgezählt.

Falls  wir  innerhalb  eines  f-Strings  geschweifte  Klammern  verwenden 

möchten, die nicht als Platzhalter dienen, so schreiben wir sie doppelt: {{ 

für eine öffnende und }} für eine schließende geschweifte Klammer.

Ein  besonders  für  Kontrollausgaben  sehr  brauchbares  Feature  von  f-

Strings ist die Möglichkeit, gleichzeitig Namen und Werte von Variablen 

anzeigen zu lassen. Dazu schreiben wir den Variablennamen gefolgt von 

einem Gleichheitszeichen zwischen die geschweiften Klammern. 

a, b, c = "Test", 123, 4.56

print(f"{a=}; {b=}; {c=}")

a='Test'; b=123; c=4.56

Martin Vogel: Bauinformatik mit Python, WS 2025/26 219



5.21.7 Die Methode .format()

Ganz ähnlich wie bei den F-Strings funktioniert die Formatierung durch 

die bereits vor Python 3.6 verfügbare Format-Methode von Zeichenket-

ten. Hier geben wir die Variablennamen und Werte jedoch nicht direkt an, 

sondern hängen sie in Form einer Parameterliste an. Ob das übersichtli-

cher oder umständlicher als die Formatierung durch F-Strings ist, mögen 

Sie für sich entscheiden.

a = "Länge"

b = 11/7

print(f"Die {a} beträgt {b:.2f} Meter.")

print("Die {0} beträgt {1:.2f} Meter.".format(a,b))

Die Länge beträgt 1.57 Meter.

Die Länge beträgt 1.57 Meter.

Die Positionsangaben (hier 0 und 1) dürfen weggelassen werden, wenn je-

de Variable nur einmal in die Zeichenkette eingesetzt wird und die Rei-

henfolge der Verwendung dieselbe ist wie in der Parameterliste:

print("Die {} beträgt {:.2f} Meter.".format(a,b))

Die Länge beträgt 1.57 Meter.

5.21.8 Die Formatierungs-Mini-Sprache

Die Formatierungsmöglichkeiten von F-Strings und der .format-Methode 

gehen weit  über die simple Festlegung von Nachkommastellen hinaus. 

Die Möglichkeiten sind so vielfältig, dass sie gelegentlich als „Mini-Spra-

che“ bezeichnet werden1.

1 Format Specification Mini-Language: https://docs.python.org/3/library/
string.html#format-specification-mini-language

Martin Vogel: Bauinformatik mit Python, WS 2025/26 220

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language


Einige Beispiele

Linksbündige,  rechtsbündige,  vorzeichengetrennte  und  zentrierte  Aus-

richtung mit „<“, „>“, „=“ und „^“ in einem acht Zeichen breiten Feld:

for x in [-10**(i-3) for i in range(10)]:

    print(f"{x:<8} | {x:>8} | {x:=8} | {x:^8}")

-0.001   |   -0.001 | -  0.001 |  -0.001 

-0.01    |    -0.01 | -   0.01 |  -0.01  

-0.1     |     -0.1 | -    0.1 |   -0.1  

-1       |       -1 | -      1 |    -1   

-10      |      -10 | -     10 |   -10   

-100     |     -100 | -    100 |   -100  

-1000    |    -1000 | -   1000 |  -1000  

-10000   |   -10000 | -  10000 |  -10000 

-100000  |  -100000 | - 100000 | -100000 

-1000000 | -1000000 | -1000000 | -1000000

Angabe eines Füllzeichens vor dem Ausrichtungszeichen:

for x in [-10**(i-3) for i in range(10)]:

    print(f"{x:~<8} | {x:÷>8} | {x:0=8} | {x:*^8}")

-0.001~~ | ÷÷-0.001 | -000.001 | *-0.001*

-0.01~~~ | ÷÷÷-0.01 | -0000.01 | *-0.01**

-0.1~~~~ | ÷÷÷÷-0.1 | -00000.1 | **-0.1**

-1~~~~~~ | ÷÷÷÷÷÷-1 | -0000001 | ***-1***

-10~~~~~ | ÷÷÷÷÷-10 | -0000010 | **-10***

-100~~~~ | ÷÷÷÷-100 | -0000100 | **-100**

-1000~~~ | ÷÷÷-1000 | -0001000 | *-1000**

-10000~~ | ÷÷-10000 | -0010000 | *-10000*

-100000~ | ÷-100000 | -0100000 | -100000*

-1000000 | -1000000 | -1000000 | -1000000

Vorangestellte Nullen, Vorzeichen und Leerzeichen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 221



for x in [(i-5)*10**(i-4) for i in range(10)]:

    print(f"{x: 08} | {x:-08} | {x:+08}")

-00.0005 | -00.0005 | -00.0005

-000.004 | -000.004 | -000.004

-0000.03 | -0000.03 | -0000.03

-00000.2 | -00000.2 | -00000.2

-0000001 | -0000001 | -0000001

 0000000 | 00000000 | +0000000

 0000100 | 00000100 | +0000100

 0002000 | 00002000 | +0002000

 0030000 | 00030000 | +0030000

 0400000 | 00400000 | +0400000

Tausendergruppierung mit Unterstrich, Komma oder gemäß der aktuellen 

Ländereinstellung des Betriebssystems (achten Sie in der rechten Spalte 

auf das Dezimalkomma!):

import locale

locale.setlocale(locale.LC_ALL, '')

for x in [10**(i-2) for i in range(10)]:

    print(f"{x:10} | {x:10_} | {x:10,} | {x:10n}")

      0.01 |       0.01 |       0.01 |       0,01

       0.1 |        0.1 |        0.1 |        0,1

         1 |          1 |          1 |          1

        10 |         10 |         10 |         10

       100 |        100 |        100 |        100

      1000 |      1_000 |      1,000 |      1.000

     10000 |     10_000 |     10,000 |     10.000

    100000 |    100_000 |    100,000 |    100.000

   1000000 |  1_000_000 |  1,000,000 |  1.000.000

  10000000 | 10_000_000 | 10,000,000 | 10.000.000

Martin Vogel: Bauinformatik mit Python, WS 2025/26 222



Ganze Zahlen können wir nicht nur im Dezimalsystem (Basis 10), im Bi-

närsystem (Basis 2), Oktalsystem (Basis 8) oder Hexadezimalsystem (Ba-

sis 16) ausgeben, sondern wir können auch angeben, dass für den Platz-

halter  eines  ganzzahligen  Wertes  das  dem  Wert  entsprechende 

Unicodezeichen  eingesetzt  werden  soll.  All  dies  geben  wir  mit  einem 

Buchstaben ganz am Ende des Platzhaltercodes an. Dabei steht der Buch-

stabe „b“ für eine Darstellung im Binärsystem, „o“ für eine Oktalzahl, „d“ 

(oder nichts) für eine Zahl im Dezimalsystem, „x“ für eine Hexadezimal-

zahl mit kleinen Buchstaben für die Ziffern jenseits der 9, „X“ für eine 

Hexadezimalzahl mit großen Buchstaben und „c“ für ein Unicodezeichen 

mit der entsprechenden Codeposition.

Das Gruppierungszeichen „_“ ordnet Zahlen des Binärsystems in Vierer-

gruppen an. Der Modifikator „#“ sorgt dafür, dass Hexadezimalzahlen ein 

„0x“ und Binärzahlen ein „0b“ vorangestellt wird.

for i in (65, 66, 67, 216, 8730, 8734):

    print(f"{i:5d} | {i:019_b} | {i:04x} | {i:#06x} | {i:c}")

   65 | 0000_0000_0100_0001 | 0041 | 0x0041 | A

   66 | 0000_0000_0100_0010 | 0042 | 0x0042 | B

   67 | 0000_0000_0100_0011 | 0043 | 0x0043 | C

  216 | 0000_0000_1101_1000 | 00d8 | 0x00d8 | Ø

 8730 | 0010_0010_0001_1010 | 221a | 0x221a | √

 8734 | 0010_0010_0001_1110 | 221e | 0x221e | ∞

Für  Gleitkommazahlen  gibt  es  ähnlich  umfangreiche  Darstellungsmög-

lichkeiten. Mit „e“ oder „E“ geben wir an, dass wir eine Darstellung in 

Exponentialschreibweise  wünschen.  Ein  „f“  sorgt  für  eine  feste 

Nachkommastellenzahl; ohne weitere Angabe erhalten wir sechs Nach-

kommastellen. Der Kennbuchstabe „g“ wählt je nach Zahlenwert und ge-

wünschter Stellenzahl die Dezimal- oder die Exponentialschreibweise. Mit 

„%“ sehen wir Prozentwerte, bei denen der Zahlenwert mit 100 multipli-

ziert wird und „n“ sorgt wieder für die schon bekannten nationalen Dezi-

mal- und Tausendertrennzeichen.

Feste Nachkommastellen können wir nur bei den Darstellungsarten „f“, 

„e“ und „%“ wählen. Die Zahl nach dem Punkt im Platzhalter steht bei 

den Darstellungsarten „g“ und „n“ für die Gesamtstellenzahl.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 223



import locale

locale.setlocale(locale.LC_ALL, '')

for x in [10.0**(i-3) for i in range(10)]:

    print(f"{x:10.2f} | {x:8.2e} | {x:6.5g} | {x:6.5n} | "

          f"{x:13.2%}")

      0.00 | 1.00e-03 |  0.001 |  0,001 |         0.10%

      0.01 | 1.00e-02 |   0.01 |   0,01 |         1.00%

      0.10 | 1.00e-01 |    0.1 |    0,1 |        10.00%

      1.00 | 1.00e+00 |      1 |      1 |       100.00%

     10.00 | 1.00e+01 |     10 |     10 |      1000.00%

    100.00 | 1.00e+02 |    100 |    100 |     10000.00%

   1000.00 | 1.00e+03 |   1000 |  1.000 |    100000.00%

  10000.00 | 1.00e+04 |  10000 | 10.000 |   1000000.00%

 100000.00 | 1.00e+05 |  1e+05 |  1e+05 |  10000000.00%

1000000.00 | 1.00e+06 |  1e+06 |  1e+06 | 100000000.00%

Platzhalter dürfen sogar verschachtelt werden. In unserem letzten Bei-

spiel verändern wir in einer Schleife die Nachkommastellenzahl i bei der 

Ausgabe des Zahlenwertes ⅐:

for i in range(1,7):

print(f"{1/7:.{i}f}")

0.1

0.14

0.143

0.1429

0.14286

0.142857

Martin Vogel: Bauinformatik mit Python, WS 2025/26 224



5.21.9 Die alte printf-kompatible Formatierung

In älteren Python-Quelltexten finden wir häufig eine andere Art der for-

matierten  Ausgabe.  Diese  orientiert  sich  an  der  bereits  1972  mit  der 

Sprache C vorgestellten printf-Funktion. Ihre Platzhalter bestehen im ein-

fachsten Fall aus einem Kennbuchstaben mit vorangestelltem Prozentzei-

chen. Der Kennbuchstabe zeigt an, welcher Inhaltstyp eingesetzt werden 

kann. Übliche Werte sind „i“ für ganze Zahlen (int), „f“ für Gleitkomma-

zahlen (float) und „s“ für Zeichenketten (str). 

Zwischen Prozentzeichen und Kennbuchstabe kann noch die Breite des zu 

reservierenden Textbereichs angegeben werden,  die Ausrichtung (links 

oder rechts; mit oder ohne führende Nullen) sowie bei Gleitkommazahlen 

die Anzahl der Nachkommastellen. 

Die tatsächlich anstelle der Platzhalter einzusetzenden Werte führen wir 

in einem Tupel1 auf, das von der Zeichenkette, welche die Formatangaben 

enthält, wiederum mit einem Prozentzeichen abgesetzt wird.

a = 2 / 3

b = 5 / 7

c = a + b

print("%.3f plus %.3f ergibt %.3f." % (a, b, c))

0.667 plus 0.714 ergibt 1.381.

Vergleich mit C

In der Sprache C wird die formatierte Ausgabe mithilfe der printf-Funkti-

on vorgenommen, die sich mit Python ganz leicht nachbilden lässt:

def printf(Maske,*Werte):

print(Maske%(Werte))

Aufrufen lässt diese sich beispielsweise wie folgt:

1 Ein „Tupel“ ist in Python eine Gruppe von durch Kommas getrennten Werten, die von 
runden Klammern umschlossen ist – siehe Kapitel 5.15.2 auf Seite 166.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 225



printf("%.3f plus %.3f ergibt %.3f.", a, b, c)

0.667 plus 0.714 ergibt 1.381.

Vergleich mit Java

Wer das zu einfach findet, kann sich auch eine zu Java ähnliche Ausgabe-

funktion zusammenschrauben:

class System:

    class out:

        def format(Maske, *Werte):

            print(Maske % Werte)

Ergebnis:

System.out.format("In %s ist das ähnlich.", "Java")

In Java ist das ähnlich.

Übersicht

Die folgende Tabelle zeigt einige Möglichkeiten der Formatierung mithilfe 

printf-kompatibler  Platzhalter  auf.  Die  einzusetzenden  Werte  sind  hier 

weggelassen worden, um die Darstellung übersichtlich zu halten.

Platz-
halter

Anwendung Beispiele Ergebnis

%i, %d Ganzzahlen (int)

"|%i|"
"|%4i|"
"|%-4i|"
"|%04i|"

|42|
|  42|
|42  |
|0042|

%f
Gleitkommazahlen 
(float)

"|%f|"
"|%.2f|"
"|%6.2f|"
"|%06.2f|"

|1.234568|
|1.23|
|  1.23|
|001.23|

Martin Vogel: Bauinformatik mit Python, WS 2025/26 226



Platz-
halter

Anwendung Beispiele Ergebnis

%s Zeichenkette (str)
"|%s|"
"|%6s|"
"|%-6s|"

|abc|
|   abc|
|abc   |

%x, %X
Ganzzahlen als Hexa-
dezimalzahlen

"%x"
"%X"
"#%02X%02X%02X"

c0af
C0AF
#0707FF

%a
Reduzierung auf AS-
CII-Zeichen

"%s"

"%a"

Größe

'Gr\\xf6\\xdfe'

%c
Unicode-Zeichen aus 
Ganzzahl

"%i"

"%c"

65

A

%e, %E
Exponential-
darstellung

"%e"

"%.2E"

1.234568e+08

1.23E+08

5.21.10 Kodierung und Dekodierung

Was wir gemeinhin als Zeichenketten wahrnehmen, besteht im Computer 

nur aus einer Folge von Zahlenwerten. Jedem Buchstaben wird dabei ein 

bestimmter Zahlenwert zugeordnet. Leider gibt es weltweit dutzende ver-

schiedene Arten, diese Zuordnung vorzunehmen. Python und die meisten 

modernen  Betriebssysteme  verwenden  die  zum  Unicode  kompatible 

UTF-8-Kodierung. Manchmal jedoch geraten wir an Daten, die in einer 

falschen Kodierung vorliegen. Diese müssen wir übersetzen, um sie sinn-

voll verwenden zu können. Wir verwenden dazu die Zeichenkettenmetho-

den  encode und  decode.  Die Methode  decode entschlüsselt  dabei  eine 

Bytefolge zu einer (hoffentlich) lesbaren Zeichenkette und die Methode 

encode verschlüsselt eine Zeichenkette zu einer Bytefolge.

Python zeigt  Bytefolgen als  Zeichenketten mit  vorangestelltem „b“ an. 

Bytewerte zwischen 32 und 126 werden darin als ASCII-Zeichen darge-

stellt, die Werte 9, 10 und 13 als Tabulator \t, Zeilenumbruch \n und Wa-

genrücklauf \r und alle anderen Bytewerte in einer mit \x beginnenden 

Hexadezimal-Ersatzdarstellung.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 227



>>> b = bytes([65, 66, 67, 32, 195, 182, 195, 164, 195,

               188, 32, 195, 159])

>>> b

b'ABC \xc3\xb6\xc3\xa4\xc3\xbc \xc3\x9f'

>>> b.decode("utf-8")

'ABC öäü ß'

>>> b.decode("windows-1252")

'ABC Ã¶Ã¤Ã¼ ÃŸ'

>>> "ABC Ã¶Ã¤Ã¼ ÃŸ".encode("windows-1252").decode("utf-8")

'ABC öäü ß'

Der 1963 eingeführte und 1968 erweiterte Zeichensatz des ASCII (Ameri-

can standard code for information interchange) enthält als druckbare Zei-

chen lediglich die wenigen in Abb. 84 dargestellten Zeichen.

Abb. 84: ASCII-Zeichen

Mehr dazu in Kapitel 6.2, „Zeichenkodierung – von ASCII bis Unicode“.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 228



5.21.11 Komprimierung und Verschlüsselung

In Pythons Modul „codecs“ finden wir weitere Kodierungsarten, die recht 

praktisch sind. Wenn wir beispielsweise ein großes Datenpaket speichern 

wollen, das viele sich wiederholende Abschnitte aufweist, so können wir 

dieses mit den Kompressionsverfahren „zip“ oder „bz2“ verlustfrei in sei-

ner Größe reduzieren.

Wir bauen uns zum Ausprobieren mal eine 10 Megabyte große Bytefolge, 

die immer wieder aus den aufsteigenden Zahlenwerten von 0 bis 255 be-

steht:

>>> B = bytes([i%256 for i in range(10_000_000)])

>>> len(B)

10000000

Nun laden wir das Modul „codecs“ und komprimieren die Bytefolge:

>>> from codecs import encode, decode

>>> B_zip = encode(B, "zip")

>>> B_bz2 = encode(B, "bz2")

Die Komprimierung mit dem zweiten Verfahren dauert erkennbar länger. 

Was haben wir gewonnen?

>>> len(B_zip)

39119

>>> len(B_bz2)

12489

Die  Komprimierung  mit  dem ZIP-Algorithmus  reduziert  die  Größe  um 

96 % und das BZ2-Verfahren spart sogar 99 % ein. Nicht schlecht.

Ist  wirklich  nichts  verloren  gegangen?  Wir  packen  die  komprimierten 

Bytefolgen wieder aus und vergleichen ihre Inhalte:

>>> B_unzip = decode(B_zip, "zip")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 229



>>> B_unbz2 = decode(B_bz2, "bz2")

>>> len(B_unzip)

10000000

>>> len(B_unbz2)

10000000

>>> B_unzip == B_unbz2 == B

True

… sehr schön!

Falls wir einmal etwas anderes als Bytefolgen komprimieren wollen, zum 

Beispiel eine Liste oder ein Dictionary, so müssen wir diese Objekte zu-

erst in Bytefolgen umformen. Das Modul „pickle“ besitzt dafür die beiden 

Funktionen dumps und loads.

>>> from codecs import encode, decode

>>> from pickle import dumps, loads

>>> Riesenliste = ["Test", 1, 2, 3] * 10_000_000

>>> Bytefolge = dumps(Riesenliste)

>>> len(Bytefolge)

80080015

Das sind rund 80 Megabyte. Geht das nicht ein bisschen kompakter?

>>> Komprimiert = encode(Bytefolge, "bz2")

>>> len(Komprimiert)

5491

Die  Bytefolge  wurde  gerade  auf  0,7%  ihrer  Länge  eingedampft.  Wir 

schauen wieder, ob auch diesmal nichts verloren gegangen ist:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 230



>>> ausgepackte_Liste = loads(decode(Komprimiert, "bz2"))

>>> ausgepackte_Liste == Riesenliste

True

Die Kompression um 99,3% war also tatsächlich verlustfrei.

Simple Verschlüsselung

Manchmal ist es angebracht, Informationen vor allzu einfachem Zugriff 

zu schützen. Geocaching-Fans beispielsweise verschleiern Hinweise auf 

Rätsellösungen gern mit dem Rot-13-Verfahren. Dabei wird jeder Buch-

stabe von „A“ bis „Z“ sowie jeder Buchstabe von „a“ bis „z“ durch sein 13 

Stellen im Alphabet versetzt liegendes Gegenstück ersetzt. Alle anderen 

Zeichen  bleiben  unverändert.  Wenden  wir  diese  „Verschlüsselung“  ein 

zweites Mal an, gelangen wir wieder zum Originaltext. Kodierung und De-

kodierung bewirken also in diesem Fall dasselbe.

>>> encode("Das soll nicht jeder lesen können.", "rot13")

'Qnf fbyy avpug wrqre yrfra xöaara.'

>>> encode("Qnf fbyy avpug wrqre yrfra xöaara.", "rot13")

'Das soll nicht jeder lesen können.'

>>> decode("Qnf fbyy avpug wrqre yrfra xöaara.", "rot13")

'Das soll nicht jeder lesen können.'

5.21.12 Sonderformen von Zeichenketten

B-Strings

Standardmäßig sind Zeichenketten in Python 3 Sequenzen aus Unicode-

Zeichen in der Kodierung UTF-8. Gelegentlich ist es jedoch sinnvoll, die 

Bytes einer Zeichenkette ohne textuelle Interpretation zu verarbeiten. In 

Python 3 kennzeichnen wir solche undekodierten Byteketten mit einem 

vorangestellten „b“. In ihnen sind alle 256 möglichen Bytewerte erlaubt, 

unabhängig davon, ob sie als Zeichen dargestellt  werden können oder 

nicht.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 231



S = "Grünanlage\tAntonín Dvořák\nFläche: 2500 m²"

print(S)

Grünanlage Antonín Dvořák

Fläche: 2500 m²

S.encode("utf-8")

b'Gr\xc3\xbcnanlage\tAnton\xc3\xadn 

Dvo\xc5\x99\xc3\xa1k\nFl\xc3\xa4che: 2500 m\xc2\xb2'

Die Zeichenkombination „\x“ zeigt dabei an, dass die folgenden zwei Zei-

chen den Hexadezimalcode des Bytes bilden, das sich an dieser Stelle des 

B-Strings befindet.  „\xc3\xbc“  steht  also für  die  Hexadezimalzahlen c3 

und bc (dezimal 195 und 188), dem UTF-8-Code für das Zeichen „ü“.

B-Strings verwenden wir auch, wenn wir reine Binärdaten verarbeiten, al-

so Daten, die nicht in einem menschenlesbaren Textformat vorliegen, wie 

beispielsweise Bilder, Audiodateien, ZIP-Archive oder Videos.

U-Strings

In Python 2 war die im vorigen Kapitel beschriebene Zuordnung umge-

dreht. Zeichenketten waren standardmäßig Bytefolgen und Unicode-Zei-

chenketten musste ein „u“ vorangestellt  werden. Falls Sie in alten Bü-

chern oder in den  Tiefen des Internets Codeschnipsel finden, in denen 

solche U-Strings vorkommen, handelt es sich um historischen Python-2-

Code. 

In Python 3 wird ein vorangestelltes „u“ ignoriert.

"Bötchen" == u"Bötchen"

True

Martin Vogel: Bauinformatik mit Python, WS 2025/26 232



R-Strings

In  „rohen“  R-Zeichenketten  findet  keine  Zeichenersetzung  durch  den 

Rückwärtsschrägstrich „\“ statt. Der Rückwärtsschrägstrich und das auf 

ihn folgende Zeichen werden wie zwei gewöhnliche Zeichen behandelt.

S = "Grünanlage\tAntonín Dvořák\nFläche: 2500m²"

R = r"Grünanlage\tAntonín Dvořák\nFläche: 2500m²"

print(S)

Grünanlage Antonín Dvořák

Fläche: 2500m²

print(R)

Grünanlage\tAntonín Dvořák\nFläche: 2500m²

Es gibt bei der Verwendung von R-Strings eine Einschränkung: Da der 

Rückwärtsschrägstrich und das auf ihn folgende Zeichen als gewöhnliche 

Zeichen übernommen werden, darf ein R-String niemals mit einem Rück-

wärtsschrägstrich enden, da dieser ihm sein schließendes Anführungszei-

chen „klaut“.

R-Strings  sind  besonders  bei  der  Textmusterbeschreibung  durch  die 

mächtigen  Regulären  Ausdrücke  hilfreich,  in  denen  häufig Rückwärts-

schrägstriche vorkommen. 

Reguläre Ausdrücke werden aufgrund der ihnen innewohnenden Komple-

xität in diesem Kurs nicht behandelt.

F-Strings

F-Strings wurden mit Python 3.6 eingeführt und erlauben eine besonders 

einfache Ausgabe formatierter Zahlenwerte. Sie werden in Kapitel 5.21.6 

ausführlich behandelt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 233



5.22 Dateien lesen und schreiben

5.22.1 Textdateien lesen

Textdateien sind Dateien, deren Inhalt vorzugsweise aus ASCII-Zeichen 

oder UTF-8-kodierten Unicodezeichen besteht. 

Das Öffnen einer Datei mit der Funktion open erzeugt ein iterierbares Ob-

jekt, das Dateihandle.

Der Funktion open muss immer eine Zeichenkette übergeben werden, in 

der sich der Name der zu öffnenden Datei befindet. Python sucht dann in 

demselben Verzeichnis nach der Datei, in dem sich auch das gerade aus-

geführte Programm befindet. Wenn wir dem Dateinamen einen Verzeich-

nisnamen voranstellen, dann sucht unser Pythonprogramm die Datei in 

dem entsprechenden  Unterverzeichnis  seines  Programmverzeichnisses. 

Dieser Verzeichnisname wird auch in Windows mit einem gewöhnlichen 

Schrägstrich vom Dateinamen abgesetzt. Siehe auch Kapitel 2.3.

Nach dem Lesen einer Datei sollte diese wieder geschlossen werden. Das 

geschieht  entweder  explizit  durch  Aufruf  der  Dateihandle-Methode 

.close() oder  implizit,  indem wir  über  das  Schlüsselwort  with einen 

Kontextblock einrichten, dessen Verlassen die Datei automatisch schließt.

# Dateizugriff mit explizitem Schließen

datei = open("Test.txt", "r")

print(datei.read())

datei.close()

# Dateizugriff mit implizitem Schließen

with open("Test.txt", "r") as datei:

    print(datei.read())

Martin Vogel: Bauinformatik mit Python, WS 2025/26 234



Python kennt vier grundlegende Arten, eine Textdatei zu lesen:

Python-Code Resultat

for zeile in datei:
Liest Zeile für Zeile bis zum Dateiende 

nacheinander in die Variable zeile ein.

zeile = datei.readline()
Liest genau eine Zeile aus der Datei in 

eine Zeichenkette.

zeilen = datei.readlines()
Liest alle Zeilen einer Datei in eine Liste 

aus Zeichenketten.

alles = datei.read()
Liest die gesamte Datei in eine einzige 

Zeichenkette.

Beim zeilenweisen Lesen einer Datei werden die Zeilen einschließlich des 

Zeilenendezeichens  \n gelesen.  Unter  Umständen  befinden  sich  auch 

noch Leerzeichen und Tabulatoren am Zeilenende. Der Methodenaufruf 

.rstrip() entfernt die meistens unerwünschten Leer- und Steuerzeichen 

vom Zeilenende.

with open("Liste.txt", "r") as meine_Datei:

    for zeile in meine_Datei:

        print(zeile.rstrip())

Gelegentlich haben wir Dateien zu verarbeiten, die in den ersten Zeilen 

Kommentare oder andere für uns unwichtige  Texte enthalten und deren 

eigentliche Daten erst danach beginnen. Diese Zeilen können wir einfach 

mit der Funktion next überspringen.

with open("Liste.txt") as meine_Datei:

    # vier unwichtige Zeilen überspringen

    for n in range(4):

        next(meine_Datei)

    # den ganzen Rest der Datei einlesen

    for zeile in meine_Datei:

        print(zeile.rstrip())

Martin Vogel: Bauinformatik mit Python, WS 2025/26 235



Textdateien, die nicht in der Standardzeichenkodierung des Betriebssys-

tems vorliegen, müssen beim Lesen umkodiert werden, damit Umlaute 

und Sonderzeichen korrekt dargestellt werden. 

Üblicherweise verwenden heutige Betriebssysteme die Zeichenkodierung 

UTF-8. Unter Microsoft Windows treten jedoch trotz der Empfehlung Mi-

crosofts1, UTF-8 zu verwenden, immer wieder die veralteten  Einzelbyte-

Kodierungen auf. Hier muss die Zeichenkodierung grundsätzlich immer 

angegeben werden, um kompatibel zum Rest der Welt zu sein.

with open("Liste.txt", "r", encoding="utf-8") as meine_Datei:

    for zeile in meine_Datei:

        print(zeile.rstrip())

Falls das Lesen der Textdatei trotz dieser Angabe mit einer Fehlermel-

dung vom Typ UnicodeDecodeError abbricht, so liegt die Datei nicht im 

UTF-8-Format vor. Probieren Sie in dem Fall der Reihe nach einige der 

vielen weltweit immer noch  verwendeten Zeichenkodierungen des vori-

gen  Jahrhunderts  aus:  "windows-1252",  "windows-1251",  "windows-

-1254", "iso-8859-15", "iso-8859-1", "cp850" oder "cp437". Achten Sie be-

sonders auf Umlaute und andere nicht-ASCII-Sonderzeichen.

Irreführenderweise heißt die auf einem beliebigen Windows-PC  gerade 

eingestellte Zeichenkodierung dort immer „ANSI“. Bitte vermeiden Sie 

diese sinnleere Kodierungsbezeichnung, da sie keiner eindeutigen Kodie-

rung entspricht und Python-Programme, die diese Kodierungsangabe ver-

wenden, nicht auf macOS oder Linux lauffähig sind.

Wenn alle Versuche scheitern, die richtige Kodierung zu finden, ist die 

Datei möglicherweise gar keine Textdatei, sondern eine Binärdatei (Kapi-

tel 5.22.4). 

Wir können Python zwar anweisen, Kodierungsfehler zu ignorieren und 

trotz fehlerhafter Kodierung zu versuchen, die Datei zu lesen, wir sollten 

uns dann aber bewusst sein, dass uns damit Informationen aus der Datei 

verloren gehen. 

1 Microsoft: Code Page Identifiers, https://docs.microsoft.com/en-us/windows/win32/
intl/code-page-identifiers.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 236

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers
https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


open("Defekte_Datei.txt", errors="ignore")

5.22.2 Textdateien schreiben

Um eine zum Schreiben geöffnete Textdatei zeilenweise zu beschreiben, 

können wir der Print-Funktion das Handle der geöffneten Datei mit dem 

Parameter file übergeben.

with open("Liste.txt", "w", encoding="utf-8") as meine_Datei:

    print("Hallo Datei!", file=meine_Datei)

Jede zum Schreiben geöffnete Datei verfügt aber auch über eine Methode 

write. Diese schreibt genau eine Zeichenkette ohne darauf folgendes Zei-

lenwechselzeichen in eine Datei.

with open("Liste.txt", "w", encoding="utf-8") as meine_Datei:

    meine_Datei.write("Hallo Datei!")

Das Schreiben von Dateien ist eine der wenigen Gelegenheiten, mithilfe 

von Python Schaden auf Ihrem Rechner anzurichten. Beachten Sie die 

Warnung:

Vorsicht!

Das Öffnen einer existierenden Datei zum Schreiben vernichtet 

auf der Stelle sämtliche zuvor in der Datei vorhandenen Inhalte.

Es gibt keine Rückgängig-Funktion!

5.22.3 Textdateien fortsetzen

Wenn  wir  Zeichenketten  an  bereits  vorhandene  Textdateien  anhängen 

wollen, so öffnen wir diese nicht im Modus „w“ (wie „write“), sondern im 

Modus „a“ (wie „append“).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 237



with open("Liste.txt", "a", encoding="utf-8") as meine_Datei:

    meine_Datei.write("Dies wird an die Datei angehängt.")

5.22.4 Binärdateien

Als Binärdateien bezeichnen wir alle Dateien, deren Inhalt etwas anderes 

als lesbarer Text ist. Das können beispielsweise Bilddateien, Videos, ZIP-

Archive,  „Worddateien“  (also  Textverarbeitungsdateien)  oder  Tonauf-

zeichnungen sein. Auch komplette Python-Objekte wie Listen oder Dictio-

narys können wir in Binärdateien speichern.

Binärdateien können wie Textdateien mit dem Methoden read und write 

gelesen und beschrieben werden. Beim Öffnen der Dateien müssen wir le-

diglich den Modus („r“, „w“ oder „a“) noch um den Buchstaben „b“ ergän-

zen,  um Python mitzuteilen,  dass  die  Inhalte  keiner  Zeichenkodierung 

entsprechen und aus der Datei daher „nackte“ Bytefolgen gelesen und in 

sie geschrieben werden.

5.22.5 Pickle

Um Python-Objekte als Ganzes in Dateien zu schreiben oder aus ihnen zu 

lesen, verwenden wir das Modul pickle1. Dieses enthält die beiden Funk-

tionen dump und load, mit denen komplette Python-Objekte in Binärdatei-

en geschrieben und aus ihnen gelesen werden können.

import pickle

meineListe = [1, 2, 3, "Test"]

with open("Datei.dat","wb") as datei:

    pickle.dump(meineListe, datei)

1 Wenn Python eine deutschsprachige Entwicklung wäre, hieße diese Funktion jetzt 
möglicherweise „einmachen“. Das gedankliche Bild, ein Objekt durch „Einmachen“ 
haltbar aufbewahren zu können, ist jedenfalls recht anschaulich. Es gibt sogar ein 
weiteres Python-Modul, das dieses Bild noch weiter strapaziert und den Einmachglä-
sern ein Regal spendiert. Es heißt … shelve. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 238



with open("Datei.dat","rb") as datei:

    neueListe = pickle.load(datei)

>>> neueListe

[1, 2, 3, 'Test']

Das Lesen und Schreiben durch Pickle  ist  extrem schnell  und die Ge-

schwindigkeit wird in der Regel nur durch die Festplattenhardware be-

schränkt.

Standardmäßig kann die Funktion  dump Objekte bis zu einer Größe von 

rund 4,3 Gigabyte  in  eine Datei  schreiben.  Wenn größere Objekte ge-

schrieben  werden  sollen,  ist  der  Parameter  protocol auf  den  Wert  4 

(oder einen negativen Wert) zu setzen.

Protokoll-

version
Besonderheit

0

Das Format der ersten Python-Versionen.

Die von  dump geschriebene Datei ist hier noch eine men-

schenlesbare Textdatei.

1, 2 Binärformate der alten Python-2-Versionen.

3
Standard-Binärformat seit Python 3.

Unterstützt Objekte bis 4 GiB (232 Byte) Größe.

4

Verbessertes Format seit Python 3.4.

Erlaubt  schnellere  Zugriffe  und  sehr  große  Objekte 

(264 Byte).

Das folgende Programm erzeugt ein 5 Gigabyte großes Objekt, schreibt 

es in eine Datei und liest diese Datei wieder ein. Dazwischen merkt es 

sich die jeweils aktuelle Systemzeit in den Variablen  t0,  t1 und  t2. Die 

Differenzen zwischen den gemessenen Zeiten zeigen, wie lang die Aus-

führung der einzelnen Befehle dauerte.

from pickle import load, dump

from time import time

dickesding = b"x" * 5_000_000_000

Martin Vogel: Bauinformatik mit Python, WS 2025/26 239



print("Geschwindigkeitstest mit", len(dickesding), "Bytes")

t0 = time()

with open("Speedtest.dat", "wb") as datei:

    dump(dickesding, datei, protocol=4)

t1 = time()

with open("Speedtest.dat", "rb") as datei:

    dickesding = load(datei)

t2 = time()

print(f"{t1-t0:7.3f} Sekunden, um zu schreiben")

print(f"{t2-t1:7.3f} Sekunden, um wieder zu lesen")

Das Ergebnis lässt erstaunliche Festplattengeschwindigkeiten vermuten.

Geschwindigkeitstest mit 5000000000 Bytes

 13.794 Sekunden, um zu schreiben

  4.340 Sekunden, um wieder zu lesen

Der Trick des Betriebssystems (hier: Linux) besteht darin, das Schreiben 

schon für vollzogen zu erklären, wenn es tatsächlich erst alle zu sichern-

den Daten von unserem Programm entgegengenommen hat und eigent-

lich noch fleißig dabei ist, diese im Hintergrund zur Festplatte zu schi-

cken.  Auch  beim  Lesen  wird  es  nicht  den  tatsächlichen  Inhalt  der 

Festplatte  ausgeben,  solange  es  noch  „gecachte“  Daten  der  letzten 

Schreib- oder Lesezugriffe im RAM weiß. Bei Rechnern mit wenig RAM 

dauern Dateizugriffe daher oft viel länger als auf Rechnern mit ausrei-

chend großem Speicher, der sich vom Betriebssystem als Festplattenca-

che nutzen lässt.

5.22.6 Das aktuelle Arbeitsverzeichnis

In den vorangegangenen Beispielen  haben wir beim Öffnen der Dateien 

lediglich  einen  Dateinamen  ohne  Angabe  eines  Laufwerksbuchstabens 

oder Verzeichnisnamens verwendet. Python sucht die zu lesenden Dateien 

dann in demselben Verzeichnis, in dem sich auch das gerade ausgeführte 

Programm befindet und legt neue Dateien in ebendiesem Verzeichnis an.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 240



Nachdem in IDLE ein Python-Programm ausgeführt wurde, entspricht das 

Arbeitsverzeichnis der IDLE-Shell ebenfalls dem Verzeichnis, in dem die-

ses Programm zuvor gespeichert wurde.

Wenn Sie Dateibefehle nicht aus einem Programm heraus aufrufen, son-

dern direkt in die IDLE-Shell  eintippen, so ist  das aktuelle Arbeitsver-

zeichnis je nach Betriebssystem oder Installation unterschiedlich. Unter 

Linux wird in der Regel das Home-Verzeichnis des aktuell angemeldeten 

Useraccounts als Arbeitsverzeichnis verwendet, unter Windows dagegen 

oft  ein  Unterverzeichnis  von  „C:\PROGRAM  FILES\“  oder  „C:\WIND-

OWS\SYSTEM32\“, für das Sie vermutlich keine Schreibrechte besitzen 

und darauf mit der Fehlermeldung „PermissionError“ hingewiesen wer-

den (Abb. 85).

Abb. 85: Schreibrechte unter Windows

Um das aktuelle Arbeitsverzeichnis der IDLE-Shell herauszufinden, kön-

nen Sie dort folgende zwei Zeilen eingeben:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 241



import os

os.getcwd()

Mithilfe der Funktion os.chdir lässt sich das aktuelle Arbeitsverzeichnis 

auch wechseln.  Unabhängig vom Betriebssystem verwendet Python als 

Trennzeichen  zwischen  Verzeichnisnamen  den  gewöhnlichen  Schräg-

strich „/“. Falls Sie den windowstypischen Rückwärtsschrägstrich bevor-

zugen, müssen Sie ihn jeweils doppelt schreiben: „\\“.

Mit dem Befehl

os.chdir("/home/meinname/Desktop")

wechseln Sie beispielsweise unter Linux auf den Desktop der Anwenderin 

oder des Anwenders „meinname“ und 

os.chdir("C:\\USERS\\meinname\\DESKTOP")

macht dasselbe unter Microsoft Windows.

Um unabhängig vom Betriebssystem den Desktop zum aktuellen Arbeits-

verzeichnis zu erklären, können Sie folgende Konstruktion verwenden:

os.chdir(os.path.expanduser("~/Desktop"))

Martin Vogel: Bauinformatik mit Python, WS 2025/26 242



5.23 Diagramme mit Matplotlib

Mit der Bibliothek  matplotlib können wir  auf  einfache Weise anspre-

chende Diagramme erzeugen.

Matplotlib1 gehört nicht zum Standardumfang von Python, kann jedoch 

schnell mit dem Konsolenbefehl „pip3 install matplotlib“ nachinstal-

liert werden. Tipps zur Installation finden Sie in Kapitel 5.1.1.

5.23.1 Ein schnelles x-y-Diagramm

Im einfachsten Fall brauchen wir nur ein paar x- und y-Werte in einer Lis-

te, um ein Diagramm zu erzeugen:

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]

y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y)

plt.show()

Ohne weiteren Aufwand entsteht so schon ein ansehnliches Diagramm 

(Abb. 86).

Dass das Modul matplotlib.pyplot beim Import traditionell in plt um-

benannt wird, hat den einfachen Grund, dass plt schneller zu tippen und 

zu lesen ist. 

1 Der Name steht für „matrix plot library“ und wird deshalb nicht mit „th“ geschrieben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 243



Abb. 86: Eines der einfachsten Matplotlib-Diagramme

Am unteren Rand des Matplotlib-Fenster sehen wir sieben Icons.

Mit dem Diskettensymbol ganz rechts in der Icon-Leiste kann 

die aktuelle Ansicht in verschiedenen Grafikformaten, zum Bei-

spiel PDF, PNG oder SVG gespeichert werden, um beispielswei-

se in Textverarbeitungsdateien eingebunden zu werden.

Das Schiebereglersymbol erlaubt es, die Ränder und, bei meh-

reren Diagrammen pro Fenster, die Abstände zwischen den Dia-

grammen nachträglich zu verändern. Die Angaben sind relativ 

zur aktuellen Fensterhöhe  und -breite.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 244



Nach Anklicken des Lupensymbols können wir mit der linken 

Maustaste ein Rechteck in der Diagrammfläche aufziehen, wel-

ches anschließend den enthaltenen Ausschnitt auf die gesamte 

Diagrammfläche vergrößert (Zoom-Funktion). 

Ziehen wir das Rechteck dagegen mit der rechten Maustaste auf, so wird 

die gesamte sichtbare Diagrammfläche auf das Rechteck verkleinert.

Durch Festhalten der Tasten x  und y  wird das Rechteck auf die gesam-

te Höhe oder Breite der Diagrammfläche erweitert, sodass sich die Grö-

ßenänderung nur auf die ausgewählte Achse auswirkt.

Nach Anklicken des Pfeilkreuz-Icons können wir das Diagramm 

mit  der  linken Maustaste  innerhalb  der  Diagrammfläche ver-

schieben (Pan-Funktion). 

Mit der rechten Maustaste können wir die Größe des Diagramms frei in x- 

und y-Richtung verändern. Der beim Klicken unter dem Mauszeiger be-

findliche Punkt des Diagramms wird zum Fixpunkt, um den herum die 

Größenänderung stattfindet.  Durch Festhalten der Taste  Strg  fixieren 

wir das Seitenverhältnis, um die Grafik nicht zu verzerren.

Jede Zoom- oder Verschiebeaktion erzeugt eine neue 

Ansicht. Mit dem Pfeil-Icons können wir zwischen den 

verschiedenen Ansichten vor- und zurückblättern.

Ein Klick auf das Häuschen setzt das Diagramm wieder auf sei-

ne Anfangsdarstellung zurück.

Zusätzliche Funktionen können wir über die Tastatur aufrufen.

Taste Funktion

F Schaltet die Vollbilddarstellung ein/aus.

G
Schaltet die Gitterdarstellung zwischen vertikalen, horizonta-
len, allen und keinen Gitterlinien um.

K Wechselt zwischen logarithmischen und linearen x-Werten.

L Wechselt zwischen logarithmischen und linearen y-Werten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 245



Taste Funktion

O Ruft die Zoom-Funktion auf.

P Ruft die Pan-Funktion auf.

Q Schließt das Diagramm.

S Speichert das Diagramm als Datei.

←  →
Wechselt zwischen den bisher erfolgten Zoom- und Pan-Dar-
stellungen

5.23.2 Ein schönes x-y-Diagramm

Die Möglichkeit, das Aussehen von Diagrammen wiederholbar zu beein-

flussen, hilft uns, wenn wir Texte mit zahlreichen Diagrammen, wie zum 

Beispiel Forschungsberichte, Gutachten oder Bachelorarbeiten verfassen. 

In einer Tabellenkalkulationen kann man zwar auch nach einigem Herum-

probieren das eine oder andere hübsche Diagramm erzeugen, diese Ar-

beit  dann  jedoch  dutzende  oder  hunderte  Male  exakt  wiederholen  zu 

müssen, ist menschenunwürdig.

In einem Pythonprogramm definieren wir dagegen einmalig das Aussehen 

eines Matplotlib-Diagramms und können anschließend in einer Schleife 

hunderte Diagramme derselben Größe und Gestalt als Grafikdatei auf die 

Festplatte schreiben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 246



Abb. 87: Verbessertes Matplotlib-Diagramm

Wir werfen einen Blick  in  das erzeugende Programm zu  Abb.  87.  Zu-

nächst werden die Listen mit den darzustellenden Daten gefüllt. Im Bei-

spiel sind das feste Werte. Tatsächlich würde unser Programm die Werte 

zuvor berechnen.

Da wir zwei Graphen darstellen wollen, benötigen wir neben der Liste mit 

den x-Werten zwei Listen mit y-Werten:

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]

y1 = [0, 1, 4, 9, 16, 25]

y2 = [1, 2, 5, 10, 17, 26]

Martin Vogel: Bauinformatik mit Python, WS 2025/26 247



Die Werte aus der Liste y1 sollen mit einer blauen Linie, die 2 Einheiten 

breit und durchgezogen ist, gezeichnet werden. Der Linie wird der Le-

gendentext „y = x²“ zugeordnet:

plt.plot(x, y1, 

         color="blue", linewidth=2, linestyle="-", 

         label="y = x²")

Die  Einheit  für  die  Linienbreiten  in  Matplotlib ist  der  typographische 

Punkt, dieser entspricht 1/72 Zoll oder rund 0,35 mm. Auf alten Röhren-

monitoren entspricht das ziemlich genau einem Bildschirmpixel.

Für die Werte aus der Liste y2 wählen wir eine rote Linie, die 2 Einheiten 

breit  und strichpunktiert ist.  Dieser Linie wird der Legendentext „y = 

x²+1“ zugeordnet:

plt.plot(x, y2, 

         color="red", linewidth=2, linestyle="dashdot",

         label="y = x²+1")

Eine Liste von englischsprachigen Farbnamen finden Sie im Anhang die-

ses Skripts in Kapitel 7.2. Anstelle der Farbnamen können Sie für den Pa-

rameter color auch den RGB-Code der jeweiligen Farbwerte verwenden, 

also beispielsweise  "#0000FF" anstelle von  "blue" oder  "#F5F5DC" an-

stelle von "beige".

Die verfügbaren Linienstile für den Parameter  linestyle sind  "solid" 

oder "-" für durchgezogene Linien, "dashed" oder "--" für gestrichelte 

Linien,  "dotted" oder  ":" für  gepunktete  Linien und  "dashdot" oder 

"-." für strichpunktierte Linien.

In der Diagrammfläche soll ein hellgraues Raster angezeigt werden:

plt.grid(color="lightgrey")

Die Legende mit den beiden zuvor festgelegten Legendentexten (label) 

soll an einer passenden Stelle angezeigt werden:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 248



plt.legend()

Oberhalb des Diagramms soll eine Überschrift angezeigt werden. Auch 

die beiden Achsen erhalten passende Bezeichnungen:

plt.title("Diagrammtitel")

plt.ylabel("y-Achsen-Bezeichnung")

plt.xlabel("x-Achsen-Bezeichnung")

Wer unbedingt möchte, kann auch dem Bildschirmfenster des Diagramms 

einen neuen Fenstertitel geben:

plt.gcf().canvas.set_window_title("Fenstertitel")

Nachdem wir alle gewünschten Einstellungen am Diagramm vorgenom-

men haben, schreiben wir es in eine Grafikdatei im besonders vorteilhaf-

ten SVG-Format:

plt.savefig("Diagramm.svg")

Zum Schluss stellen wir das fertige Diagramm auf dem Bildschirm dar:

plt.show()

Wenn wir in einem Programm nacheinander mehrere Diagrammdateien 

durch  savefig anlegen, so kann es störend sein, danach jedes Mal das 

durch  plt.show() erzeugte  Bildschirmfenster  zu  schließen,  damit  das 

Programm weiterläuft. Manche Programme erzeugen hunderte von Grafi-

ken. Wenn wir den Aufruf aber einfach fortlassen, wird der Zeichenbe-

reich nicht zurückgesetzt und alle folgenden Diagramme werden eben-

falls  in  die  bestehende  Zeichenfläche  hineingezeichnet.  Wenn  wir 

plt.show() jedoch einfach durch  plt.close() ersetzen, so setzt dieses 

nach dem Exportieren die Grafik zurück, ohne dazu das Programm anzu-

halten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 249



5.23.3 Streudiagramme

Streudiagramme (Scatterplots) stellen die x-y-Koordinaten zweier überge-

bener Listen als einzelne Punkte dar. 

Einfache Streudiagramme können wir mit der uns schon bekannten Funk-

tion plt.plot umsetzen, indem wir dieser die beiden zusätzlichen Para-

meter marker und markersize übergeben. 

Dem Parameter marker weisen wir eines der folgenden Zeichen zur Mar-

kierung der Datenpunkte zu:  "o" für Kreise,  "v",  "^",  "<" und  ">" für 

Dreiecke mit einer Ecke nach unten, oben, links und rechts, "8" für Acht-

ecke, "s" für Quadrate, "p" für Fünfecke, "*" für Sterne, "h" und "H" für 

auf einer Spitze oder einer Seite stehende Sechsecke,  "D" und  "d" für 

breite oder schmale Rauten, "P" für Pluszeichen und "X" für Kreuzchen.

Die Einheit für die Größenangabe markersize ist wie oben bei linewidth 

der typographische Punkt. 28 typographische Punkte entsprechen rund 

einem Zentimeter.

Wenn wir keine Linien zwischen den Markern zeichnen möchten, setzen 

wir den Parameter linestyle auf eine leere Zeichenkette.

import matplotlib.pyplot as plt

x = [0, 0, 1, 2, 2]

y = [0, 2, 4, 2, 0]

plt.plot(x, y, marker="o", markersize=28, linestyle="")

plt.grid()

plt.show()

Der damit erzeugte Scatterplot sollte so aussehen wie in Abb. 88 gezeigt.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 250



Abb. 88: Plot mit Markern

Noch leistungsfähiger ist die speziell für Streudiagramme gedachte Funk-

tion plt.scatter, denn bei dieser müssen wir die Punktgröße und Punkt-

farbe nicht für alle Punkte einheitlich vorgeben, sondern können sie für 

jeden einzelnen Punkt mithilfe einer weiteren Liste festlegen.

import matplotlib.pyplot as plt

x = [0, 0, 1, 2, 2]

y = [0, 2, 4, 2, 0]

fläche = [4000, 3000, 2000, 5000, 6500]

farbe = ["red", "green", "blue", "brown", "magenta"]

plt.scatter(x, y, s=fläche, c=farbe)

plt.grid()

plt.show()

Das Maß für die Punktgröße in  Abb. 89 ist hier nicht der Durchmesser 

der Marker, sondern die von  ihnen ausgefüllte Fläche in Vielfachen von 

0,1244 mm² bzw. 1/5184 Quadratzoll, weshalb die Zahlenwerte in der Lis-

te fläche ungewöhnlich groß erscheinen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 251



Abb. 89: Scatterplot mit Flächen- und Farblisten

5.23.4 Text

Mit plt.text(x, y, s) positionieren wir einen einzelnen Text s auf der 

Diagrammfläche am Einfügepunkt (x,y). Standardmäßig bezeichnen x und 

y die Koordinaten der unteren linken Ecke des darzustellenden Textes.

Mithilfe zahlreicher Parameter können wir die Formatierung des Textes 

beeinflussen. Nach dem Matplotlib-Import erhalten wir die komplette Lis-

te durch den Funktionsaufruf help(plt.text)1. Hier eine kleine Auswahl:

rotate=w dreht den Text im Gegenuhrzeigersinn im Winkel w [Grad] um 

den Einfügepunkt.

color=f oder c=f weist dem Text die Farbe f zu.

size=g weist dem Text eine relative Größenangabe zu. Erlaubt sind für g 

die Werte "small", "medium" und "large", wobei small und large noch 

die Verstärker x- und xx- vorangestellt werden können.

1 Ausführlich erklärt werden die Einstellungen auf https://matplotlib.org/stable/api/
_as_gen/matplotlib.pyplot.text.html

Martin Vogel: Bauinformatik mit Python, WS 2025/26 252

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html


ha=crl und va=tbcb legen die horizontale und vertikale Ausrichtung rela-

tiv zum Einfügepunkt fest. Für  ha sind die Werte  "left",  "right" und 

"center" erlaubt  und  va können  wir  die  Werte  "top",  "bottom", 

"center" und "baseline" zuweisen. Der Wert "bottom" bezieht sich da-

bei  auf  die  Unterkante  des  Textes  einschließlich  Unterlängen  und 

"baseline" auf die Grundlinie des Textes, also in der Regel die Unterkan-

te der Großbuchstaben.

Abb. 90: Textausrichtung mit Matplotlib

5.23.5 gefüllte Flächen

Ausgefüllte  Flächen  erzeugen  wir  durch  plt.fill,  indem  wir  dieser 

Funktion Listen umlaufender Randpunktkoordinaten übergeben, welche 

die auszufüllende Fläche aufspannen (Abb. 91). 

import matplotlib.pyplot as plt

x = [0, 0, 1, 2, 2]

y = [0, 2, 4, 2, 0]

plt.fill(x, y, color="firebrick")

plt.grid()

plt.show()

Martin Vogel: Bauinformatik mit Python, WS 2025/26 253



Abb. 91: Flächenfüllung mit plt.fill(…)

5.23.6 Zeichenreihenfolge

Alle  Grafikelemente  in  Matplotlib  werden  nach  einem  festen  Schema 

übereinander angeordnet.  Wenn wir die dadurch festgelegte Zeichenrei-

henfolge ändern wollen, müssen wir den Wert des Parameters zorder der 

erzeugten Grafikobjekte ändern. Je höher dieser Wert ist,  desto weiter 

oben (oder vorne) werden die Elemente angeordnet.

Standardmäßig besteht folgende Ordnung: Ganz oben, über allen ande-

ren Elementen, werden Legenden angeordnet (zorder=5), darunter Text 

(zorder=3),  gefolgt  von  Linienelementen  (zorder=2)  und  Flächen 

(zorder=1).  Zuunterst  finden  wir  schließlich  eingebundene  Bilder 

(zorder=0).

import matplotlib.pyplot as plt

x = [0, 0, 1, 2, 2]

y = [0, 2, 4, 2, 0]

plt.grid()

plt.plot(x, y, marker="o", markersize=28, linestyle=" ")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 254



plt.plot(x, y, color="black", linewidth=5)

plt.fill(x, y, color="firebrick")

plt.show()

Abb. 92: Unbeeinflusste Anzeigereihenfolge

In dem Codebeispiel oben ist es ziemlich egal, in welcher Reihenfolge die 

Zeichenfunktionen aufgerufen werden, das Ergebnis sieht immer aus wie 

in Abb. 92. 

Um die rote Fläche über das Gitter zu heben, die schwarze Umrandung 

darüber zu zeichnen und die blauen Marker ganz nach oben zu legen, er-

gänzen wir das Programm um mehrere  zorder-Parameter und erhalten 

die Grafik in Abb. 93.

import matplotlib.pyplot as plt

x = [0, 0, 1, 2, 2]

y = [0, 2, 4, 2, 0]

plt.grid()

plt.plot(x, y, 

         marker="o", markersize=28, linestyle=" ", zorder=9)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 255



plt.plot(x, y, color="black", linewidth=5, zorder=8)

plt.fill(x, y, color="firebrick", zorder=7)

plt.show()

Abb. 93: Einfluss von zorder

5.23.7 3D-Diagramme

Nur wenig komplizierter ist es, 3D-Daten darzustellen, beispielsweise ei-

ne Geländeoberfläche, die durch eine „Wolke“ aus 3D-Punkten festgelegt 

werden soll.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 256



Abb. 94: x-y-z-Oberfläche mit Terrain-Farbgebung

Die 3D-Koordinaten würden wir üblicherweise aus Vermessungsdaten1 le-

sen. Wir berechnen für unser Beispiel stattdessen einen kleinen „Eierkar-

ton“ mit der Kosinusfunktion.

from math import cos

x = []

y = []

z = []

for xi in range(-10,11):

    for yi in range(-10,11):

        zi = cos(xi/2) * cos(yi/2)

        x.append(xi)

        y.append(yi)

        z.append(zi)

1 Ein Beispiel finden Sie auf https://bauforum.wirklichewelt.de/index.php?id=11643

Martin Vogel: Bauinformatik mit Python, WS 2025/26 257

https://bauforum.wirklichewelt.de/index.php?id=11643


Wir importieren wieder Matplotlib und danach(!)  zusätzlich das Modul 

Axes3D. Die Reihenfolge ist wichtig, da beim Laden von Axes3D einige 

Voreinstellungen von Matplotlib überschrieben werden.

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

Zunächst erzeugen wir ein leeres 3D-Achsen-Objekt, das uns als „Lein-

wand“ dient.

ax = plt.axes(projection="3d")

Diesem übergeben wir die zuvor erzeugten 3D-Koordinaten. Wir können 

die zu erzeugende Fläche auf unterschiedliche Arten einfärben1. Für un-

ser Beispiel wählen wir die Farbpalette „terrain“, die Farben ähnlich ei-

ner Landkarte verwendet.

ax.plot_trisurf(x, y, z, cmap="terrain")

Das war schon alles. Wir stellen das Diagramm auf dem Bildschirm dar.

plt.show()

Die Grafik ist interaktiv. Durch Klicken und Ziehen mit der linken Maus-

taste können wir sie räumlich drehen und von allen Seiten betrachten. 

Vertikale Bewegungen mit gedrückter rechter Maustaste vergrößern und 

verkleinern die Darstellung. 

1 Eine Liste der verfügbaren Farbpaletten finden Sie auf https://matplotlib.org/stable/
tutorials/colors/colormaps.html

Martin Vogel: Bauinformatik mit Python, WS 2025/26 258

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html


5.24 Grafik mit Tkinter

Mit dem Modul  tkinter besitzt Python vielfältige Möglichkeiten, Grafi-

ken auf dem Bildschirm auszugeben. 

Tkinter ist dabei keine speziell für Python entwickelte Grafiklösung, viel-

mehr basiert es auf der schon 1988 von John Ousterhout an der Berkeley-

Universität  in Kalifornien entwickelten Grafik-Befehlssprache TCL (tool 

command language) und einer darauf aufbauenden Werkzeugsammlung 

(engl.  toolkit),  für  die  in  vielen  Programmiersprachen  Schnittstellen 

(engl. interfaces) existieren. Tkinter ist dementsprechend das „toolkit in-

terface“ für Python. Die von uns verwendeten Python-Funktionen werden 

vom Modul tkinter in TCL-Befehle umgewandelt und an den TCL-Inter-

preter geschickt, welcher dann für die Erzeugung der Grafik sorgt.

Im Rahmen dieses Textes können wir nur einen kleinen Streifzug durch 

die  Welt  der  Grafikprogrammierung  unternehmen,  um  zumindest  die 

Grundlagen dieses interessanten Themenbereiches kennenzulernen. 

Es ist jedoch durchaus möglich, auch ganze Anwendungsprogramme mit 

interaktiven grafischen Benutzungsoberflächen (graphical user interface, 

GUI) in Python zu programmieren.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 259



Abb. 95: GUI-Programm aus dem ersten Semester 2014/2015
 

Eines der  ambitioniertesten Projekte  dieser  Art  ist  wahrscheinlich das 

Projekt  PythonCAD1,  welches  ein  zu  AutoCAD  kompatibles  CAD-Pro-

gramm in Python realisiert, das unter Windows, Linux und macOS läuft.

5.24.1 Das Hauptfenster

Mit dem Aufruf Tk()  laden wir den TCL-Interpreter und erzeugen ein 

leeres Bildschirmfenster, in dem wir anschließend alle anderen Grafikob-

jekte anordnen können.

1 http://sourceforge.net/projects/pythoncad/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 260

http://sourceforge.net/projects/pythoncad/


Die Funktion mainloop() ist die „Hauptschleife“ des Programms. Hier 

werden im Hintergrund ständig Tastatureingaben und Mausaktionen ab-

gefragt und an die Objekte im Hauptfenster weitergereicht, damit diese 

dazu passende Aktionen auslösen können. Siehe dazu auch Kapitel 5.25.1 

(„EVA und die Events“).

from tkinter import Tk, mainloop

Hauptfenster = Tk()

mainloop()

Abb. 96: Das Tk-Hauptfenster

Standardmäßig trägt das Fenster den Titel „tk“. Wir können diese Vorein-

stellung mit der Tk-Methode  .title auf einen informativeren Wert än-

dern.

Das Fenster passt seine Größe automatisch an den Inhalt an, darum müs-

sen uns nicht darum kümmern, welche genauen Abmessungen es haben 

muss. Falls wir uns jedoch ganz sicher sind, dass es unbedingt nötig ist, 

die Fenstergröße zu fixieren, können wir direkt nach der Erzeugung des 

Fensters mithilfe seiner Methode .geometry eine Größe festlegen.

Da Python die Größenangabe nicht selbst auswertet, sondern diese ein-

fach als Zeichenkette an den TCL-Interpreter durchreicht, sieht der Funk-

tionsparameter auf den ersten Blick etwas seltsam aus. Um ein 400 Pixel 

breites und 200 Pixel hohes Fenster zu erschaffen, schreiben wir nämlich 

nicht .geometry(400,200), sondern .geometry("400x200").

Martin Vogel: Bauinformatik mit Python, WS 2025/26 261



from tkinter import Tk, mainloop

Hauptfenster = Tk()

Hauptfenster.title("Mein Statikprogramm")

Hauptfenster.geometry("400x200")

mainloop()

In Abb. 97 ist das Ergebnis zu sehen. Die darübergelegten Maßbänder ei-

nes Bildschirmlinealprogramms zeigen, dass sich die Größenangaben auf 

die  innere  Fensterfläche  beziehen,  nicht  auf  das  gesamte  Fenster  mit 

Rahmen und Titelleiste.

Abb. 97: Tk-Fenster mit festgelegter Größe und Überschrift.

5.24.2 untergeordnete Fenster

Ein Python-Programm kann gleichzeitig mit mehreren Fenstern arbeiten. 

Zusätzliche Fenster erzeugen wir mit der Tk-Funktion Toplevel. Im Ge-

gensatz zu Tk() startet der Aufruf Toplevel() keinen eigenen TCL-Inter-

preter.

Jedes Fenster wird sinnvollerweise einer Variable zugeordnet. Sowohl der 

Aufruf Tk() als auch der Aufruf Toplevel() geben dazu eine Referenz auf 

das erzeugte Fenster zurück. Beim Erzeugen von Grafikobjekten geben 

wir diese Variable als ersten Parameter an, um das neue Objekt eindeutig 

einem bestimmten  Fenster  zuzuordnen.  In  dem folgenden Beispielpro-

gramm greifen die beiden Textfelder (Label) gezielt auf das Hauptfenster 

und das Unterfenster zu.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 262



from tkinter import Tk, Toplevel, Label, mainloop

Hauptfenster = Tk()

Hauptfenster.title("Hauptfenster")

Unterfenster = Toplevel()

Unterfenster.title("Unterfenster")

Label(Hauptfenster,

      text="-"*50+"\n"

      +"Dies ist das Hauptfenster"+"\n"

      +"unseres Programms"+"\n"

      +"-"*50

      ).pack()

Label(Unterfenster,

      text="-"*50+"\n"

      +"Dies ist ein Unterfenster"+"\n"

      +"unseres Programms"+"\n"

      +"-"*50

      ).pack()

mainloop()

Abb. 98: Hauptfenster und Unterfenster

Solange ein Python-Programm nur ein einziges Grafikfenster verwendet, 

ist die Angabe eines Zielfensters nicht notwendig. In den folgenden Kapi-

teln wird daher nicht mehr weiter darauf eingegangen.

Der Rahmen des Bildschirmfensters und die Gestaltung der Knöpfe zum 

Minimieren,  Maximieren  und  Schließen  des  Fensters  werden  vom Be-

triebssystem geliefert. Auf das Aussehen dieser Komponenten haben un-

sere Programme keinen Einfluss. Auch die Standardschriftarten werden 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 263



in der Regel vom Betriebssystem vorgegeben, daher kann es bei unter-

schiedlichen Betriebssystemversionen stets zu leichten Abweichungen in 

der Bildschirmdarstellung kommen.

Abb. 99 zeigt dasselbe Programm unter sechs verschiedenen Betriebssys-

temversionen. Oben ist Ubuntu Linux mit verschiedenen Desktopkonfigu-

rationen zu sehen und unten wurden die  Microsoft-Windows-Versionen 

Windows XP, Windows 2000 und Windows 7 verwendet.

Abb. 99: Fensterdekorationen

5.24.3 Canvas – die Leinwand

In den folgenden Kapiteln werden wir einige Grafikfunktionen kennenler-

nen. Als „Leinwand“ (englisch: canvas) für unsere Grafiken dient uns ein 

rechteckiger Bereich auf dem Bildschirm, das Canvas-Objekt. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 264



Abb. 100: Die leere Leinwand

Um  ein  Canvas-Objekt  zu  erzeugen,  rufen  wir  die  Tkinter-Funktion 

Canvas auf und speichern das von ihr zurückgegebene Objekt in einer Va-

riable.

Als Argumente der erzeugenden Funktion können wir angeben, wie hoch 

(height)  und wie breit  (width)  die Leinwand sein soll,  welche Hinter-

grundfarbe  (bg)  gewünscht  ist  und,  falls  notwendig,  in  welchem Bild-

schirmfenster sie angeordnet werden soll.

# Grafikbibliothek importieren

from tkinter import Canvas, mainloop

# Zeichenfläche einrichten

C = Canvas(width=400, height=200, bg="white")

# Zeichenfläche im Programmfenster anordnen

C.pack()

# Auf Eingaben warten

mainloop()

Die Methode .pack ordnet die Zeichenfläche dabei in einem zuvor defi-

nierten Bildschirmfenster an. Wenn noch kein Tk-Fenster existiert, wird 

automatisch ein neues erzeugt, in das die Leinwand genau hineinpasst 

(Abb. 100).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 265



Die „Hauptschleife“  mainloop verwenden wir  hier vorläufig nur,  damit 

sich das Grafikfenster nicht sofort wieder schließt. In Programmen mit 

grafischen Oberflächen wird hier auf Aktionen der Benutzerin oder des 

Benutzers gewartet, die dann gegebenenfalls bestimmte Funktionen aus-

lösen. Siehe dazu auch Kapitel 5.25.1 („EVA und die Events“).

5.24.4 Koordinaten der Canvas

Abb. 101: Das tk-Koordinatensystem

Die Canvas verwendet ein ebenes Koordinatensystem mit dem Nullpunkt 

in der oberen linken Ecke. Die Standardmaßeinheit ist das Pixel, also der 

einzelne Bildpunkt auf dem Monitor. 

Je nach Auflösung des Bildschirms ist ein Pixel etwa zwischen 0,08 und 

0,35 Millimetern groß. Nach Pixelzahl skalierte Grafiken können daher 

stark in der Größe variieren. Um Grafiken unabhängig von der Monitor-

auflösung darzustellen, können Größenangaben auch in Zentimetern, Mil-

limetern,  Zoll  (25,4 mm) oder  typografischen Punkten (1/72 Zoll,  rund 

0,35 mm) erfolgen. Den Maßzahlen wird dazu einer der Buchstaben „c“ 

(cm), „m“ (mm), „i“ (Zoll) oder „p“ (Punkt) angehängt. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 266



Damit die Skalierung stimmt, muss das Betriebssystem genau wissen, wie 

groß die Bildschirmfläche des an den Rechner angeschlossenen Monitors 

ist. Häufig weiß es das jedoch entweder gar nicht oder nur in sehr grober 

Näherung,  sodass  es  zu  Abweichungen  bei  Längenangaben  kommen 

kann.

5.24.5 Koordinatentransformationen

Funktionsgraphen,  Karteninformationen  und  technische  Zeichnungen 

müssen wir in aller Regel skalieren, damit sie auf dem Bildschirm in an-

gemessener  Größe  wiedergegeben  werden.  Die  Aufgabe  ist  es,  einen 

rechteckigen Bereich eines x-y-Koordinatensystems, bei dem eine Achse 

nach rechts und die andere Achse nach oben zeigt, auf ein Bildschirmko-

ordinatensystem abzubilden, bei dem eine Achse nach rechts und die an-

dere Achse nach unten zeigt.

Wenn wir, um Verwechslungen zu vermeiden, die Bildschirmkoordinaten 

u und v nennen, ergibt sich folgender Zusammenhang:

u=umin+
(x−xmin)⋅(umax−umin)

xmax−xmin

und

 v=vmin+
(y−ymax)⋅(vmax−vmin)

ymin−ymax

Abb. 102: Koordinatentransformation

Martin Vogel: Bauinformatik mit Python, WS 2025/26 267



Wir können diese Formeln ein wenig vereinfachen, wenn wir davon aus-

gehen,  dass  die  obere  linke  Ecke  des  Zielkoordinatensystems  (unsere 

Leinwand) immer die Koordinate (0,0) hat. Dann gilt:

u=
(x−xmin)⋅umax

xmax−xmin

und v=
(y−ymax)⋅vmax

ymin−ymax

5.24.6 Linien und Linienzüge

Mit der Methode .create_line des Canvas-Objektes erzeugen wir Lini-

en und Linienzüge. Als Argumente geben wir eine beliebige Zahl von Ko-

ordinatenpaaren an. Im einfachsten Fall rufen wir die Methode mit zwei 

Koordinatenpaaren auf. 

Heißt unser Canvas-Objekt beispielsweise C, so erzeugt

C.create_line(100,150,250,300)

eine Linie von Punkt (100,150) zu Punkt (250,300). Die Linie ist schwarz 

und ein Pixel breit. 

Um andere Farben und Breiten zu erhalten, verwenden wir die Attribute 

width und fill, denen wir eine Breite in Pixeln und eine Farbe zuord-

nen. Die Farbe definieren wir entweder über ihren (englischen) Farbna-

men oder über einen RGB-Code. 

Eine rote Linie mit fünf Pixeln Dicke wird beispielsweise durch den Be-

fehl

C.create_line(100,150, 250,300, width=5, fill="red")

erzeugt. 

Eine Liste von gültigen Farbnamen finden Sie in Kapitel 7.2 im Anhang.

Anstatt die Koordinaten als einzelne Argumente zu übergeben, können 

wir sie auch in eine Liste oder ein Tupel schreiben. Die Anzahl der Koor-

dinatenpaare  ist  beliebig,  solange  mindestens  ein  Start-  und  ein  End-

punkt vorhanden sind.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 268



Punkte = (100,150, 250,300, 100,300, 250,150)

C.create_line(Punkte,width=5,fill="red")

Die Canvas-ID

Wenn wir die Befehle zum Erzeugen von Grafikobjekten direkt in der Py-

thon-Shell  verwenden,  stellen  wir  fest,  dass  jeder  Aufruf 

von .create_line(…) eine fortlaufende Zahl erzeugt. Diese Zahl ist die 

Identifikationsnummer der Linie, oder kurz: ihre „ID“.

Die Canvas verwaltet eine Liste aller durch ihre Methoden erzeugten Ob-

jekte und erlaubt es, diese nachträglich einzeln oder in Gruppen unter an-

derem zu löschen, zu verschieben oder zu skalieren.

Abb. 103: Linienzug mit Breite und Farbe

Falls  die  verwendete  Python-3-Version  die  eingetippten  Zeichenbefehle 

scheinbar nicht ausgeführt, kann die Canvas-Methode .update aufgeru-

fen werden, um die Leinwand zu aktualisieren.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 269



5.24.7 Pfeilspitzen

Wir können sowohl den Anfangs- als auch den Endpunkt einer Linie oder 

eines Linienzuges mit einer Pfeilspitze versehen. Je nachdem, ob der ers-

te, der letzte oder beide Endpunkte als Pfeilspitze dargestellt werden sol-

len, weisen wir dem Attribut arrow den Text "first", "last" oder "both" 

zu. Wahlweise können wir auch eine der drei vordefinierten Konstanten 

FIRST, LAST oder BOTH verwenden.

C.create_line( 50,50,150,150, arrow="first")

C.create_line(100,50,200,150, arrow="last")

C.create_line(150,50,250,150, arrow="both")

Abb. 104: Pfeilspitzen am Anfang und/oder am Ende von Linien

5.24.8 Gestrichelte Linien

Das Attribut dash erlaubt es uns, Linien auf genau definierte Art zu stri-

cheln. Es besteht aus einer Liste von Zahlen, die abwechselnd für ge-

zeichnete  und  leere  Linienabschnitte  einer  Sequenz  stehen.  Die  Liste 

(10,5,3,5) steht beispielsweise für eine strichpunktierte Linie, bei der 

immer wieder auf eine 10 Pixel lange Linie eine 5 Pixel breite Lücke folgt, 

danach eine 3 Pixel lange Linie (der „Punkt“) und zum Abschluss wieder 

eine 5 Pixel breite Lücke.

from tkinter import Canvas

C = Canvas(width=400, height=200, bg="white")

C.pack()

C.create_line(20,20, 380,20, width=3)

C.create_line(20,60, 380,60, width=3, dash=(3,7))

C.create_line(20,100, 380,100, width=3, dash=(10,))

Martin Vogel: Bauinformatik mit Python, WS 2025/26 270



C.create_line(20,140, 380,140, width=3, dash=(10,5,3,5))

Abb. 105: Gestrichelte Linien

Bei einfachen gestrichelten Linien, deren Lücken zwischen den Strichen 

genauso lang sind wie die Teilstriche selbst, kann die Angabe der Lücken-

größe entfallen.

5.24.9 Splines (Kurvenlinien)

Splines sind Kurvenzüge, deren Teilstücke aus Parabeln bestehen. Sie las-

sen sich ähnlich wie Linienzüge über eine Liste von Punkten definieren. 

Dabei werden jedoch nur der erste und letzte Punkt tatsächlich vom Spli-

ne berührt, alle anderen Punkte sind nur Tangentenschnittpunkte der ein-

zelnen Parabeln, deren Anfangs- und Endpunkte jeweils in der Mitte der 

einzelnen Abschnitte des ursprünglichen Linienzuges liegen.

Einen Linienzug können wir in ein Spline umwandeln, indem wir dem At-

tribut smooth den Wert 1 oder True zuweisen.

punkte = (20,20, 100,20, 20,100, 250,150,

          150,20, 380,20, 250,180, 380,180)    # Eckpunkte

C.create_line(punkte, width=3, fill="tomato")  # Linienzug

C.create_line(punkte, width=3, smooth = True)  # Spline

Martin Vogel: Bauinformatik mit Python, WS 2025/26 271



Abb. 106: Linienzug und Spline

5.24.10 Geschlossene Polygone

Geschlossene Linienzüge (Polygone) werden ganz ähnlich wie die offenen 

Linienzüge  erzeugt.  Der  Unterschied  besteht  darin,  dass  wir  die  um-

schlossene Fläche mit einer Farbe füllen können. 

Diese Farbe weisen wir in der Methode .create_polygon dem Attribut 

fill  zu.  Die  Linienfarbe  des  Polygonzugs  wird  über  das  Attribut 

outline definiert und durch width können wir ihm eine Breite zuwei-

sen.

Abb. 107: Dreieck als geschlossenes Polygon

Das folgende Codebeispiel erzeugt das Dreieck in Abbildung 107.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 272



from tkinter import Canvas, mainloop

C = Canvas(width=250, height=250, bg="white")

C.pack()

punkte = (50,200, 200,200, 125,50)

C.create_polygon(punkte,

                 fill="light grey", outline="red",

                 width=5)

mainloop()

Wenn wir das Attribut outline für die Randfarbe nicht angeben, wird 

kein  Rand  um  das  Polygon  gezeichnet.  Eine  eventuell  vorhandene 

Breitenangabe width wird dann ignoriert.

5.24.11 Rechtecke und Ellipsen

Mit nur zwei Punkten können wir sowohl Rechtecke als auch Ellipsen de-

finieren. 

Abb. 108: Rechteck und Ellipse

Beim Rechteck sind zwei diagonal gegenüberliegende Punkte anzugeben, 

zwischen denen das (stets achsenparallele) Rechteck aufgespannt wird. 

C.create_rectangle(25,50, 225,200, outline="red", width=5)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 273



Ellipsen (sie heißen hier Ovale) werden durch das sie umhüllende Recht-

eck festgelegt.

C.create_oval(25,50, 225,200, fill="light grey")

Wenn  die  Randfarbe  und  -breite  nicht  angegeben  werden,  wird  ein 

schwarzer Rand mit einem Pixel Breite um das Rechteck oder die Ellipse 

gezeichnet. 

5.24.12 Kreise

Eine eigene Methode zum Zeichnen von Kreisen ist  im Canvas-Objekt 

nicht vorhanden. Kreise sind auch nur Ovale, deren umhüllendes Recht-

eck zufällig ein Quadrat ist. 

Wenn wir nicht für jeden neuen Kreis die Eckpunkte des umhüllenden 

Quadrats angeben wollen, sondern diesen lieber ganz klassisch über Mit-

telpunkt und Radius konstruieren, können wir dazu diese selbstgeschrie-

bene Funktion verwenden:

def Kreis(C, x, y, r, width=None, fill=None, outline=None):

    return C.create_oval(x-r, y-r, x+r, y+r,

                         width=width, 

                         fill=fill, 

                         outline=outline)

C ist dabei die zuvor definierte Canvas, x und y sind die Koordinaten 

des Mittelpunktes und r ist der Radius des Kreises. Zusätzlich können 

noch die Attribute width, fill und outline an die erzeugende Metho-

de create_oval durchgereicht werden.

5.24.13 Text

Text können wir mit der Canvas-Methode create_text in beliebiger Grö-

ße, Farbe und Schriftart an jeder Stelle der Canvas ausgeben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 274



Im einfachsten Fall benötigen wir nur eine Koordinate und eine Zeichen-

kette. Der Text der Zeichenkette wird dann in Höhe und Breite zentriert 

am Einfügepunkt ausgegeben.

C.create_text(100, 150, text="Hallo Welt!")

Soll der Einfügepunkt nicht mittig im Text liegen, sondern beispielsweise 

unten links, so ist der untere linke Punkt des Textes als Ankerpunkt zu de-

finieren. 

Abb. 109: Die Ankerpunkte eines Canvas-Textes

Diese Ankerpunkte orientieren sich an den Himmelsrichtungen. Anstelle 

von „unten links“ sagen wir dann „Südwest“ beziehungsweise „sw“:

C.create_text(100, 150, text="Hallo Welt!", anchor="sw")

Schriftart, Auszeichnung und Schriftgröße

Wenn  uns  die  standardmäßig  verwendete  Schriftart  zu  klein  oder  zu 

freudlos ist, können wir den zu erzeugenden Text typografisch gestalten. 

Dazu weisen wir dem Attribut font ein Tupel zu, welches den Namen ei-

ner Schriftart, die Schriftgröße (in typografischen Punkten) und gegebe-

nenfalls die gewünschten Auszeichnungen wie fett (bold) oder kursiv (it-

alic) enthält.

Die Textfarbe wird über das Attribut fill geändert.

C.create_text(100, 150,

              text="Hallo Welt!",

              anchor="sw",

              font=("Arial", 24, "bold"),

              fill="red")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 275



Dass die Schriftgröße nicht wie alle anderen Koordinatenangaben bisher 

in  Pixeln,  sondern  in  typografischen Punkten  (1/72  Zoll)  angegebenen 

wird, ist der Konvention geschuldet, dass in dieser Einheit die gesamte 

Typografiebranche arbeitet. Wer unbedingt möchte, kann die Schriftgrö-

ße auch in Pixeln angegeben. Der Größenangabe ist dann ein Minuszei-

chen voranzustellen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 276



5.25 GUI – Grafische Benutzungsoberflächen

Wollen  wir  menschenfreundliche  Programme  schreiben,  die  komplett 

über die grafische Benutzungsoberfläche (graphical user interface, GUI) 

eines  eigenen  Applikationsfensters  bedienbar  sind,  benötigen  wir  ver-

schiedene Arten von Ein- und Ausgabefeldern sowie Aktionsknöpfe (But-

tons). Diese GUI-Objekte werden auch „Widgets“ genannt.

5.25.1 EVA und die Events

Hatten unsere Programme bisher den klassischen EVA-Aufbau „Eingabe – 

Verarbeitung – Ausgabe“, so betreten wir mit grafischen Benutzungsober-

flächen eine ganz neue Welt. Nun arbeiten unsere Programme nicht mehr 

von Anfang bis Ende in einer zuvor festgelegten Reihenfolge, sondern sie 

reagieren auf äußere Ereignisse (engl.  events). Das können Mausklicks 

sein,  Tastatureingaben,  das  Bewegen von Schiebereglern,  die  Auswahl 

aus einem Menü und viele weitere Aktionen. 

Für jede Aktion, auf die wir reagieren wollen, schreiben wir dazu eine 

kleine Funktion,  die sich um dieses Ereignis kümmert.  Diese Ereignis-

kümmerer werden auch im Deutschen meistens mit dem englischsprachi-

gen Ausdruck event handler (Eventhandler) bezeichnet. An dieser Stelle 

kommt auch die von uns schon verwendete Tkinter-Funktion  mainloop 

wieder ins Spiel. In ihr wartet die Applikation geduldig auf Events und 

ruft bei deren Eintreten die passenden Eventhandler auf.

Beispiel für einen Eventhandler

Wir bauen uns unseren ersten eigenen Eventhandler und verbinden dazu 

einmal das Ereignis „linke Maustaste wurde gedrückt“, das in Tk den Na-

men  "<Button-1>" trägt,  mit  einer  Funktion,  der  wir  den  Namen 

wo_ist_die_Maus geben.

Als erklärtem Eventhandler wird dieser Funktion beim Aufruf ein Objekt 

übergeben, in dessen Attributen einige Informationen über das Ereignis 

enthalten sind. Traditionell gibt man diesem Objekt den Namen  event. 

Die  aktuellen  Mauskoordinaten  befinden  sich  dann  in  den  Attributen 

event.x und event.y. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 277



Unser Eventhandler soll nun nichts weiter machen, als diese Mauskoordi-

naten durch Aufruf der Funktion print auszugeben.

from tkinter import Tk, mainloop

def wo_ist_die_Maus(event):

    print("Maus geklickt bei Koordinate", event.x, event.y)

T = Tk()

T.bind("<Button-1>", wo_ist_die_Maus)

mainloop()

Bitte achten Sie darauf, dass in der vorletzten Zeile nur der Funktionsna-

me wo_ist_die_Maus ganz ohne Klammern steht, nicht der Funktions-

aufruf wo_ist_die_Maus() mit Klammern!

Ein Programmlauf sieht dann beispielsweise so aus:

Abb. 110: Wo ist die Maus?

Martin Vogel: Bauinformatik mit Python, WS 2025/26 278



Die folgende Tabelle zählt einige Beispiele für Eventnamen auf, mit denen 

durch die Methode .bind(Eventname) eigene Eventhandler an ein Wid-

get oder Tk-Fenster gebunden werden können.

Eventname Bedeutung

<Button-1> Linke Maustaste gedrückt (event.x, event.y)

<Button-2> Mittlere Maustaste gedrückt (event.x, event.y)

<Button-3> Rechte Maustaste gedrückt (event.x, event.y)

<Motion> Bewegung der Maus (event.x, event.y)

<B1-Motion>
Bewegung  mit  gedrückter  linker  Maustaste 
(event.x, event.y)

<ButtonRelease-1> Linke Maustaste losgelassen (event.x, event.y)

<Double-Button-1> Linker Doppelklick (event.x, event.y)

<Enter> Mauszeiger betritt Widget

<Leave> Mauszeiger verlässt Widget

<Return> Die Eingabetaste wurde gedrückt.

<KP_Enter> Die Entertaste im Zehnerblock wurde gedrückt.

<Key> Irgendeine Taste wurde gedrückt (event.char).

j Die Taste „j“ wurde gedrückt.

<Up>
Die Pfeiltaste „nach oben“ wurde gedrückt. Die 
anderen  Pfeiltastenereignisse  heißen  entspre-
chend <Down>, <Left> und <Right>.

<Shift-Up>

Die  Shifttaste  und  die  Pfeiltaste  „nach  oben“ 
wurden gemeinsam gedrückt. 

Der Modifikator „Shift“ kann auch Mausereig-
nissen vorangestellt  werden.  <Shift-Button-3> 
ist  dann  ein  Rechtsklick  bei  gedrückter  Um-
schalttaste ⇧ . 

Andere Modifikatoren sind beispielsweise „Alt“ 
und „Control“ ( Strg ).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 279



Eventname Bedeutung

<Prior>

Die Taste „Bild↑“ wurde gedrückt. 

Das Gegenstück für „Bild↓“ heißt <Next>. 

Andere Sondertasten sind beispielsweise <Es-
cape> (Esc), <F1> … <F12>, <Insert> (Einfg), 
<Delete> (Entf), <BackSpace> (Rückschrittas-
te/Löschtaste),  <Tab>,  <Home>  (Pos1)  oder 
<End> (Ende).

<Configure>

Dieses Ereignis wird ausgelöst,  wenn sich die 
Größe eines  Widgets  verändert  hat,  beispiels-
weise, weil das Fenster, in dem sich das Widget 
befindet, maximiert wurde. Eine Canvas könnte 
nun beispielsweise die auf ihr enthaltenen Gra-
fikobjekte an die neue Größe anpassen. Diese 
wird  in  den  Event-Attributen  event.width  und 
event.height übergeben.

<FocusIn>

Das Widget hat den Eingabefokus erhalten. In 
grafischen Oberflächen wird das aktive Einga-
befeld üblicherweise durch ein Rähmchen oder 
eine andere Hervorhebungsart gekennzeichnet. 
Das Gegenstück dazu ist <FocusOut>.

Je nachdem, welcher Ereignistyp ausgelöst wurde, enthält das Event-Ob-

jekt eine Auswahl der folgenden Attribute:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 280



Event-Attribut Ereignistyp Bedeutung

widget alle
Instanz des auslösenden Widget-Ob-
jekts

x, y
Maus,

Configure

Bei Mausevents: aktuelle Mauskoordi-
naten relativ zur linken oberen Widget-
Ecke

Bei Configure-Events: Koordinaten der 
linken oberen Widget-Ecke relativ zur 
linken oberen Bildschirmecke

x_root, 
y_root

Maus
Die aktuellen Mauskoordinaten relativ 
zur linken oberen Bildschirmecke

char Tastatur
Die gedrückte Taste als Zeichen (z. B. 
"a")

keysym Tastatur
Der Name der gedrückten Taste (z. B. 
"Return")

keysym_num Tastatur
Die Codeposition des erzeugten Zei-
chens im ASCII bzw. Unicode, z. B. 65 
für das Zeichen "A".

keycode Tastatur

Der Tastencode der gedrückten Taste. 
Dieser ist unabhängig von der Tasten-
beschriftung. Die Taste "y" liegt bei-
spielsweise auf deutschen Tastaturen 
links vom "x" und hat dort den Tasten-
code 52. Auf englischen Tastaturen liegt 
das "y" zwischen "t" und "u" und hat 
den Tastencode 29.

num Maus

Die gedrückte Maustaste (1, 2, 3). Wei-
tere Maustasten werden uneinheitlich 
gezählt. Unter Linux werden Scrollrad-
bewegungen beispielsweise als Maus-
tasten 4 und 5 behandelt. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 281



Event-Attribut Ereignistyp Bedeutung

delta Maus

In einer perfekten Welt würde dieser 
Wert angeben, wie weit das Scrollrad 
der Maus gedreht wurde. Tatsächlich 
ist dieser Wert unter Linux immer null 
(siehe num), unter macOS gibt er an, 
um wie viele Rastschritte das Scrollrad 
gedreht wurde und unter Windows den 
120-fachen Wert davon.

width, height Configure Neue Breite und Höhe des Widgets

type alle
Der Ereignistyp, z.B. "ButtonPress", 
"KeyPress" oder "Configure"

serial alle laufende Nummer des Events

state
Maus, 

Tastatur

Integerzahl, deren einzelne Bits ange-
ben, welche Taste beim Auslösen eines 
Ereignisses bereits gedrückt (oder ak-
tiv) war. Lässt sich als Summe folgen-
der Werte interpretieren:

   1: Shifttaste („Umschalttaste“)
   2: Feststelltaste aktiv
   4: Strg-Taste
   8: Linke Alt-Taste
  16: Num aktiv (Ziffernblock)
 128: Rechte Alt-Taste
 256: Linke Maustaste
 512: Mittlere Maustaste
1024: Rechte Maustaste

Bei Mausereignissen enthält state 
nicht den aktuellen Mausknopfdruck. 
Dadurch lässt sich zum Beispiel heraus-
finden, ob ein Doppelklick der linken 
Maustaste bei gedrückter rechter 
Maustaste erfolgte. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 282



Event-Attribut Ereignistyp Bedeutung

time alle

Zähler für fortlaufende Millisekunden. 
Damit lässt sich beispielsweise die Ge-
schwindigkeit eines Doppelklicks oder 
die zeitliche Exaktheit eines rhythmi-
schen Tastenanschlags messen.

send_event alle
Dieses Attribut hat üblicherweise den 
Wert False. 

5.25.2 Anordnung der GUI-Elemente

Alle Widgets, also alle Buttons, Ein- und Ausgabetextfelder, die Canvas 

und alle weiteren GUI-Elemente, sollten wir möglichst so im Programm-

fenster  anordnen,  dass  Anwenderinnen  und  Anwender  unseres  Pro-

gramms dessen wesentliche Funktionen mühelos und möglichst intuitiv 

aufrufen können.

Für  Entwicklerinnen  und  Entwickler  komplexer  Programmoberflächen 

lohnt sich die Einarbeitung in ein GUI-Design-Programm wie beispiels-

weise Glade (Abb. 111), mit dem sich Tkinter-Benutzungsoberflächen ge-

stalten und als Datei speichern lassen. Allerdings gibt es durchaus leis-

tungsfähigere  grafische  Oberflächen  als  das  mit  Python  mitgelieferte 

Tkinter.  Wenn Sie wirklich ernsthafte Anwendungsentwicklung im Sinn 

haben,  wäre  dies  der  richtige  Zeitpunkt,  auf  https://wiki.python.org/

moin/GuiProgramming Ausschau nach passenden Werkzeugen zu halten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 283

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming


Abb. 111: Glade

Für  einfache  Layouts  kleiner  Programme,  wie  wir  sie  üblicherweise 

schreiben, schießen diese Lösungen jedoch übers Ziel hinaus. Mit weni-

gen Zeilen Quelltext kommen wir bei der Gestaltung unserer Programm-

oberflächen üblicherweise aus. 

5.25.3 Die drei Geometriemanager

Tkinter bietet drei verschiedene Geometriemanager an, um Widgets in ei-

nem  Bildschirmfenster  anzuordnen.  Sie  werden  über  die  Metho-

den .pack, .place und .grid angesprochen.

Pack

Mit dem Methodenaufruf .pack(…) werden neue Elemente mittig an eine 

der vier Seiten der verfügbaren Fläche „gepackt“. Das Attribut side gibt 

an, an welchem Rand des noch unbenutzten Bereichs das neue Widget 

Platz für sich reservieren soll (left,  right,  top oder  bottom). Fehlt die 

Angabe,  wird  side="top" angenommen.  Widgets,  die  später  dazukom-

men, werden dann darunter angeordnet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 284



An „seinem“ Rand kann das Widget über das Attribut  align zusätzlich 

ausgerichtet werden. Wie an vielen Stellen in Tkinter werden hier die 

Himmelsrichtungen (n, s, e und w) zu Hilfe genommen.

Der horizontale und vertikale Abstand des Widgets zu anderen Elementen 

lässt sich mit den Attributen  padx und  pady festlegen. Der Abstand des 

Widgetrands zu seinem Inhalt wird durch ipadx und ipady definiert.

Standardmäßig belegt jedes Widget nur soviel Platz, wie es unbedingt be-

nötigt. Wir können jedoch angeben, dass es sämtlichen verfügbaren Platz 

in  horizontaler,  vertikaler  oder  beiden Richtungen ausfüllen soll.  Dazu 

setzen wir das Attribut fill auf den Wert "x",  "y" oder "both". Setzen 

wir zusätzlich das Attribut expand auf den Wert True, so wird bei Größen-

änderungen des Applikationsfenster der entstehende Platz gleichmäßig 

auf alle Widgets mit diesem Attribut verteilt.

Die Vordergrundfarbe (Textfarbe) und die Hintergrundfarbe des Widgets 

können wir mit den Attributen foreground und background beeinflussen. 

Hier  sind  sowohl  die  englischsprachigen  Farbnamen aus  dem Anhang 

(Kapitel 7.2) als auch hexadezimale Farbcodes möglich.

Durch die Möglichkeit, Widgets durch Rahmen zu Gruppen zusammenzu-

fassen, die dann gemeinsam angeordnet werden können, lassen sich auch 

komplexe  hierarchische  Layoutvorstellungen  mit  überschaubarem  Auf-

wand realisieren. Der besondere Charme der Pack-Methode besteht aller-

dings gerade darin, diese ganzen Angaben gar nicht machen zu müssen, 

sondern mal eben schnell ein paar Widgets in ein Applikationsfenster pa-

cken zu können:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 285



Abb. 112: Pack

C = Canvas(width=400, height=200, bg="white")

C.pack()

B1 = Button(text="zeichne einen Baum")

B1.pack()

B2 = Button(text="lösche den Baum")

B2.pack()

Place

Die Methode .place erlaubt es UI-Designern, Widgets millimetergenau 

(oder pixelgenau) zu platzieren. Damit lassen sich theoretisch sehr an-

spruchsvolle Layouts realisieren; allerdings ist die damit verbundene Pi-

xelzählerei enorm aufwendig, solange man nicht spezielle Layoutsoftware 

verwendet. Die Freude über ein gelungenes Layout währt bei dieser Me-

thode zudem oft nur kurz. Da unterschiedliche Betriebssysteme und un-

terschiedliche  Bildschirmauflösungen  üblicherweise  auch  unterschiedli-

che  Schriftgrößen  mit  sich  bringen,  ist  ein  pixelgenaues  Layout  eine 

hinterhältige Falle, die man möglicherweise erst bemerkt, wenn man sein 

in langer Nachtschicht feinjustiertes Designerschmuckstück voller Stolz 

weitergibt und nur betretene Blicke erntet. Wir vermeiden diese Gestal-

tungsmethode.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 286



Grid

Ein gutes Verhältnis von Aufwand und Ergebnis erzielen wir mit der drit-

ten Methode, die uns Tkinter zur Verfügung stellt. Mithilfe von .grid(…) 

weisen wir jedem Widget eine Zeilen- und Spaltenposition in einer flexi-

blen Tabelle zu, die sich automatisch an die Größe der in ihr plazierten 

Elemente anpasst. Mit wenigen Programmzeilen können wir so anspre-

chende Layouts realisieren.

Abb. 113: Grid

Ein paar Auszüge aus dem Quelltext der in Abb. 113 gezeigten Applikati-

on sollen die Verwendung der Grid-Methode zur Anordnung von Widgets 

deutlich machen:

# Die Grafik stammt aus einer Datei.

bild = PhotoImage(file = "Einfeldträger.gif")

# Sie wird einem Label zugeordnet.

B = Label(image=bild)

# Dieses Bild-Label belegt drei Spalten im Grid.

B.grid(row=0, column=0, columnspan=3)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 287



# Der Text „P = “ wird ebenfalls einem Label zugeordnet.

L1 = Label(text="P = ")

# Dieses wird rechtsbündig in Zeile 1, Spalte 0 plaziert.

L1.grid(row=1, column=0, sticky="e")

# Rechts daneben ist ein Eingabefeld, das Spalte 1 ausfüllt.

Eingabefeld_P = Entry()

Eingabefeld_P.grid(row=1, column=1, sticky="we") 

# Der Button soll, wie die Grafik, dreispaltig sein.

B1 = Button(text="berechnen!")

B1.grid(row=4, column=0, columnspan=3, sticky="nsew")

Mit dem Parameter sticky legen wir fest, wie ein Widget in seinem Ras-

terfeld ausgerichtet wird. Die vier Buchstaben "n", "s", "e" und "w" ste-

hen dabei für die vier Himmelsrichtungen auf einer Landkarte. Sie kön-

nen beliebig kombiniert werden.

Ausrichtung mit sticky

w e

nw ne

sw ses

n

(ohne sticky-Attribut:
Anordnung mittig)

sticky = "nsew"

nsew

sticky = "w"

w

sticky = "e"

e

Martin Vogel: Bauinformatik mit Python, WS 2025/26 288



sticky = "we"

we

sticky = "ns"

ns

Die verschiedenen Geometriemanager sollten nicht gemeinsam in einem 

Programmfenster verwendet werden. Vor allem die Kombination von pack 

und grid führt dazu, dass Tkinter daran verzweifelt, gleichzeitig die Wün-

sche beider Manager zu erfüllen und sich „aufhängt“.

5.25.4 GUI-Widgets

Tkinter verfügt über eine Vielzahl von Widget-Typen, von denen hier nur 

eine Auswahl vorgestellt wird. Mit den in den folgenden Abschnitten be-

schriebenen Tkinter-Widgets kommen wir jedoch für die meisten einfa-

chen GUI-Anwendungen recht gut aus1. 

Die in diesem Kapitel beschriebenen Beispiele setzen voraus, dass zuvor 

die verwendeten Funktionen aus dem Modul tkinter geladen wurden. Da 

wir recht viele dieser Funktionen einbinden, importieren wir sie der Ein-

fachheit halber gleich alle.

from tkinter import *

Taste: Button

Der Button ist wohl das wichtigste Element einer grafischen Benutzungs-

oberfläche. Er enthält  einen Beschriftungstext und beim Anklicken mit 

der Maus oder beim Aktivieren mit der Tastatur wird eine frei wählbare 

argumentlose Funktion aufgerufen.

1 Wer sich tiefer mit der Materie beschäftigen möchte, findet auf http://effbot.org/tkin-
terbook/tkinter-classes.htm und https://docs.python.org/3.6/library/tkinter.ttk.html ei-
ne ausführliche Beschreibung aller von Tkinter gebotenen Möglichkeiten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 289

https://docs.python.org/3.6/library/tkinter.ttk.html
http://effbot.org/tkinterbook/tkinter-classes.htm
http://effbot.org/tkinterbook/tkinter-classes.htm


Abb. 114: Button

from tkinter import *

def meine_Funktion():

    print("Der Button wurde gedrückt.")

T = Tk()

B = Button(text="Klick mich an!", command=meine_Funktion)

B.pack()

mainloop()

Beschriftung: Label

Ein Label ist ein Widget, das einen kurzen Text und/oder oder ein Bild 

enthält. Das Bild wird als Objekt der Klasse tkinter.PhotoImage erwartet 

und kann beispielsweise den Inhalt einer GIF-Datei aufnehmen.

Falls sowohl ein Text als auch ein Bild angegeben werden, wird der Text 

standardmäßig nur dann ausgegeben, wenn das Bildobjekt nicht darstell-

bar ist.

Mit dem Attribut  font lassen sich Schriftart,  Größe und Auszeichnung 

wählen.

Die Ausrichtung des Textes wird über das Attribut anchor festgelegt. Die 

„Ankerpunkte“ orientieren sich an den Himmelsrichtungen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 290



Abb. 115: Die Ankerpunkte eines Label-Textes

Unser Beispiel ordnet zwei Label nebeneinander in einem Fenster an.

Abb. 116: Text- und Image-Label

Das linke Label in Abb. 116 enthält einen zweizeiligen Text, der kursiv (it-

alic) in der Schriftart Arial Black in 16 Punkt Schriftgröße gesetzt wird. 

Der Text ist blau und in beiden Achsen zentriert. Das Label soll 20 Pixel 

Abstand zu anderen Elementen lassen.

Im rechten Label sehen wir ein klassisches Gemälde. Falls es ein Problem 

beim Laden der Bilddatei gegeben hätte, wäre statt des Bildes ein hilfrei-

cher Hinweistext ausgegeben worden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 291



L1 = Label(text="Ein Bild sagt mehr\nals tausend Worte.",

           font="ArialBlack 16 italic",

           foreground="blue",

           anchor="center")

L1.pack(side="left", padx=20)

try:

    Bild = PhotoImage(file="Monalisa.gif")

except:

    Bild = None

    

L2 = Label(image=Bild, 

           text="Die Bilddatei Monalisa.gif fehlt!")

L2.pack(side="right")

Eine Variation des Label-Widgets ist das Message-Widget. Es wird genau-

so verwendet, gibt längere Texte jedoch automatisch mehrzeilig aus.

Eingabefeld: Entry

In grafischen Oberflächen verwenden wir für kurze, einzeilige Eingaben 

anstelle der Input-Funktion Eingabefelder, welche in Tkinter  Entry hei-

ßen. Den Inhalt des Eingabefeld-Objekts erhalten wir mit dessen Methode 

.get als Zeichenkette.

Abb. 117: Entry

Martin Vogel: Bauinformatik mit Python, WS 2025/26 292



from tkinter import *

def meine_Funktion():

    print("Der Button wurde gedrückt.")

    print("Im Eingabefeld steht:",E.get())

T = Tk()

B = Button(text="Klick mich an!", command=meine_Funktion)

B.pack()

E = Entry()

E.pack()

mainloop()

Die größte Umstellung gegenüber Konsolenprogrammen mit  print und 

input ist der Verzicht auf Argumente bei der Funktion, welche die Einga-

ben auswertet. Diese ist nun selbst dafür verantwortlich, sich mit dem 

Methodenaufruf  .get() die benötigten Eingabewerte aus den einzelnen 

Eingabefeldern der Benutzungsoberfläche zusammenzusuchen.

Falls wir mehr als ein Eingabefeld haben, sollten wir ihnen aussagekräfti-

gere Namen als nur  E geben. Ein vorangestelltes „E“,  das darauf hin-

weist, dass es sich bei der entsprechenden Variable um ein Eingabefeld-

Objekt handelt, schadet jedoch nicht.

E_Kraft = Entry()

E_Kraft.pack()

E_Hebelarm = Entry()

E_Hebelarm.pack()

Üblicherweise ordnet man jedem Eingabefeld mindestens ein Beschrif-

tungsfeld zu, damit erkennbar ist, welcher Wert dort einzugeben ist.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 293



Schieberegler: Scale

Mit Schiebereglern können wir Größen schnell mit der Maus ändern. Vor 

allem, wenn es nicht um exakte Eingaben, sondern eher um qualitative 

Größen geht,  ist  diese  Eingabeformen sehr  benutzungsfreundlich.  Das 

Widget Scale stellt solche Schieberegler dar. Sie können horizontal oder 

vertikal angeordnet werden. Die Endwerte, die Schrittweite und die Art 

der Beschriftung sind wählbar.

Abb. 118: Scale

In seiner einfachsten Form ist der Schieberegler senkrecht orientiert, der 

obere(!) Wert ist 0 und der untere 100. Der aktuelle Wert wird neben dem 

Schieber angezeigt.  Mit  dem Methodenaufruf  .get() erhalten wir  den 

Zahlenwert der aktuellen Einstellung. Standardmäßig werden Ganzzahlen 

zurückgegeben.

from tkinter import *

def Anzeige():

    print("Schieberegler steht auf:",S.get())

T = Tk()

T.title("Scale")

S = Scale()

S.pack(side="left")

B = Button(text="Anzeige", command=Anzeige)

B.pack(side="right",padx=10,pady=10)

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26 294



Wollen wir einen anderen Wertebereich abdecken, verwenden wir dazu 

die beiden Argumente from_ und to. Beachten Sie, dass der Argumentna-

me  from_ mit einem Unterstrich endet, um einen Konflikt mit dem Py-

thon-Schlüsselwort from zu vermeiden.

Um den oberen Wert  auf  100 zu setzen und den unteren Wert  auf  0, 

schreiben wir:

S = Scale(from_=100, to=0)

Die Schrittweite kann auch kleiner als 1 sein. Sie wird durch das Argu-

ment  resolution festgelegt. Die mithilfe von .get() abgefragten Werte 

sind dann Gleitkommazahlen.

Wir können festlegen, dass bei der Bewegung des Schiebers ein Event 

ausgelöst wird, sodass unser Programm unmittelbar auf den neuen Schie-

berwert reagieren kann. Dazu weisen wir dem Argument  command den 

Namen einer Funktion zu, die als Eventhandler dient.

Die Orientierung legen wir mit dem Argument orient fest. Gültige Werte 

sind "h", "horizontal", "v" und "vertical".

In regelmäßigen Abständen kann die Skala des Schiebereglers beschriftet 

werden. Den Abstand der Zahlenwerte bestimmen wir mit dem Argument 

tickinterval.

Die Länge des Schiebereglers legen wir mit dem Argument length fest. 

Standardmäßig ist ein Schieberegler 100 Pixel lang.

Über das Argument  label fügen wir eine die Funktion erläuternde Be-

schriftung hinzu.

Ein Scale-Widget kann also auch so aussehen:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 295



Abb. 119: Horizontales Scale-Widget

Der vollständige Quelltext zum obigen Beispiel:

from tkinter import *

def Anzeige(event=None):

    print("Schieberegler steht auf:",S.get())

T = Tk()

T.title("Scale")

S = Scale(from_=0, to=1.5,

          resolution=0.01,

          command=Anzeige,

          orient="h",

          tickinterval=0.25,

          length=300,

          label="Zugkraft P1 [kN]")

S.pack()

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26 296



Rahmen: Frame

Der Frame ist ein Widget, das andere Widgets aufnehmen kann. Um die 

Zuordnung eines Widgets zu einem Frame kenntlich zu machen, geben 

wir den Namen dieses übergeordneten Frames als erstes Argument des 

Widgets an.

Standardmäßig sind Frames unsichtbar. Für unser Beispiel statten wir ei-

nen solchen „Positionierungsrahmen“ mit einem dicken gelben Rand aus, 

damit wir ihn sehen können.

Abb. 120: Frame

Quelltextauszug:

F = Frame(background="yellow", borderwidth=10)

F.pack()

L = Label(F, text="Gib etwas ein:")

L.pack(side="left")

E = Entry(F)

E.pack()

B = Button(text="ok", command=meine_Funktion)

B.pack(side="right")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 297



Beschrifteter Rahmen: LabelFrame

Ein LabelFrame wird wie  ein Frame eingesetzt  und verfügt  zusätzlich 

über einen Rahmen mit Beschriftung.

Die Beschriftung des LabelFrames befindet sich üblicherweise auf der lin-

ken Seite des oberen Randes. Das Attribut labelanchor kann verwendet 

werden, um eine andere Position zu wählen:

Abb. 121: Anordnung der LabelFrame-Beschriftung

LabelFrames und Frames können kombiniert werden, um Widgets ästhe-

tisch ansprechend anzuordnen. Der Abstand zum Inhalt lässt sich mit den 

LabelFrame-Attributen padx und pady pixelgenau einstellen. Um den äu-

ßeren Abstand zu beeinflussen, verwenden wir im nächsten Schritt na-

mensgleiche Attribute bei der Anordnung durch pack.

Abb. 122: LabelFrame

Martin Vogel: Bauinformatik mit Python, WS 2025/26 298



Zusätzlich zum sichtbaren LabelFrame wurden hier noch zwei gewöhnli-

che Frames eingesetzt, um die zeilenweise Anordnung der Label und Ein-

gabefelder zu vereinfachen. Die Breitenangabe der Label (width=10) hat 

hier den Zweck, die Elemente sauber ausgerichtet untereinander anzu-

ordnen.

from tkinter import *

T = Tk()

T.title("LabelFrame")

L = LabelFrame(text="Eingabewerte", padx=10, pady=10)

L.pack(padx=10, pady=10)

F1 = Frame(L)

F1.pack()

L1 = Label(F1, text="Kraft:", anchor="e", width=10)

L1.pack(side="left")

E_Kraft = Entry(F1)

E_Kraft.pack()

F2 = Frame(L)

F2.pack()

L2 = Label(F2, text="Hebelarm:", anchor="e", width=10)

L2.pack(side="left")

E_Hebelarm = Entry(F2)

E_Hebelarm.pack()

B = Button(text="Berechnung")

B.pack(side="right", padx=10, pady=10)

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26 299



An dieser Stelle sollten wir einmal über unnötige Tipparbeit reden. Dem 

Quelltext  grafischer  Benutzungsoberflächen  haftet  der  Ruf  an,  einen 

Hang zu ausufernder Länge und ermüdenden Wiederholungen zu haben. 

Tatsächlich liegt das oft nur an mangelnder Überlegung. Schauen wir uns 

den letzten Quelltext noch einmal an! Die Programmabschnitte für die 

beiden Eingabezeilen sind jeweils ein halbes Dutzend Zeilen lang und na-

hezu identisch. Anstatt nun für jede weitere Eingabezeile wieder sechs 

Zeilen Code einzutippen, schreiben wir lieber eine Funktion, die diese im-

mergleichen  Zeilen  aufnimmt.  Wir  nennen  sie  der  Einfachheit  halber 

„Eingabezeile“. Als Argument erhält sie den Text des Labels und einen 

Hinweis auf das übergeordnete Widget (falls vorhanden). Ihr Rückgabe-

wert  soll  das  Entry-Objekt  der  Eingabezeile  sein.  Anstelle  von  sechs 

Codezeilen benötigen wir dank der neuen Funktion zukünftig nur noch ei-

ne:

from tkinter import *

def Eingabezeile(root=None, text="Eingabe"):

    F = Frame(root)

    F.pack(anchor="e")

    E = Entry(F)

    E.pack(side="right")

    L = Label(F, text=f"{text}: ", anchor="e")

    L.pack()

    return E

T = Tk()

L = LabelFrame(text="Eingabewerte")

L.pack()

E_Kraft = Eingabezeile(L,"Kraft")

E_Hebelarm = Eingabezeile(L,"Hebelarm")

B = Button(text="Berechnung")

B.pack(side="right")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 300



mainloop()

Haben Sie gemerkt, dass diese Variante ohne die width-Angabe für den 

Text links vom Eingabefeld auskommt? Was wurde geändert?

Schiebefenster: PanedWindow

Frames und LabelFrames passen ihre Größe automatisch an ihre Inhalte 

an. Mit den Attributen fill und resize können wir bei Verwendung des 

Pack-Geometriemanagers festlegen,  dass Widgets immer den gesamten 

verfügbaren Platz ausnutzen und sich Größenänderungen des Programm-

fensters oder des übergeordneten Elements anpassen.

Gelegentlich ist es jedoch sinnvoll, der Anwenderin und dem Anwender 

die  Flächenaufteilung  zu  überlassen,  damit  diese  beispielsweise  einer 

Grafik oder einem Textbereich vorübergehend mehr Raum zuteilen kön-

nen. 

Abb. 123: PanedWindow

Martin Vogel: Bauinformatik mit Python, WS 2025/26 301



from tkinter import *

def Textpanel(root,text):

    T = Text(root, wrap="word",

             font="sans 12 bold",

             padx=10, pady=10)

    T.pack(fill="both", expand=True)

    T.insert(1.0, text)

    return T

T = Tk()

T.title("PanedWindow")

P1 = PanedWindow(

    T, orient="horizontal", sashrelief="raised")

P1.pack(fill="both", expand=True)

L_links = Textpanel(

    P1, text="Linker Bereich von P1")

P1.add(L_links)

P2 = PanedWindow(

    P1, orient="vertical", sashrelief="raised")

P1.add(P2)

L_oben = Textpanel(

    P2, 

    text="Oberer Bereich von P2 im rechten Bereich von P1")

P2.add(L_oben)

L_unten = Textpanel(

    P2,

    text="Unterer Bereich von P2 im rechten Bereich von P1")

P2.add(L_unten)

mainloop()

Martin Vogel: Bauinformatik mit Python, WS 2025/26 302



Das Attribut  sashrelief legt  fest,  wie der verschiebliche Trennbalken 

zwischen  den  PanedWindow-Bereichen  aussehen  soll.  Mögliche  Werte 

sind "raised" (erhaben) "flat" (ohne 3D-Effekt) und "sunk" (versenkt). 

Die Standardvorgabe für sashrelief ist "flat".

Ankreuzkästchen: Checkbutton

Um unsere Anwenderinnen und Anwender einfache Ja/Nein-Entscheidun-

gen mithilfe eines gesetzten oder nicht gesetzten Kreuzchens oder Häk-

chens ausführen zu lassen, verwenden wir Checkbuttons.

Abb. 124: Checkbuttons

Interessanterweise wird die Information darüber, ob ein Kästchen ange-

kreuzt wurde, nicht im Widget selbst gespeichert, sondern in einem von 

uns separat anzulegenden Tkinter-IntVar-Objekt,  dessen Wert mit  .set 

geschrieben und mit .get gelesen werden kann. 

Eine naheliegende Idee wäre es daher, für jeden Button einen mehrzeili-

gen Programmblock wie den im folgenden Quelltext gelb markierten an-

zulegen.

from tkinter import *

def Auswertung():

    print(CWv.get(), CSv.get(), CVv.get())

T = Tk()

T.title("Checkbuttons")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 303



L = LabelFrame(text="Lastfälle", padx=10, pady=10)

L.pack(padx=10, pady=10, side="left")

CWv = IntVar()

CWv.set(0)  # Kästchen leer

CW = Checkbutton(L, text="Windlast", variable=CWv)

CW.pack(anchor="w")

CSv = IntVar()

CSv.set(1)  # Kästchen angekreuzt

CS = Checkbutton(L, text="Schneelast", variable=CSv)

CS.pack(anchor="w")

CVv = IntVar()

CV = Checkbutton(L, text="Verkehrslast", variable=CVv)

CV.pack(anchor="w")

B = Button(text="Berechnung", command=Auswertung)

B.pack(side="bottom", padx=10, pady=10)

mainloop()

Das kann man so machen; es geht aber auch deutlich übersichtlicher. Un-

sere  selbstgeschriebene Funktion  Checkbox erledigt  im folgenden Pro-

gramm alle wiederkehrenden Arbeiten. Sie legt das benötigte IntVar-Ob-

jekt an, weist ihm einen Anfangswert zu, zeichnet den Checkbutton und 

gibt das IntVar-Objekt zurück, das über den Zustand des Checkbuttons 

Auskunft gibt. Anschließend benötigt jeder Aufruf der Funktion Checkbox 

nur noch eine einzige Programmzeile.

from tkinter import *

def Auswertung():

    print(CW.get(), CS.get(), CV.get())

Martin Vogel: Bauinformatik mit Python, WS 2025/26 304



def Checkbox(root=None, text="", wert=0):

    IV = IntVar()

    IV.set(wert)

    C = Checkbutton(root, text=text, variable=IV)

    C.pack(anchor="w")

    return IV

T = Tk()

T.title("Checkbuttons")

L = LabelFrame(text="Lastfälle", padx=10, pady=10)

L.pack(padx=10, pady=10, side="left")

CW = Checkbox(L, "Windlast")

CS = Checkbox(L, "Schneelast", 1)

CV = Checkbox(L, "Verkehrslast")

B = Button(text="Berechnung", command=Auswertung)

B.pack(side="bottom", padx=10, pady=10)

mainloop()

Radiobutton

Der  Radiobutton ist ein naher Verwandter des Checkbuttons. Während 

jedoch in einer Gruppe von Checkbuttons beliebig viele angekreuzt wer-

den dürfen, ist in einer Gruppe von Radiobuttons immer nur einer aktiv. 

Damit erklärt sich auch der Name dieses Widgets, denn beim Radio lässt 

sich mit den Stationstasten ebenfalls zu jedem Zeitpunkt nur ein einzel-

ner Sender wählen. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 305



Abb. 125: Radiobuttons

Während Checkbuttons stets eine eigene Variable besitzen, die ihren An-

kreuzzustand speichert, teilen sich zusammengehörende Radiobuttons ei-

ne gemeinsame Variable. Diese enthält dann den Wert des Attributs value 

des gerade gewählten Buttons.

Weil Radiobuttons immer rudelweise auftreten, schreiben wir uns eine ei-

gene Funktion, welche die Konfiguration jedes einzelnen Radiobuttons für 

uns übernimmt. Unsere Funktion „Radiobuttons“ verarbeitet daher gleich 

eine ganze Liste von Zeichenketten, aus denen sie eine Radiotastenleiste 

für uns zusammenstellt. Diese Aufzählung darf beliebig lang sein.

from tkinter import *

def Auswertung():

    print(RB.get())

def Radiobuttons(root=None, *textliste, gewählt=None):

    TV = StringVar()

    TV.set(gewählt)

    for t in textliste:

        R = Radiobutton(root, variable=TV, text=t, value=t)

        R.pack(anchor="w")

    return TV

T = Tk()

T.title("Radiobuttons")

Martin Vogel: Bauinformatik mit Python, WS 2025/26 306



L = LabelFrame(text="Lastfall", padx=10, pady=10)

L.pack(padx=10, pady=10, side="left")

RB = Radiobuttons(L, "Windlast", "Schneelast", 

                  "Verkehrslast", gewählt="Schneelast")

B = Button(text="Berechnung", command=Auswertung)

B.pack(side="bottom", padx=10, pady=10)

mainloop()

Der  Wert,  den  ein  Radiobutton  zurückgibt  und  sein  Beschriftungstext 

können  unterschiedlich  sein.  Oft  wird  ein  Programm  jedoch  lesbarer, 

wenn wir den Argumenten value und text denselben Wert zuweisen.

Menubutton

Etwas platzsparender als die Auswahl aus einer Liste von Radiobuttons 

ist  die  Verwendung eines  in  Tkinter  Menubutton genannten  Ausklapp-

menüs.  Hier  werden die  verschiedenen Auswahlpunkte  erst  nach dem 

ersten Anklicken sichtbar.

Abb. 126: ttk-Menubutton

Der Menubutton kann deutlich mehr, als nur eine kleine Auswahlliste dar-

zustellen. Tatsächlich ist er in der Lage, komplette Menüs mit Checkbut-

tons, Radiobuttons, Kommandoschaltflächen und sogar Untermenüs auf-

nehmen.  Leider  wird seine Verwendung durch das Verweben mit  dem 

Tkinter-Menu-Objekt etwas sperrig.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 307



Unter manchen Betriebssystemen ist der Menubutton in Tkinter auf den 

ersten  Blick  nicht  von  einem  gewöhnlichen  Button  zu  unterscheiden. 

Durch Überschreiben der Funktion Menubutton mit der gleichnamigen 

Funktion aus dem Modul tkinter.ttk erhalten wir eine visuell ansprechen-

dere Darstellung. Zusätzlich verfrachten wir auch hier wieder allen von 

unserem eigentlichen Programm ablenkenden Code in eine eigene Funk-

tion, der wir in unserem Hauptprogramm nur mitteilen müssen, in wel-

chem übergeordneten Widget sie untergebracht werden soll und welcher 

Menüpunkt voreingestellt sein soll.

from tkinter import *

from tkinter.ttk import Menubutton

def Auswertung():

    print(MB.get())

def Buttonmenu(root=None, *textliste, gewählt=None):

    V = StringVar()

    V.set(gewählt)

    M = Menubutton(root, textvariable=V)

    M.pack()

    M.menu = Menu(M, tearoff=0)

    M["menu"] = M.menu

    for t in textliste:

        M.menu.add_radiobutton(variable=V, label=t, value=t)

    return V

T = Tk()

T.title("Menubutton")

L = LabelFrame(text="Lastfall", padx=10, pady=10)

L.pack(padx=10, pady=10, side="left")

MB = Buttonmenu(L, "Windlast", "Schneelast", "Verkehrslast",

                gewählt="Schneelast")

B = Button(text="Berechnung", command=Auswertung)

Martin Vogel: Bauinformatik mit Python, WS 2025/26 308



B.pack(side="bottom", padx=10, pady=10)

mainloop()

Unser kleiner Widgetzoospaziergang ist damit zu Ende. Wir konnten da-

bei  leider  nur einen kleinen Teil  der  umfangreichen Tkinter-Bibliothek 

kennenlernen.  Wenn Sie meinen, dass ein wichtiges Thema hier unbe-

dingt noch aufgenommen werden sollte, melden Sie sich bei mir!

Martin Vogel: Bauinformatik mit Python, WS 2025/26 309



5.26 Webserver

Bisher haben wir nur Programme geschrieben, bei denen die Bedienung 

auf  demselben  Rechner  stattfindet,  auf  dem  das  jeweilige  Programm 

läuft. Wir können aber auch über das Internet auf Programme zugreifen, 

die auf weit entfernten Rechnern laufen. Diese Programme heißen Web-

server. Sie bekommen ihre Eingaben klassischerweise aus HTML-Formu-

laren und erzeugen wiederum HTML- und Grafikdateien, die über das In-

ternet zurück zu den Anwenderinnen und Anwendern geschickt werden.

Viele große Websites wie Youtube oder Dropbox bestehen zu einem guten 

Teil aus Python-Skripten.

Um auf dem eigenen PC einen einfachen Webserver zu starten, genügt ei-

ne einzige Zeile im Terminal:

python -m http.server

Der Server meldet sich mit der verwendeten Portadresse, unter der er auf 

dem gastgebenden Rechner (dem sogenannten „Host“) zu erreichen ist. 

In der Regel wird Port 8000 verwendet. 

Starten wir nun auf demselben Rechner einen Webbrowser mit der URL 

http://localhost:8000, so erhalten wir eine Antwort von unserem Web-

server. Standardmäßig ist das der Inhalt der Datei index.html. Wenn diese 

Datei nicht existiert, wird der Inhalt des aktuellen Verzeichnisses ausge-

geben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 310

http://localhost:8000/


Abb. 127: Webserver unter Windows 10

Auf Webservern, die den CGI-Standard unterstützen, können auch Pro-

gramme gestartet  werden,  die  beispielsweise Formulareingaben entge-

gennehmen und HTML-Seiten erzeugen, in denen die Ergebnisse von auf 

diesen  Eingaben  beruhenden  Rechnungen  ausgegeben  werden.  Diese 

Programme befinden sich dann üblicherweise im Unterverzeichnis „cgi-

bin“ des Webauftritts. Bis Python 3.14 lässt sich der mit Python mitgelie-

ferte Webserver mit CGI-Unterstützung starten.

python -m http.server --cgi

Ab Python 3.15 entfällt diese Funktion, sodass wir auf andere Webserver 

zurückgreifen müssen, damit wir Pythonprogramme auf unserem lokalen 

Rechner über eine Browseroberfläche steuern können. Für Windows ge-

nügt für einfache Webserverexperimente das Programm „TinyWeb1“, für 

Linux lässt sich über die Werkzeugsammlung „busybox“ Abhilfe schaffen.

1 https://www.ritlabs.com/en/products/tinyweb/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 311

https://www.ritlabs.com/en/products/tinyweb/


busybox httpd -vvfp 8000

5.26.1 Zeichenkodierung

Webbrowser unterstützen zwar alle Unicode-Zeichen einschließlich Emo-

jis, trotzdem sollten Sonderzeichen, die nicht auf der Tastatur zu finden 

sind, derzeit noch mit Vorsicht eingesetzt werden. 

Python verwendet Unicode-Zeichen nur,  wenn das Betriebssystem dies 

auch erkennbar unterstützt.  Auf manchen Webservern kann Python je-

doch  nicht  ermitteln,  ob  diese  Unterstützung  vorhanden  ist,  und  gibt 

stattdessen eine Fehlermeldung aus. 

Wenn Ihr Python-Programm auch als CGI-Skript auf unzureichend konfi-

gurierten Webservern laufen soll, sollte es daher möglichst nur ASCII-Zei-

chen ausgeben.

5.26.2 Darstellung von Webseiten ohne 
Webserver

Wir  können  auch  ganz  ohne  Webserver  Ausgaben  unseres  Pythonpro-

gramms in einem Webbrowser darstellen. Dazu muss das Programm le-

diglich eine gewöhnliche HTML-Datei erzeugen (siehe Kapitel  3). Diese 

HTML-Datei können wir dann in einem Dateimanager doppelklicken oder 

wir verwenden die Funktion open() aus dem Modul webbrowser.

import webbrowser

webbrowser.open("index.html")

Unter Windows und Linux wird dann die Datei „index.html“ aus dem Ver-

zeichnis des laufenden Pythonprogramms vom Standardwebbrowser des 

Systems geladen und dargestellt.

Unter macOS ist leider noch ein Zwischenschritt erforderlich, da dort der 

Webbrowser mit dem absoluten Pfad der darzustellenden Datei aufgeru-

fen werden muss. Unser Pythonprogramm muss also zuerst einmal nach-

schauen, in welchen Verzeichnis diese sich überhaupt befindet.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 312



Zusätzlich muss das URL-Schema „file://“ angeben, dass es sich um eine 

Adresse im Dateisystem des verwendeten PCs handelt.

import webbrowser

import os

webbrowser.open("file://"+os.path.abspath("index.html"))

Da  diese  Variante  auch  unter  anderen  Betriebssystemen  funktioniert, 

können wir sie bedenkenlos auch für Programme verwenden, die nicht 

ausschließlich für macOS geschrieben werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 313



5.27 Logische Aussagen

Logische Aussagen sind Aussagen, die objektiv bestimmbar entweder ein-

deutig wahr oder eindeutig falsch sind. „4 ist größer als 3“ ist beispiels-

weise eine logische Aussage, da sie eindeutig als wahr oder falsch er-

kannt  werden  kann.  „Der  Hut  ist  schön“  ist  dagegen  keine  logische 

Aussage, sondern eine subjektive Meinungsäußerung.

Für die beiden Wahrheitswerte „wahr“ und „falsch“ verwendet Python die 

beiden Schlüsselwörter True und False. Sie sind vom Typ bool.

5.27.1 Wahrheitswerte anderer Datentypen

In bedingten Schleifen und Fallunterscheidungen dürfen wir anstelle logi-

scher Aussagen auch boolesche Werte und sogar Werte anderer Datenty-

pen verwenden.

Gleichwertig zu

wahren Aussagen

Gleichwertig zu

falschen Aussagen

Der boolesche Wert True
Der boolesche Wert False

Der Wert None

Zahlenwerte ungleich null Die Zahl 0

Sequenzen mit mindestens einem 

Element
Leere Sequenzen

Die if-Abfragen in der linken und rechten Spalte der folgender Tabelle 

sind daher funktionsgleich:

kurze Schreibweise redundante Schreibweise

if b:

if b == True:
if b != False:
if b != 0:
if b > "":
if len(b) > 0:

Martin Vogel: Bauinformatik mit Python, WS 2025/26 314



kurze Schreibweise redundante Schreibweise

if not b:

if b != True:
if b == False:
if b == 0:
if b == "":
if len(b) == 0:
if b == []:

5.27.2 Vergleichsoperatoren

Um logische Aussagen über das Größenverhältnis zweier Werte zu tref-

fen, verwenden wir sechs verschiedene Operatoren:

ist gleich ==

ist ungleich !=

ist kleiner als <

ist kleiner oder gleich <=

ist größer als >

ist größer oder gleich >=

Martin Vogel: Bauinformatik mit Python, WS 2025/26 315



5.27.3 Logische Aussagen über 
Gleitkommazahlen

Während ganze Zahlen immer mit ihrem exakten Wert gespeichert und 

verarbeitet werden, sind Gleitkommazahlen sehr oft nur Näherungswerte 

und unterliegen Rundungsfehlern.  Intern  werden Gleitkommazahlen in 

Python, wie auch in vielen anderen Programmiersprachen, als Produkt ei-

ner ganzen Zahl mit einer Zweierpotenz verarbeitet und erst bei der Aus-

gabe in eine Dezimalzahl mit einer bestimmten Anzahl von signifikanten 

Stellen umgewandelt. Die letzte Stelle ist dabei manchmal erstaunlich un-

genau.

>>> 3 + 4 == 7

True

>>> 3/2 + 4/2 == 7/2

True

>>> 3/3 + 4/3 == 7/3

False

Schauen wir einmal genauer hin, was da bei der letzten Eingabe passiert 

ist und werten wir beide Seiten einzeln aus:

>>> 3/3 + 4/3

2.333333333333333

>>> 7/3

2.3333333333333335

Der Unterschied ist zwar äußerst gering, aber es gibt einen Unterschied. 

Wir sollten uns daher davor hüten, Gleitkommazahlen jemals auf Gleich-

heit zu testen. 

Auch das Aufaddieren von Gleitkommazahlen bis zum Erreichen eines be-

stimmten  Grenzwertes  führt  oft  zu  Überraschungen.  Wer  sichergehen 

will, dass ein selbstgeschriebenes Programm sich wie erwartet verhält, 

sollte besser auf Ähnlichkeit anstatt auf Gleichheit testen. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 316



Das Mathematikmodul math enthält dazu die Funktion isclose(a,b):

>>> a = 3/3 + 4/3

>>> a == 7/3

False

>>> isclose(a, 7/3)

True

5.27.4 Boolesche Algebra

Logische Ausdrücke lassen sich miteinander verknüpfen. So entsteht ein 

neuer logischer Ausdruck, der ebenfalls wieder den Wahrheitswert  True 

oder False besitzt. 

Der englische Mathematiker George Boole stellte  dazu die Regeln der 

später nach ihm benannten booleschen Algebra auf. Ihm zu Ehren wurde 

die Klasse der Wahrheitswerte True und False in Python bool genannt.

>>> type(True)

<class 'bool'>

Die  drei  wichtigsten  Operatoren  zur  Verknüpfung  logischer  Aussagen 

sind „und“, „oder“ sowie „nicht“ (in Python: and, or und not). 

Die Konjunktion: and

Die Verknüpfung zweier logischer Aussagen mit and ergibt eine neue logi-

sche Aussage, die nur dann wahr ist, wenn beide Einzelaussagen wahr 

sind.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 317

Abb. 128: Wahrheitstabelle and



Dies entspricht dem üblichen Sprachgebrauch: „Wenn ich draußen bin 

und es regnet, dann spanne ich meinen Schirm auf.“ Der Schirm bleibt al-

so in drei von vier Fällen geschlossen: Wenn ich drinnen bin und es reg-

net, wenn ich drinnen bin und es nicht regnet sowie wenn ich draußen 

bin und es nicht regnet.

Die Disjunktion: or

Die Verknüpfung zweier logischer Aussagen mit or ergibt eine neue logi-

sche Aussage, die nur dann falsch ist, wenn beide Einzelaussagen falsch 

sind. Wenn entweder die eine oder die andere oder beide Aussagen wahr 

sind, wird die Gesamtaussage ebenfalls wahr.

Eine gewisse Aufmerksamkeit ist angebracht, da das or durch die dritte 

Kombinationsmöglichkeit (beides wahr) nicht dem in Konversationen übli-

chen unterscheidenden Sprachgebrauch des Wortes „oder“ entspricht.

Die Antwort „ja“ auf die Frage „möchtest Du Kaffee oder Tee?“ mag aus 

boolescher Sicht korrekt sein (wenn der/die Befragte beides mag), ver-

stört aber in der Regel die meisten Fragenden.1

Die Negation: not

Der Wahrheitswert einer logischen Aussage wird durch Voranstellen von 

not negiert. 

Der Ausdruck not True ergibt False und umgekehrt.

1 Leider erlaubt es die offene Lizenz dieses Buches nicht, urheberrechtlich beschränk-
tes Material einzubinden, sonst hätte ich längst mal Sydney Padua gefragt, ob ich den 
wundervollen Comic „Mr. Boole Comes to Tea“ aus ihrem Buch „The Thrilling Adven-
tures of Lovelace and Babbage: The (Mostly) True Story of the First Computer“ ver-
wenden darf. Immerhin findet sich eine Leseprobe auf Google Books: https://goo.gl/
466Hfu

Martin Vogel: Bauinformatik mit Python, WS 2025/26 318

Abb. 129: Wahrheitstabelle or

https://goo.gl/466Hfu
https://goo.gl/466Hfu


Vorsicht: das entspricht ganz und gar nicht dem in zwischenmenschlichen 

Konversationen bei Fragen üblichen Sprachgebrauch!

„Möchtest Du keinen Broccoli?“ – „Nein!“

Logische Konsequenz: ein Teller voll gesunden dampfenden Broccolis. Die 

logisch richtige Antwort für keinen Broccoli wäre „ja“ gewesen. Ein logi-

sches „doch“ gibt es nicht.

Die Kontravalenz: ^

Die Kontravalenz oder exklusiv-oder-Verknüpfung ergibt immer dann den 

Wert  True, wenn entweder die eine oder die andere Aussage wahr ist, 

aber nicht beide gleichzeitig.

Diese logische Verknüpfung wird in manchen anderen Programmierspra-

chen mit dem Operator xor vorgenommen. In Python ist dazu, genau wie 

in den Programmiersprachen C oder Java, das Zirkumflex ^ vorgesehen, 

das  verwirrenderweise anderenorts,  zum Beispiel  in  der  Programmier-

sprache BASIC und vielen Tabellenkalkulationen, als Potenzierungsopera-

tor verwendet wird.

Prioritäten

Wie in der „Zahlenalgebra“ haben auch in der Booleschen Algebra die 

einzelnen Operatoren unterschiedliche Prioritäten. Bei zusammengesetz-

ten logischen Ausdrücken besitzt not die höchste, and eine mittlere und 

or die geringste Priorität. 

Im Zweifelsfall empfiehlt es sich, Klammern zu verwenden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 319

Abb. 130: Wahrheitstabelle ^



Umkehrung logischer Aussagen

Bei der Umkehrung logischer Aussagen ist Vorsicht geboten. So lautet die 

Negierung von a and b nicht etwa not a and not b oder gar not a 

and b, sondern not a or not b. Wer sich da unsicher fühlt, sollte eben-

falls besser Klammern verwenden und not(a and b) schreiben.

Boolesche Variablen

Wahrheitswerte können in Python in Variablen gespeichert werden. Diese 

Variablen, die entweder den Wert True oder den Wert False haben, nen-

nen wir boolesche Variablen.

>>> A = 3 > 4

>>> A

False

>>> B = 7 == 7

>>> B

True

Beachten Sie bitte den Unterschied zwischen dem Zuweisungsoperator = 

(„wird zu“) und dem Vergleichsoperator == („ist gleich“)! 

Der Variable B wird der Wahrheitswert der Aussage 7 == 7, also True, 

zugewiesen.

5.27.5 Venn-Diagramme

John Venn,  ein Mathematiker an der Universität  zu Cambridge,  stellte 

1880 eine Diagrammform vor, mit der sich auf sehr übersichtliche Weise 

logische Aussagen formulieren und überprüfen lassen.

Im einfachsten Fall bestehen Venn-Diagramme aus zwei sich überschnei-

denden Kreisen A und B, die jeweils einer logischen Aussage zugeordnet 

sind. 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 320



Abb. 131: Venn-Diagramm mit zwei Aussagen A und B

Alle Elemente, auf die Aussage A zutrifft, werden in Kreis A versammelt 

und alle Elemente, auf die Aussage B zutrifft, finden wir in Kreis B wie-

der. Im Schnittbereich sollten nur diejenigen Elemente zu finden sein, auf 

die sowohl Aussage A als auch Aussage B zutrifft. 

In einem Pythonprogramm würde für diese Schnittmenge gelten: 

A and B == True.

Die folgende Abbildung zeigt einige ausgewählte Möglichkeiten, logische 

Aussagen zu den Mengen A und B zu formulieren,  um exakt  eine be-

stimmte Teilmenge zu erhalten.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 321



Abb. 132: Venn-Diagramme und logische Aussagen

Martin Vogel: Bauinformatik mit Python, WS 2025/26 322



6 Datenspeicherung und 
Zahlensysteme

6.1 Bits und Bytes

Wenn Sie dieses Buch als Python-Lehrbuch von vorne nach hinten durch-

arbeiten, sind Sie nun schon fast durch und haben immer noch nichts 

über  die  elementaren Grundbegriffe  der  Datenspeicherung gehört:  Bit 

und Byte. 

Das liegt vor allem daran, dass wir uns bisher vor allem auf einer „höhe-

ren Ebene“ bewegt haben, auf der es ziemlich unwichtig ist, wie Daten 

tatsächlich gespeichert werden. Den ganzen Ärger, den uns eine fehler-

hafte Zeichenkodierung bei der Verarbeitung von Textdateien einbringt, 

können wir  aber  nur  dann wirklich  vermeiden,  wenn wir  einen tiefen 

Blick in den Kaninchenbau unter der Oberfläche werfen.

6.1.1 Das Bit

Das Bit ist die kleinste in der EDV verwendete Informationseinheit. Es 

kennt nur zwei  definierte Zustände;  wir  können sie beispielsweise „0“ 

und „1“ nennen. Diese zwei Zustände können wir elektrisch recht einfach 

umsetzen, indem wir auf einer Leitung eine Spannung anlegen oder eben 

nicht.

Um ein Bit speichern zu können, müssen wir ein Medium finden, das von 

einem Zustand in einen anderen überführt werden kann. Wir können bei-

spielsweise einen Knoten in eine Schnur knüpfen, ein Loch in ein Stück 

Karton stanzen, einen schwarzen Punkt auf ein weißes Blatt Papier malen 

(Abb. 133), einen Bereich einer magnetischen Oberfläche umpolen, mit 

einem Laser einen Spiegel matt schießen oder ein paar Moleküle elek-

trisch aufladen. Der Phantasie sind hier keine Grenzen gesetzt. Hauptsa-

che, wir finden unser Bit später wieder und können zuverlässig und am 

besten auch noch möglichst schnell wieder herausfinden, ob wir dort eine 

„0“ oder eine „1“ gespeichert haben.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 323



Abb. 133: QR-Code

6.1.2 Das Byte

Wollen wir größere Zahlen als 0 und 1 verarbeiten, müssen wir mehrere 

Bits kombinieren. Mit zwei Bits lassen sich schon vier verschiedene Zah-

lenwerte darstellen. Sind beide Bits null, stellen sie die Zahl Null dar. Ei-

ne Eins entsteht dadurch, dass eines der beiden Bits den Wert 1 annimmt. 

Für die Zwei wird das andere Bit auf 1 gesetzt und die Drei wird dadurch 

repräsentiert, dass beide Bits den Wert 1 annehmen. 

Mit jedem zusätzlichen Bit lässt sich der darstellbare Zahlenbereich ver-

doppeln. Mit acht Bits lassen sich schon 2⁸, also 256 verschiedene Zu-

stände unterscheiden. 

Das reicht beispielsweise, um allen Groß- und Kleinbuchstaben des Alpha-

bets, den wichtigsten Satzzeichen und einigen Sonderzeichen (§$%&) eine 

eindeutige  Codenummer  zuzuweisen  und dadurch  Texte  als  Folge  von 

Acht-Bit-Zahlenwerten speichern zu können. 

In der weltweit verbreitetsten Zeichenkodierung ASCII (american stand-

ard code for information interchange) wird zum Beispiel dem großen „A“ 

die Codeposition 65 zugewiesen, dem kleinen „a“ die Position 97 und dem 

Leerzeichen „ “ die Position 32 (siehe Tabelle in Kapitel 6.2).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 324



Die Zeichenkette

Hallo Bochum

wird in der ASCII-Kodierung zur Zahlenfolge

72 97 108 108 111 32 66 111 99 104 117 109.

Im Speicher des Computers werden diese Zahlen als Gruppen von jeweils 

acht Nullen und Einsen abgelegt:

Abb. 134: ASCII-Zeichen als Bits und Bytes

Da die Kombination aus 8 Bits so wichtig für die elektronische Datenver-

arbeitung geworden ist,  hat  sie  einen eigenen Namen bekommen. Wir 

nennen sie „Byte“. Ein Byte kann 256 verschiedene Werte annehmen.

Je mehr Bits zur Verfügung stehen, desto größer sind die verarbeitbaren 

Zahlenwerte. Mit 16 Bits lassen sich schon Zahlen von 0 bis 65535 dar-

stellen, mit 32 Bits sind rund vier Milliarden unterschiedliche Kombinati-

onen möglich und mit 64 Bits können alle ganzen Zahlen von 0 bis unge-

fähr 1,84×10¹⁹ unterschieden werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 325

H 01001000  72
a 01100001  97
l 01101100 108
l 01101100 108
o 01101111 111
, 00101100  44
  00100000  32
B 01000010  66
o 01101111 111
c 01100011  99
h 01101000 104
u 01110101 117
m 01101101 109
! 00100001  33



Der 32-Bit-Beschränkung begegnen wir derzeit (2022) gelegentlich noch 

bei älteren PCs. Manche alte 32-Bit-Betriebssysteme können nicht einmal 

4 GiB1 RAM nutzen, ein mit dem Dateisystem FAT32 formatierter USB-

Stick kann keine Dateien größer als 4294967295 Byte speichern und es 

gibt weltweit keine freien IPv4-Adressbereiche mehr, um neue Geräte ans 

Internet anzuschließen, weil alle Kombinationen aus 4 Bytes schon verge-

ben sind.2

6.1.3 Das Hexadezimalsystem

Jede 8-Bit-Zahl können wir im uns vertrauten Dezimalsystem mit ein bis 

drei Dezimalziffern darstellen: 0 bis 255. 

Mit einem kleinen Trick lässt sich eine Ziffer einsparen, indem wir anstel-

le  des  Zehnersystems das Sechzehnersystem verwenden.  Zu den zehn 

Ziffern 0 bis 9 kommen dann die sechs Buchstaben A bis F mit den dezi-

malen Ziffernwerten 10 bis 15. 

0₁₀ = 0₁₆ 4₁₀ = 4₁₆ 8₁₀ = 8₁₆ 12₁₀ = C₁₆

1₁₀ = 1₁₆ 5₁₀ = 5₁₆ 9₁₀ = 9₁₆ 13₁₀ = D₁₆

2₁₀ = 2₁₆ 6₁₀ = 6₁₆ 10₁₀ = A₁₆ 14₁₀ = E₁₆

3₁₀ = 3₁₆ 7₁₀ = 7₁₆ 11₁₀ = B₁₆ 15₁₀ = F₁₆

Zahlen aus zwei Hexadezimalziffern decken somit alle 16 × 16 möglichen 

Werte eines Bytes ab.

Bei mehrstelligen Hexadezimalzahlen steigt der Stellenwert nach links je-

weils um den Faktor 16₁₀ = 10₁₆.

Die Hexadezimalzahl 30C4 hat beispielsweise den dezimalen Wert 12484:

1 Ein GiB (Gibibyte) sind 230 Byte, also rund 1,074 GB (Gigabyte). Im Microsoft-Wind-
ows-Explorer werden die Einheiten falsch verwendet und GiB-Zahlenwerte mit der 
Einheit GB dekoriert. Ebenso verwendet Windows die Einheit MB fälschlicherweise 
nicht für eine Million Bytes, sondern für 220 Bytes und kB nicht für 1000 Bytes, son-
dern für 1024 Bytes.

2 Besonders „kreativ“ hat sich hierbei die Firma Microsoft angestellt, die für einen 
Schadsoftwarescanner in ihrem Produkt „Microsoft Exchange“ das Datum und die 
Uhrzeit in einem vorzeichenbehafteten 32-Bit-Wert speicherte. Die größte damit dar-
stellbare Zahl ist 2147483647. Beim Jahreswechsel 2021/2022 fielen weltweit Ex-
change-Server aus, weil 2112312359 damit noch darstellbar ist, 2201010000 aber 
nicht mehr.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 326



30C4₁₆ = 3 · 16 · 16 · 16 + 0 · 16 · 16 + 12 · 16 + 4 · 1 = 12484₁₀

Python stellt Hexadezimalzahlen als Zeichenkette dar und setzt ihnen den 

Präfix '0x' voran. Die Umwandlung einer solchen Zeichenkette in einen 

Zahlenwert geschieht mit den uns schon bekannten Standardfunktionen 

eval oder int – bei letzterer muss als zweites Argument die Zahlenbasis 

16 angegeben werden. 

>>> hex(12484)

'0x30c4'

>>> eval("0x30c4")

12484

>>> int("30c4", 16)

12484

Umgekehrt lassen sich ganzzahlige Werte mit der Funktion hex ins Hexa-

dezimalsystem überführen.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 327



6.2 Zeichenkodierung – von ASCII bis Unicode

In Kapitel  6.1.2 haben wir gesehen, dass sich Buchstaben und Satzzei-

chen in einem Byte speichern lassen. Seit dem Jahr 1963 ist die Zuord-

nung der Buchstaben von A bis Z, der Ziffern von 0 bis 9 sowie häufiger 

Satz-, Sonder- und Steuerzeichen im ASCII festgelegt, dem siebenbittigen 

American Standard Code for Information Interchange.

Abb. 135: ASCII-Code

Über Jahrzehnte wurde der ASCII mit seinen lediglich 95 verschiedenen 

druckbaren Zeichen unverändert benutzt, bis die Firma IBM 1981 eine 

Erweiterung auf 256 Zeichen für ihre ersten Personal Computer zusam-

menstellen ließ und dazu alle 8 Bits eines Bytes verwendete. Mit dem so 

hinzugewonnenen Platz in dieser IBM-PC8 getauften Kodierung konnten 

diese Geräte auch für die internationale Korrespondenz mit und in West-

europa eingesetzt werden.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 328



Abb. 136: Die 256 Zeichen im IBM-PC8-Zeichencode

In der Folge entstanden zahlreiche weitere Zeichenkodierungen, die den 

Zeichenpositionen oberhalb des ASCII immer wieder andere Bedeutun-

gen zuwiesen – so standen sie beispielsweise für griechische oder kyrilli-

sche Buchstaben oder für eine größere Zahl von akzentuierten Buchsta-

ben.

Mit diesen ganzen Erweiterungen erwuchs das Problem, dass der in ei-

nem Byte gespeicherte Zahlenwert nun nicht mehr eindeutig einem be-

stimmten  Buchstaben  zuzuordnen  war.  Zu  jedem Text,  der  von  einem 

Rechner zu einem anderen Rechner übertragen werden sollte, musste da-

her immer angegeben werden, nach welchem System die Zeichen darin 

kodiert  wurden.  Häufig erfolgte  diese  Angabe nicht  und Umlaute  und 

Sonderzeichen  wurden  falsch  dargestellt.  Die  Empfangenden  mussten 

dann erraten, welche Kodierung von den Absendenden verwendet worden 

war.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 329



Abb. 137: Windows-Umlaute

Zudem gibt es auf der Welt Zeichensysteme wie die chinesische Schrift, 

deren tausende Schriftzeichen sich überhaupt nicht in die 128 zusätzli-

chen Positionen quetschen lassen.

Ein  internationales  Konsortium stellte  darum 1991  eine  Zeichenkodie-

rung zusammen, die alle auf der Erde verwendeten Schriftzeichen sam-

meln und ordnen sollte. Diese universelle Kodierung ist der Unicode1. Die 

acht Bit des ASCII-Codes wurden dazu zunächst auf 16 Bit erweitert, so-

dass 65536 verschiedene Codepositionen zur Verfügung standen. Später 

wurden noch 16 weitere dieser 16-Bit-Ebenen hinzugefügt, um auch so 

exotischen Zeichen wie altägyptischen Hieroglyphen, sumerischer Keil-

schrift und infantilen Emojis eine Heimat zu geben. 

Da  16 Bit  logischerweise  doppelt  so  viel  Speicherplatz  benötigen  wie 

8 Bit, arbeiten die meisten Programme mit Texten in einem besonderen 

Unicodeformat, das unterschiedliche viele Bytes pro Zeichen verwendet. 

In diesem UTF-8 genannten Format entsprechen die Zeichencodes der Po-

sitionen 32 bis 126 dabei den alten ASCII-Codes, sodass ASCII-Dateien 

ganz ohne Umwandlung immer auch gültige UTF-8-Dateien sind. Seltener 

im  westeuropäischen  Sprachraum verwendete  Zeichen  belegen  bis  zu 

vier Byte.

Unicode-Zeichen können wir in Python auf drei verschiedene Arten ver-

wenden. Zeichen, die sich direkt über die Tastatur eingeben lassen, wie 

das Eurozeichen €, können wir unmittelbar als Zeichenkettenkonstante in 

Anführungszeichen setzen. Wir können diese Zeichen einfach aus ande-

1 https://de.wikipedia.org/wiki/Unicode

Martin Vogel: Bauinformatik mit Python, WS 2025/26 330

https://de.wikipedia.org/wiki/Unicode


ren Texten oder Webseiten herauskopieren. Alternativ kann Python Uni-

code-Zeichen über ihre Codeposition ansprechen.  Das Eurozeichen hat 

beispielsweise die hexadezimale Unicode-Position 20ac.  Schließlich hat 

jedes Unicodezeichen auch einen genormten (englischsprachigen) Namen 

und kann über diesen angesprochen werden. Das Eurozeichen wird hier 

als „EURO SIGN“ geführt.

>>> print("€ - \u20ac - \N{EURO SIGN}")

€ - € - €

Seit der Version 3 von Python ist UTF-8 die standardmäßige Zeichenko-

dierung für alle Zeichenketten und wir müssten uns eigentlich keine wei-

teren  Gedanken  um dieses  Thema machen,  wenn  es  nicht  noch  viele 

Windowsprogramme gäbe, die nur mit den alten 256-Zeichen-Kodierun-

gen umgehen können. Auch viele Dateiformate zum Datenaustausch ver-

wenden immer noch die alten Windows-Kodierungen und wir müssen dar-

auf gefasst sein, hier nötigenfalls korrigierend eingreifen zu müssen. Wie 

das in Python umgesetzt werden kann, sehen wir bei der Beschreibung 

der Methoden .encode und .decode in Kapitel 5.21.10.

Eine recht unterhaltsame Kurzeinführung in dieses Thema hat Thomas 

Scholz verfasst1.

1 Thomas Scholz, Grundlagen der Zeichenkodierung, 2008, http://toscho.de/2008/
grundlagen-zeichenkodierung/ 
Ironischerweise ist die Zeichenkodierung dort seit ein paar Jahren falsch eingestellt. 
Eine ältere Version der Seite ist besser lesbar: https://web.archive.org/web/
20190302152042/http://toscho.de/2008/grundlagen-zeichenkodierung/

Martin Vogel: Bauinformatik mit Python, WS 2025/26 331

https://web.archive.org/web/20190302152042/http://toscho.de/2008/grundlagen-zeichenkodierung/
https://web.archive.org/web/20190302152042/http://toscho.de/2008/grundlagen-zeichenkodierung/
http://toscho.de/2008/grundlagen-zeichenkodierung/
http://toscho.de/2008/grundlagen-zeichenkodierung/


7 Anhang

7.1 Häufige Fehlermeldungen

Fehler-
meldung

Überset-
zung, Bedeu-

tung
Ursache, Behebung

KeyboardInte
rrupt

Programmab-
bruch über die 
Tastatur.

Sie haben gerade Strg C  gedrückt 
und damit die Programmausführung 
abgebrochen.

NameError: 
name 'xyz' 
is not 
defined

Namensfehler: 
Diesen Namen 
gibt es noch 
nicht.

Vermutlich haben Sie sich bei einem 
Variablennamen vertippt. Achten Sie 
auf Groß- und Kleinschreibung! 

Möglicherweise haben Sie auch zwei 
Programmzeilen vertauscht. Sie kön-
nen eine Variable nicht verwenden, be-
vor Sie ihr einen Wert zugewiesen ha-
ben.

SyntaxError: 
invalid 
syntax

Sprachlicher 
Fehler: Das 
Geschriebene 
ergibt keinen 
Sinn. 

Entweder steht in der angegebenen 
Zeile völliger Unfug oder die Zeile dar-
über ist versehentlich nicht richtig 
abgeschlossen worden. Zählen Sie dort 
einmal die öffnenden und schließenden 
Klammern und die öffnenden und 
schließenden Anführungszeichen.

UnicodeEncod
eError: … 
can't encode 
character …

Kodierungs-
fehler: Dieses 
Unicode-Zei-
chen gibt es 
hier nicht.

Eine Zeichenkette sollte in eine Kodie-
rung überführt werden, die nicht alle 
enthaltenen Zeichen abdeckt. 

Das geschieht regelmäßig, wenn ein 
Python-Programm in der MS-DOS-
Shell („Eingabeaufforderung“) von 
Microsoft Windows ausgeführt werden 
soll. 

Vermeiden Sie entweder ausgefallene 
Sonderzeichen oder Microsoft Wind-
ows!

Martin Vogel: Bauinformatik mit Python, WS 2025/26 332



Fehler-
meldung

Überset-
zung, Bedeu-

tung
Ursache, Behebung

ValueError: 
math domain 
error

Definitions-
mengenfehler: 
Die Ein-
gangsgröße 
ist für die 
Funktion 
ungeeignet.

Die Wurzel aus -1 und der Arkussinus 
von 12 lassen sich nun mal nicht so 
einfach ausrechnen. Vermeiden Sie 
den Fehler durch eine Kontrolle der 
Eingangswerte oder fangen Sie ihn bei 
Auftreten ab.

ZeroDivision
Error: 
division by 
zero

Nulldivision: 
Der Nenner 
eines Bruchs 
darf nicht null 
sein.

Sie haben versucht, durch null zu tei-
len. Überprüfen Sie die Eingangswerte 
oder fangen Sie den Fehler über eine 
try-except-Konstruktion ab.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 333



7.2 Farben und Farbnamen (Auswahl)

Farbe Rot Grün Blau
RGB-
Code

Farbname

  240 248 255 #F0F8FF alice blue

  250 235 215 #FAEBD7 antique white

  127 255 212 #7FFFD4 aquamarine

  240 255 255 #F0FFFF azure

  245 245 220 #F5F5DC beige

  255 228 196 #FFE4C4 bisque

  0 0 0 #000000 black

  255 235 205 #FFEBCD blanched almond

  0 0 255 #0000FF blue

  138 43 226 #8A2BE2 blue violet

  165 42 42 #A52A2A brown

  222 184 135 #DEB887 burlywood

  95 158 160 #5F9EA0 cadet blue

  127 255 0 #7FFF00 chartreuse

  210 105 30 #D2691E chocolate

  255 127 80 #FF7F50 coral

  100 149 237 #6495ED cornflower blue

  255 248 220 #FFF8DC cornsilk

  0 255 255 #00FFFF cyan

  0 0 139 #00008B dark blue

  0 139 139 #008B8B dark cyan

  184 134 11 #B8860B dark goldenrod

  0 100 0 #006400 dark green

  169 169 169 #A9A9A9 dark grey

Martin Vogel: Bauinformatik mit Python, WS 2025/26 334



Farbe Rot Grün Blau
RGB-
Code

Farbname

  189 183 107 #BDB76B dark khaki

  139 0 139 #8B008B dark magenta

  85 107 47 #556B2F dark olive green

  255 140 0 #FF8C00 dark orange

  153 50 204 #9932CC dark orchid

  139 0 0 #8B0000 dark red

  233 150 122 #E9967A dark salmon

  143 188 143 #8FBC8F dark sea green

  72 61 139 #483D8B dark slate blue

  47 79 79 #2F4F4F dark slate gray

  0 206 209 #00CED1 dark turquoise

  148 0 211 #9400D3 dark violet

  215 7 81 #D70751 debianred

  255 20 147 #FF1493 deep pink

  0 191 255 #00BFFF deep sky blue

  105 105 105 #696969 dim gray

  30 144 255 #1E90FF dodger blue

  178 34 34 #B22222 firebrick

  255 250 240 #FFFAF0 floral white

  34 139 34 #228B22 forest green

  220 220 220 #DCDCDC gainsboro

  248 248 255 #F8F8FF ghost white

  255 215 0 #FFD700 gold

  218 165 32 #DAA520 goldenrod

  190 190 190 #BEBEBE gray

Martin Vogel: Bauinformatik mit Python, WS 2025/26 335



Farbe Rot Grün Blau
RGB-
Code

Farbname

  0 255 0 #00FF00 green

  173 255 47 #ADFF2F green yellow

  240 255 240 #F0FFF0 honeydew

  255 105 180 #FF69B4 hot pink

  205 92 92 #CD5C5C indian red

  255 255 240 #FFFFF0 ivory

  240 230 140 #F0E68C khaki

  230 230 250 #E6E6FA lavender

  255 240 245 #FFF0F5 lavender blush

  124 252 0 #7CFC00 lawn green

  255 250 205 #FFFACD lemon chiffon

  173 216 230 #ADD8E6 light blue

  240 128 128 #F08080 light coral

  224 255 255 #E0FFFF light cyan

  238 221 130 #EEDD82 light goldenrod

  250 250 210 #FAFAD2 light goldenrod yellow

  144 238 144 #90EE90 light green

  211 211 211 #D3D3D3 light grey

  255 182 193 #FFB6C1 light pink

  255 160 122 #FFA07A light salmon

  32 178 170 #20B2AA light sea green

  135 206 250 #87CEFA light sky blue

  132 112 255 #8470FF light slate blue

  119 136 153 #778899 light slate gray

  176 196 222 #B0C4DE light steel blue

Martin Vogel: Bauinformatik mit Python, WS 2025/26 336



Farbe Rot Grün Blau
RGB-
Code

Farbname

  255 255 224 #FFFFE0 light yellow

  50 205 50 #32CD32 lime green

  250 240 230 #FAF0E6 linen

  255 0 255 #FF00FF magenta

  176 48 96 #B03060 maroon

  102 205 170 #66CDAA medium aquamarine

  0 0 205 #0000CD medium blue

  186 85 211 #BA55D3 medium orchid

  147 112 219 #9370DB medium purple

  60 179 113 #3CB371 medium sea green

  123 104 238 #7B68EE medium slate blue

  0 250 154 #00FA9A medium spring green

  72 209 204 #48D1CC medium turquoise

  199 21 133 #C71585 medium violet red

  25 25 112 #191970 midnight blue

  245 255 250 #F5FFFA mint cream

  255 228 225 #FFE4E1 misty rose

  255 228 181 #FFE4B5 moccasin

  255 222 173 #FFDEAD navajo white

  0 0 128 #000080 navy

  253 245 230 #FDF5E6 old lace

  107 142 35 #6B8E23 olive drab

  255 165 0 #FFA500 orange

  255 69 0 #FF4500 orange red

  218 112 214 #DA70D6 orchid

Martin Vogel: Bauinformatik mit Python, WS 2025/26 337



Farbe Rot Grün Blau
RGB-
Code

Farbname

  238 232 170 #EEE8AA pale goldenrod

  152 251 152 #98FB98 pale green

  175 238 238 #AFEEEE pale turquoise

  219 112 147 #DB7093 pale violet red

  255 239 213 #FFEFD5 papaya whip

  255 218 185 #FFDAB9 peach puff

  205 133 63 #CD853F peru

  255 192 203 #FFC0CB pink

  221 160 221 #DDA0DD plum

  176 224 230 #B0E0E6 powder blue

  160 32 240 #A020F0 purple

  255 0 0 #FF0000 red

  188 143 143 #BC8F8F rosy brown

  65 105 225 #4169E1 royal blue

  139 69 19 #8B4513 saddle brown

  250 128 114 #FA8072 salmon

  244 164 96 #F4A460 sandy brown

  46 139 87 #2E8B57 sea green

  255 245 238 #FFF5EE seashell

  160 82 45 #A0522D sienna

  135 206 235 #87CEEB sky blue

  106 90 205 #6A5ACD slate blue

  112 128 144 #708090 slate gray

  255 250 250 #FFFAFA snow

  0 255 127 #00FF7F spring green

Martin Vogel: Bauinformatik mit Python, WS 2025/26 338



Farbe Rot Grün Blau
RGB-
Code

Farbname

  70 130 180 #4682B4 steel blue

  210 180 140 #D2B48C tan

  216 191 216 #D8BFD8 thistle

  255 99 71 #FF6347 tomato

  64 224 208 #40E0D0 turquoise

  238 130 238 #EE82EE violet

  208 32 144 #D02090 violet red

  245 222 179 #F5DEB3 wheat

  255 255 255 #FFFFFF white

  245 245 245 #F5F5F5 white smoke

  255 255 0 #FFFF00 yellow

  154 205 50 #9ACD32 yellow green

Bei  den  Farben  mit  zusammengesetzten  Namen  ist  auch  jeweils  die 

Schreibweise ohne Leerzeichen zulässig, zudem ist die Groß- und Klein-

schreibung hier nicht relevant. Anstelle von „pale violet red“ können 

wir also auch „PaleVioletRed“ schreiben.

Von vielen Farben existieren zusätzliche Nuancen. So gibt es beispiels-

weise  neben  „PaleVioletRed“  auch  noch  „PaleVioletRed1“, 

„PaleVioletRed2“, „PaleVioletRed3“ und „PaleVioletRed4“. 

Von der Farbe Grau (deren Name je nach Vorliebe „gray“ oder „grey“ ge-

schrieben werden darf) gibt es gleich hundertundeins verschiedene Ab-

stufungen  von  „grey0“  bis  „grey100“.  Ich  empfehle,  anstelle  solcher 

nichtssagender Namen gleich die RGB-Codes zu verwenden.

Ein RGB-Code ist dank Pythons Formatstrings (Kapitel  5.21.8) ziemlich 

einfach zu erzeugen. Angenommen, die Rot-, Grün- und Blauwerte eines 

Farbtons befinden sich mit Werten zwischen 0 und 255 in den drei Inte-

gervariablen  r,  g und  b. Der RGB-Code dazu lautet  f"#{r:02X}{g:02X}

{b:02X}".

Martin Vogel: Bauinformatik mit Python, WS 2025/26 339



7.3 Der Windows-Paketmanager WinGet

Seit 2020 wird mit Windows 10 der einfache Paketmanager WinGet aus-

geliefert. Die textbasierte Software greift dabei auf zentral verwaltete Ka-

taloge (sogenannte Paketquellen) mit mehreren tausend Anwendungspro-

grammen  zu,  die  sich  mit  einem Befehl  installieren  und  auch  wieder 

entfernen lassen.

Um WinGet zu verwenden, öffnen Sie ein Textterminal („Eingabeaufforde-

rung“)  mit  Administratorrechten.  Dazu  drücken  Sie  die  Windowstaste, 

tippen CMD und klicken dann entweder den gefundenen Eintrag mit der 

rechten Maustaste an und wählen „Als Administrator ausführen“ oder Sie 

drücken die Tastenkombination Strg ⇧ ↲ .

Wenn Sie im Terminalfenster „winget“ eingeben, erhalten Sie einen kur-

zen Überblick über die verwendbaren Kommandos (Abb. 138).

Abb. 138: Hilfstext des Paketmanagers WinGet

Außer den Programmen der WinGet-eigenen Liste werden anfangs noch 

Programme der Paketquelle „msstore“ aufgeführt. Diese enthält zu einem 

großen Teil kostenpflichtige Programme, Abonnement-Produkte oder ein-

geschränkte Demoversionen. Mit dem WinGet-Aufruf

Martin Vogel: Bauinformatik mit Python, WS 2025/26 340



winget source remove msstore

entfernen Sie diese unerwünschten Einträge aus der von WinGet verwal-

teten Liste. Falls Sie das nicht möchten müssen Sie bei jedem weiteren 

Aufruf  explizit  die  Installationsquelle  durch  Nachstellen  von  --source 

winget benennen.

Wenn Sie den Namen des Programms, das Sie installieren möchten, be-

reits kennen, installieren Sie es einfach durch Eingabe des folgenden Be-

fehls:

winget install Programmname

Standardmäßig werden einige Programme nur für den gerade angemel-

deten Benutzungsaccount installiert.  Um anderen Personen Zugriff auf 

die neue Software zu gewähren, kann mit dem Zusatz --scope machine 

veranlasst werden, dass ein Programm für alle Accounts des PCs instal-

liert wird.

winget install Programmname --scope machine

Für die in diesem Vorlesungsskript angesprochenen Programme sind das 

beispielsweise folgende Befehle:

winget install Python3 --scope machine

winget install TheDocumentFoundation.LibreOffice --scope

 machine

winget install 7zip --scope machine

winget install notepad++ --scope machine

winget install Gimp.Gimp.3 --scope machine

Falls Sie den Namen eines zu installierenden Programms nur ungefähr 

wissen, finden Sie durch die Eingabe von 

winget search Suchbegriff

Martin Vogel: Bauinformatik mit Python, WS 2025/26 341



hoffentlich schnell die korrekte Schreibweise heraus. 

Wenn Sie anstatt in einer textbasierten Liste lieber in einem grafischen 

Katalog  stöbern,  finden  Sie  auf  Webseiten  wie  winget.run oder  win-

stall.app eine sortierte Aufstellung aller für WinGet verfügbaren Program-

me mit kurzen Beschreibungen.

Abb. 139: Katalog der installierbaren Software auf winstall.app

Mit WinGet können Sie Ihre Programmsammlung stets aktuell halten. Der 

Befehl

winget upgrade --all

Martin Vogel: Bauinformatik mit Python, WS 2025/26 342

https://winstall.app/
https://winstall.app/
https://winget.run/


aktualisiert alle bereits auf Ihrem Rechner installierten Anwendungspro-

gramme, sofern sie WinGet bekannt sind. Die Erweiterung auf

winget upgrade --all --include-unknown

versucht zusätzlich, Programme zu aktualisieren, deren Versionsnummer 

aufgrund eines nachlässig konfigurierten Installationsprogramms bisher 

nicht bekannt ist.

Eine Übersicht über alle installierten Programme erhalten Sie mit

winget list

und überflüssige sowie unerwünschte Programme werden durch

winget uninstall Programmname

aus dem System entfernt. Achten Sie aber darauf, dass Sie nicht verse-

hentlich  wichtige  Windows-Komponenten  entfernen.  Der  mitgelieferte 

Werbemüll  sowie  das  alle  möglichen  persönliche  Daten  einschließlich 

sämtlicher ins Startmenü eingetippter Suchbegriffe an Microsoft übertra-

gende Cortana sind vermutlich durchaus geeignete Kandidaten.

Beim Deinstallieren von Programmen, deren Name Leerzeichen enthält, 

muss dieser in Anführungszeichen gesetzt werden (Abb. 140).

Martin Vogel: Bauinformatik mit Python, WS 2025/26 343



Abb. 140: Deinstallation von Programmen durch WinGet

Weitere Hilfe zu WinGet erhalten Sie auf Microsofts Hilfeseiten1. Die dort 

an einigen Stellen verwendete seltsame Bezeichnung „Moniker“ bedeutet 

übrigens soviel wie „Spitzname“ oder „Ersatzname“.

1 https://aka.ms/winget-command-help

Martin Vogel: Bauinformatik mit Python, WS 2025/26 344

https://aka.ms/winget-command-help


7.4 Abbildungsverzeichnis

Abb. 1: The Difference (Randall Munroe).................................................13
Abb. 2: Schreib-/Leseköpfe einer Festplatte im Größenvergleich............19
Abb. 3: Tastenbezeichnungen unter Linux und Windows.........................20
Abb. 4: WinCompose rüstet auch eine Unicode-Eingabe nach.................24
Abb. 5: Teil des Verzeichnisbaums unter Microsoft Windows...................27
Abb. 6: Verzeichnisbaum eines realen Windows-PCs................................28
Abb. 7: Ordneroptionen in Windows XP (2001) und Windows 11 (2022). 33
Abb. 8: Dateinamenerweiterungen bei macOS heißen Suffixe.................34
Abb. 9: Bibliotheken als „Dieser PC“ im Windows-10-Explorer................36
Abb. 10: Eigene Dateien unter Windows 10..............................................37
Abb. 11: Anlegen eines ZIP-Archives im Windows-Explorer.....................38
Abb. 12: ZIP-Datei mit Windows-Umlauten unter Linux...........................39
Abb. 13: Icons für „Ausschneiden“, „Kopieren“ und „Einfügen“..............41
Abb. 14: Bildschirmkopiemenü in GNOME 42 und Windows 11..............45
Abb. 15: Die Zeichentabelle von Windows 11...........................................46
Abb. 16: Der Editor der Entwicklungsumgebung IDLE............................48
Abb. 17: Gedit unter Ubuntu Linux...........................................................49
Abb. 18: Dokumentvorlagen in Microsoft Word 2021...............................51
Abb. 19: Dokumentvorlagen für LibreOffice.............................................52
Abb. 20: Schrifteinstellung einer Formatvorlage......................................53
Abb. 21: Absatzformatvorlagen in LibreOffice..........................................54
Abb. 22: Bearbeitung eines Buchstabens im Fonteditor FontForge.........55
Abb. 23: Zeichenformatierung in LibreOffice...........................................56
Abb. 24: Navigation der PDF-Dokumentstruktur in Firefox.....................58
Abb. 25: Tabellenkalkulation 1979 (Bild: Wikipedia)................................60
Abb. 26: Formel einer Tabellenkalkulation...............................................61
Abb. 27: Funktion mit zwei Parametern....................................................64
Abb. 28: Bereichschreibweise...................................................................64
Abb. 29: Fallunterscheidung.....................................................................65
Abb. 30: Tabelle mit Fallunterscheidungen...............................................66
Abb. 31: Drei verschachtelte Fallunterscheidungen.................................67
Abb. 32: VERWEIS.....................................................................................68
Abb. 33: SVERWEIS..................................................................................69
Abb. 34: Zielwertsuche..............................................................................70
Abb. 35: Solver..........................................................................................71
Abb. 36: Matrixformeln.............................................................................72
Abb. 37: Gelöstes Gleichungssystem.........................................................73
Abb. 38: x-y-Diagramm..............................................................................74
Abb. 39: CSV-Import-Dialog in LibreOffice Calc.......................................75
Abb. 40: Meme „Incel vs. Excel“ auf Reddit.............................................76
Abb. 41: Nerdwitz. Foto: Markus Tacker, Lizenz: CC BY-ND 2.0..............79

Martin Vogel: Bauinformatik mit Python, WS 2025/26 345



Abb. 42: HTML-Struktur...........................................................................80
Abb. 43: Ein Browser stellt HTML-Seiten dar...........................................81
Abb. 44: Bestandteile eines HTML-Elements............................................82
Abb. 45: Ein einfaches Flussdiagramm.....................................................87
Abb. 46: Struktogramm: Sequenz von Arbeitsschritten............................89
Abb. 47: Struktogramm: Fallunterscheidung............................................89
Abb. 48: Struktogramm: Mehrfachauswahl..............................................90
Abb. 49: Struktogramm: Schleife..............................................................91
Abb. 50: Struktogramm: Nichtabweisende Schleife.................................91
Abb. 51: Struktogramm: Endlosschleife....................................................92
Abb. 52: Struktogramm: Endlosschleife mit Aussprung...........................92
Abb. 53: Struktogrammbeispiel „Zahlenraten“.........................................93
Abb. 54: Der Struktogramm-Editor „Structorizer“...................................94
Abb. 55: Guido van Rossum 2006 (dsearls, CC-BY-SA 2.0).......................96
Abb. 56: Wählen Sie „Customize installation“...........................................98
Abb. 57: Setzen Sie ruhig alle Häkchen....................................................98
Abb. 58: Installation für alle Benutzerinnen und Benutzer.......................99
Abb. 59: Das Startmenü von Windows 11...............................................100
Abb. 60: Paketverwaltung Synaptic in Ubuntu Linux.............................101
Abb. 61: Paketinstallation mit PIP unter Windows 10.............................102
Abb. 62: Paketinstallation ohne Administratorrechte.............................103
Abb. 63: Die Python-Shell der IDLE unter Windows...............................104
Abb. 64: Die IDLE-Shell unter Linux.......................................................104
Abb. 65: Die IDLE-Shell als Taschenrechner..........................................105
Abb. 66: Python-Fehlermeldungen..........................................................107
Abb. 67: Variablenmodell „beschriftete Kästchen“.................................111
Abb. 68: Funktion mit Eingangswerten und Rückgabewert...................119
Abb. 69: Funktion mit Wirkung...............................................................119
Abb. 70: Funktionen mit und ohne Wirkung oder Rückgabewert...........120
Abb. 71: Das versteckte Kontextmenü des Windows-11-Explorers.........137
Abb. 72: Fallunterscheidung im Struktogramm......................................145
Abb. 73: if … elif … else im Struktogramm.............................................146
Abb. 74: Bedingte Schleife im Struktogramm.........................................151
Abb. 75: Nicht abweisende Schleife im Struktogramm..........................153
Abb. 76: Else-Zweig einer For-Schleife...................................................162
Abb. 77: Verschachtelte Schleifen im Struktogramm.............................163
Abb. 78: Merkhilfe für Sequenzabschnitte..............................................170
Abb. 79: www.pythontutor.com...............................................................173
Abb. 80: deepcopy...................................................................................174
Abb. 81: Vorbild für ein Objekt: Ein Einfeldträger..................................194
Abb. 82: Das Arithmetikmodul „labermath“............................................203
Abb. 83: Anzeige der Modulverzeichnisse unter Windows XP................205
Abb. 84: ASCII-Zeichen...........................................................................228

Martin Vogel: Bauinformatik mit Python, WS 2025/26 346



Abb. 85: Schreibrechte unter Windows...................................................241
Abb. 86: Eines der einfachsten Matplotlib-Diagramme..........................244
Abb. 87: Verbessertes Matplotlib-Diagramm..........................................247
Abb. 88: Plot mit Markern.......................................................................251
Abb. 89: Scatterplot mit Flächen- und Farblisten...................................252
Abb. 90: Textausrichtung mit Matplotlib.................................................253
Abb. 91: Flächenfüllung mit plt.fill(…)....................................................254
Abb. 92: Unbeeinflusste Anzeigereihenfolge..........................................255
Abb. 93: Einfluss von zorder...................................................................256
Abb. 94: x-y-z-Oberfläche mit Terrain-Farbgebung.................................257
Abb. 95: GUI-Programm aus dem ersten Semester 2014/2015..............260
Abb. 96: Das Tk-Hauptfenster.................................................................261
Abb. 97: Tk-Fenster mit festgelegter Größe und Überschrift.................262
Abb. 98: Hauptfenster und Unterfenster................................................263
Abb. 99: Fensterdekorationen.................................................................264
Abb. 100: Die leere Leinwand.................................................................265
Abb. 101: Das tk-Koordinatensystem......................................................266
Abb. 102: Koordinatentransformation.....................................................267
Abb. 103: Linienzug mit Breite und Farbe..............................................269
Abb. 104: Pfeilspitzen am Anfang und/oder am Ende von Linien...........270
Abb. 105: Gestrichelte Linien..................................................................271
Abb. 106: Linienzug und Spline..............................................................272
Abb. 107: Dreieck als geschlossenes Polygon.........................................272
Abb. 108: Rechteck und Ellipse...............................................................273
Abb. 109: Die Ankerpunkte eines Canvas-Textes....................................275
Abb. 110: Wo ist die Maus?.....................................................................278
Abb. 111: Glade.......................................................................................284
Abb. 112: Pack.........................................................................................286
Abb. 113: Grid.........................................................................................287
Abb. 114: Button......................................................................................290
Abb. 115: Die Ankerpunkte eines Label-Textes.......................................291
Abb. 116: Text- und Image-Label............................................................291
Abb. 117: Entry........................................................................................292
Abb. 118: Scale........................................................................................294
Abb. 119: Horizontales Scale-Widget......................................................296
Abb. 120: Frame......................................................................................297
Abb. 121: Anordnung der LabelFrame-Beschriftung..............................298
Abb. 122: LabelFrame.............................................................................298
Abb. 123: PanedWindow..........................................................................301
Abb. 124: Checkbuttons..........................................................................303
Abb. 125: Radiobuttons...........................................................................306
Abb. 126: ttk-Menubutton.......................................................................308
Abb. 127: Webserver unter Windows 10.................................................311

Martin Vogel: Bauinformatik mit Python, WS 2025/26 347



Abb. 128: Wahrheitstabelle and..............................................................317
Abb. 129: Wahrheitstabelle or.................................................................318
Abb. 130: Wahrheitstabelle ^..................................................................319
Abb. 131: Venn-Diagramm mit zwei Aussagen A und B..........................321
Abb. 132: Venn-Diagramme und logische Aussagen...............................322
Abb. 133: QR-Code..................................................................................324
Abb. 134: ASCII-Zeichen als Bits und Bytes............................................325
Abb. 135: ASCII-Code..............................................................................328
Abb. 136: Die 256 Zeichen im IBM-PC8-Zeichencode............................329
Abb. 137: Windows-Umlaute...................................................................330
Abb. 138: Hilfstext des Paketmanagers WinGet......................................340
Abb. 139: Katalog der installierbaren Software auf winstall.app...........342
Abb. 140: Deinstallation von Programmen durch WinGet......................344

Martin Vogel: Bauinformatik mit Python, WS 2025/26 348



7.5 Links und Literaturhinweise

Wenn im Text Bezug auf andere Werke genommen wird, finden Sie die 

entsprechenden Angaben direkt im Text oder als Fußnote. Anstelle einer 

wissenschaftlichen Literaturliste möchte ich Ihnen in diesem Kapitel da-

her lieber ein paar Tipps zum Weiterlesen zur Verfügung stellen:

• „Python – Der Grundkurs“ ist ein Buch von Michael Kofler, das viele 

Übungen und Codebeispiele enthält und besonders von Studieren-

den empfohlen wird.

https://kofler.info/buecher/python/

2. Auflage 2021, ISBN 978-3-8362-8513-1

• Die Universität Waterloo in Ontario, Kanada, bietet einen hervorra-

gend gemachten Onlinekurs in Deutscher Sprache an, der in Zu-

sammenarbeit mit dem Bundeswettbewerb Informatik entstand. Be-

sonders gelungen ist die Einbindung von interaktiven Elementen, 

mit denen sich Codebeispiele direkt auf der Webseite ausprobieren 

und überprüfen lassen. Lehrende können sich dort als „Guru“ ein-

tragen und von ihren Schülern oder Studierenden bei Problemen 

angeschrieben werden. Mein Guru-Name dort ist übrigens „MV“.

https://cscircles.cemc.uwaterloo.ca/using-website-de/

• Wer im Englischunterricht nicht nur Kreide1 holen war,  kann die 

wichtigsten Python-Konzepte in einem Online-Tutorial mit 92 kur-

zen Lektionen in neun Modulen kennenlernen und vertiefen. Nach 

Abschluss jedes Moduls kann man seinen Lernstand in einem klei-

nen Quiz überprüfen und zum Schluss winkt ein Teilnahmezertifi-

kat.

https://www.sololearn.com/learn/courses/python-introduction

• Die Website „Pythonbuch“ von Marco Schmid und Beni Keller rich-

tet sich an Schüler der Oberstufe und eignet sich hervorragend für 

alle, die ohne lange Umschweife schnell ans Programmieren kom-

men wollen. Mir gefällt besonders, dass sie die wichtigsten Elemen-

te eines Programms zuerst behandeln: Die Quelltextkommentare.

1 … oder iPad-Ladekabel …

Martin Vogel: Bauinformatik mit Python, WS 2025/26 349

https://www.sololearn.com/learn/courses/python-introduction
https://cscircles.cemc.uwaterloo.ca/using-website-de/
https://kofler.info/buecher/python/


https://pythonbuch.com

• „Das  Python-3.3-Tutorial“  in  der  deutschen  Übersetzung  ist  eine 

Fundgrube für Informatikfans,  die sich etwas intensiver mit dem 

Stoff befassen wollen, als es der Rahmen dieses Skriptes erlaubt. 

Auch zum Nacharbeiten und Vertiefen der Vorlesungen ist der Be-

reich ab Kapitel 3 ein geeignetes Hilfsmittel.

https://readthedocs.org/projects/py-tutorial-de/

• Bernd Klein hat nicht nur das Buch „Einführung in Python 3 – In ei-

ner Woche programmieren lernen“ geschrieben, sondern ist auch 

Verfasser eines Online-Kurses.

http://www.python-kurs.eu/python3_kurs.php

• Das erste Semester ist viel zu kurz, um alles über Python zu lernen, 

was  man in  Wissenschaft  und Ingenieurwesen gebrauchen kann. 

Gert-Ludwig Ingold  hat  mit  dem Online-Vorlesungsskript  „Python 

für Naturwissenschaftler“ eine Übersicht der fortgeschrittenen As-

pekte von Python geschaffen.

https://gertingold.github.io/pythonnawi/index.html

• Das weite Feld der Grafikprogrammierung mit  tkinter wurde vom 

2017 verstorbenen John W. Shipman vom  New Mexico Tech Com-

puter Center sehr ausführlich dokumentiert. Die archivierte Websi-

te ist in englischer Sprache und kann als gut lesbar gesetztes PDF 

heruntergeladen werden.

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter

• Individuelle Hilfe zu allen möglichen Programmierfragen bieten die 

englischsprachigen  Fragen-und-Antworten-Seiten  der  Community 

auf Stackoverflow. Hier gehört es zum guten Ton, Fragen gleich mit 

einem Stück Programmtext zu beantworten.

http://stackoverflow.com/search?q=python3 

• Dass ein großes Sprachmodell (large language model – LLM) beim 

Lernen einer neuen Sprache auch dann helfen kann, wenn es sich 

um eine Programmiersprache handelt, zeigt die Firma OpenAI mit 

Martin Vogel: Bauinformatik mit Python, WS 2025/26 350

http://stackoverflow.com/search?q=python3
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
https://gertingold.github.io/pythonnawi/index.html
http://www.python-kurs.eu/python3_kurs.php
https://readthedocs.org/projects/py-tutorial-de/
https://pythonbuch.com/


ihrem vortrainierten Textgenerator ChatGPT. Wer in der Lage ist, 

Algorithmen klar zu formulieren und Fragen zielgerichtet und pro-

blembezogen zu stellen, erhält von dem Sprachmodell teilweise be-

eindruckende Antworten und mitunter sogar direkt lauffähige Pro-

gramme. Recht häufig produziert das LLM leider grandiosen Unfug, 

präsentiert  diesen  aber  mit  Formulierungen großer  Selbstsicher-

heit, auf die man leicht hereinfallen kann.

https://chat.openai.com/

• Zu guter Letzt sei auf die offizielle Dokumentation des Python-Pro-

jektes hingewiesen. Hier sind auch die als „PEP 8“ bekannt gewor-

denen Gestaltungsvorschläge festgehalten, die dafür sorgen, dass 

unsere Programme nicht nur vom Python-Interpreter, sondern auch 

von Menschen gut gelesen werden können.

https://docs.python.org/3/tutorial/index.html

https://www.python.org/dev/peps/pep-0008.

Martin Vogel: Bauinformatik mit Python, WS 2025/26 351

https://www.python.org/dev/peps/pep-0008
https://docs.python.org/3/tutorial/index.html
https://chat.openai.com/


7.6 Lizenz

Der  Inhalt  dieses  Werkes  ist  urheber-

rechtlich geschützt und steht unter einer 

Creative-Commons-Lizenz.  Das  heißt, 

dass ich zu Recht ziemlich sauer werden 

darf, wenn ich Inhalte aus diesem Buch 

irgendwo wiederfinde,  wo sie  als  eigenes  Werk  der  Kopistin  oder  des 

Kopisten ausgegeben werden. 

Sie dürfen den Text und die Grafiken für Ihre eigenen Werke verwenden, 

auch verändern und weitergeben, solange Sie sich an die Creative-Com-

mons-Lizenzbedingungen halten. Die beiden wesentlichen Punkte dieser 

Bedingungen  lauten:  Ihr  eigenes  Werk  muss  auch  wieder  unter  einer 

Creative-Commons-Lizenz stehen und Sie müssen stets den Urheber an-

geben. 

Eine kommerzielle Nutzung dieses Textes ist untersagt. Sie dürfen ihn al-

so auch in veränderter Form nicht verkaufen oder auf gewerblich betrie-

bene Plattformen wie Docplayer, Scribd oder Yumpu hochladen.

Weitere Informationen dazu finden Sie auf der Webseite

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de.

Alle Bildinhalte in diesem Lehrbuch, die keine eigenen Werke des Autors 

sind, stehen selbst ebenfalls unter einer Creative-Commons-Lizenz (die je-

weilige Lizenz ist am Bild angegeben) oder sind gemeinfrei (public do-

main). 

Das  Python-Logo ist  ein  eingetragenes  Warenzeichen der  Python Soft-

ware Foundation.

Das Titelfoto zeigt die Pythonbrücke (Pythonbrug) in Amsterdam. Es wur-

de am 10. Mai 2008 von Alain Rouiller aufgenommen. Er gab ihm den Ti-

tel „Java Eiland 51“. Original: http://klixan.de/?dce

Martin Vogel: Bauinformatik mit Python, WS 2025/26 352

http://klixan.de/?dce
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de
https://www.ifross.org/artikel/creative-commons-lizenzen-deutschland-gerichtlich-durchgesetzt


7.7 Download und Feedback

Dieses Vorlesungsskript wird bei Bedarf aktualisiert.

Die jeweils aktuellste Version stelle ich als PDF-Datei über den Link

https://martinvogel.de/python

zum Herunterladen bereit. 

Ihr Pythonbuch-Exemplar wurde am 23. Januar 2026 veröffentlicht.

Über Anregungen und Kommentare freue ich mich immer sehr. Sie sind 

herzlich eingeladen, dazu den Kommentarbereich in meinem Blog zu ver-

wenden:

https://martinvogel.de/blog/index.php?/archives/120-Kommentare-zum-Py-

thon-3-Buch.html

Wer nicht öffentlich schreiben möchte, darf gerne eine Mail schicken:

martin.vogel@hs-bochum.de

Martin Vogel: Bauinformatik mit Python, WS 2025/26 353

mailto:Martin%20Vogel%20%3Cmartin.vogel@hs-bochum.de%3E?subject=Bauinformatik%20mit%20Python%203%20(Feedbacklink)
https://martinvogel.de/blog/index.php?/archives/120-Kommentare-zum-Python-3-Buch.html
https://martinvogel.de/blog/index.php?/archives/120-Kommentare-zum-Python-3-Buch.html
https://martinvogel.de/python

	1 Einleitung
	1.1 Bedeutung der Bauinformatik
	1.2 Ermutigung
	1.3 Lerntipps
	1.4 Suchmaschinentipps
	1.5 Große Sprachmodelle

	2 PC-Grundkenntnisse
	2.1 Tastatur
	2.2 Betriebssystem
	2.3 Dateien und Verzeichnisse
	2.3.1 Verzeichnisbäume
	2.3.2 Dateinamenerweiterungen
	Versteckte Erweiterungen unter Microsoft Windows
	Verbotene Zeichen und Dateinamen unter Windows

	2.3.3 Desktop, Ordner und Verzeichnisse
	2.3.4 Archivdateien (Containerdateien)

	2.4 Zwischenablage
	2.5 Bildschirmkopien
	2.6 Sonderzeichen
	2.7 Texteditoren
	2.8 Textverarbeitungen
	2.8.1 Formatvorlagen
	2.8.2 Schriftarten
	2.8.3 Zeichenformatierung
	2.8.4 PDF-Dateien
	2.8.5 Grafiken
	2.8.6 Verzeichnisse
	2.8.7 Erzwungene neue Seite
	2.8.8 Kopf- und Fußzeilen

	2.9 Tabellenkalkulationen
	2.9.1 Formeln
	2.9.2 Variablennamen
	2.9.3 Relative und absolute Zellbezüge
	2.9.4 Funktionen
	2.9.5 Zellbereiche
	2.9.6 Fallunterscheidungen mit WENN
	2.9.7 VERWEIS, SVERWEIS und WVERWEIS
	2.9.8 Zielwertsuche und Solver
	2.9.9 Matrixformeln
	2.9.10 Diagramme
	2.9.11 CSV-Dateien und Tabellenkalkulationen
	2.9.12 Anwendungsgrenzen


	3 Hypertext
	3.1 HTML-Tags
	3.2 Hierarchische Ordnung
	3.3 Attribute
	3.4 Grafiken
	3.5 HTML-Entitäten
	3.6 CSS

	4 Algorithmen und ihre Darstellung
	4.1 Flussdiagramm
	4.2 Struktogramm
	4.2.1 Reihenfolge der Arbeitsschritte
	4.2.2 Fallunterscheidung
	4.2.3 Mehrfachauswahl
	4.2.4 Abweisende Schleife
	4.2.5 Nichtabweisende Schleife
	4.2.6 Endlosschleife
	Ausbruch aus der Endlosschleife

	4.2.7 Beispiel für ein vollständiges Struktogramm
	4.2.8 Struktogramm-Editor


	5 Python
	5.1 Download und Installation
	5.1.1 Module für wissenschaftliches Arbeiten
	5.1.2 Virtuelle Umgebungen

	5.2 Erste Schritte in der IDLE-Shell
	5.3 Fehlermeldungen
	5.4 Konstanten
	5.5 Variablen
	5.5.1 Variablennamen

	5.6 Rechenoperationen
	5.7 Funktionen und Module
	5.7.1 Funktionsweiser Import
	5.7.2 Modulweiser Import
	5.7.3 Das Mathematik-Modul: math
	5.7.4 Funktionszuweisungen

	5.8 Eingabe mit input(…)
	5.8.1 Lesen aus Textdateien

	5.9 Ausgabe mit print(…)
	5.9.1 Ausgabe in Textdateien
	Warnung!

	5.9.2 Alternatives Trennzeichen: sep
	5.9.3 Alternatives Zeilenende: end

	5.10 Typumwandlung
	5.10.1 Evaluation von Ausdrücken

	5.11 Das erste richtige Programm
	5.11.1 Python und der Windows-Explorer

	5.12 Quelltextformatierung
	5.12.1 Kommentarzeilen
	5.12.2 Zeilenlänge
	5.12.3 Groß- und Kleinschreibung
	5.12.4 Shebang und Zeichenkodierung

	5.13 Verzweigungen
	5.13.1 Fallunterscheidungen: if … elif … else
	5.13.2 Mehrfachunterscheidungen match … case
	5.13.3 Fehlerbehandlung

	5.14 Programmschleifen
	5.14.1 Bedingte Schleifen mit „while“
	Aussprung mit break
	Unstrukturierte Programmierung

	5.14.2 Verkürzte Arithmetiknotation
	5.14.3 Iterationsschleifen mit „for“
	5.14.4 Die Funktion range
	5.14.5 Generatoren
	Generatorausdrücke und Comprehensions

	5.14.6 Else und die Schleifen
	5.14.7 Verschachtelte Schleifen

	5.15 Sequenzen
	5.15.1 Listen
	Listen aus Listen

	5.15.2 Tupel
	5.15.3 Mengen (Sets)
	5.15.4 Dictionarys
	5.15.5 Indizes
	5.15.6 Schleifen über Sequenzen
	5.15.7 Sequenzabschnitte (Slices)
	5.15.8 Kopieren einer Sequenz
	Kopien verschachtelter Sequenzen

	5.15.9 Umwandlung eines Generator-Objektes in eine Liste
	5.15.10 Sequenzen sprengen
	5.15.11 Das enumerate-Objekt
	5.15.12 Reißverschlussverfahren: das Zip-Objekt
	5.15.13 Funktionen für Sequenzen
	5.15.14 Löschen von Sequenzen
	5.15.15 Methoden von Listen
	5.15.16 Eine für alle: das map-Objekt

	5.16 Anwendung von Listen: Vektoren
	5.16.1 Vektoraddition
	5.16.2 Skalarprodukt
	5.16.3 Formatierte Ausgabe eines Vektors

	5.17 Eigene Funktionen definieren
	5.17.1 Eingangswerte (Argumente)
	5.17.2 Vorbelegte Eingangswerte
	5.17.3 Beliebig viele Argumente
	5.17.4 Reihenfolge von Funktionsargumenten

	5.18 Sichtbarkeit von Variablen
	5.19 Klassen und Objekte
	5.19.1 Attribute von Objekten
	5.19.2 Methoden von Objekten
	5.19.3 Die Methode __init__
	5.19.4 Vererbung
	Wir bauen uns eine Durchreiche


	5.20 Eigene Module
	5.20.1 Modulpfade
	5.20.2 Funktionsüberschreibungen

	5.21 Zeichenketten
	5.21.1 Anführungszeichen in Zeichenketten
	5.21.2 Der Rückwärtsschrägstrich
	5.21.3 Mehrzeilige Ausgabe
	5.21.4 Zeichenketten-Methoden
	.count(Suchtext)
	.encode(Kodierung, Fehlerbehandlung)
	.endswith(Suchtext)
	.find(Suchtext)
	.isalnum()
	.isalpha()
	.isascii()
	.isdecimal()
	.join(iterierbares Objekt)
	.lower()
	.replace(alt, neu)
	.split(Trennzeichen)
	.startswith(Suchtext)
	.strip(abzustreifende Zeichen)
	.upper()

	5.21.5 Formatierung mit Platzhaltern
	5.21.6 F-Strings
	5.21.7 Die Methode .format()
	5.21.8 Die Formatierungs-Mini-Sprache
	Einige Beispiele

	5.21.9 Die alte printf-kompatible Formatierung
	Vergleich mit C
	Vergleich mit Java
	Übersicht

	5.21.10 Kodierung und Dekodierung
	5.21.11 Komprimierung und Verschlüsselung
	Simple Verschlüsselung

	5.21.12 Sonderformen von Zeichenketten
	B-Strings
	U-Strings
	R-Strings
	F-Strings


	5.22 Dateien lesen und schreiben
	5.22.1 Textdateien lesen
	5.22.2 Textdateien schreiben
	5.22.3 Textdateien fortsetzen
	5.22.4 Binärdateien
	5.22.5 Pickle
	5.22.6 Das aktuelle Arbeitsverzeichnis

	5.23 Diagramme mit Matplotlib
	5.23.1 Ein schnelles x-y-Diagramm
	5.23.2 Ein schönes x-y-Diagramm
	5.23.3 Streudiagramme
	5.23.4 Text
	5.23.5 gefüllte Flächen
	5.23.6 Zeichenreihenfolge
	5.23.7 3D-Diagramme

	5.24 Grafik mit Tkinter
	5.24.1 Das Hauptfenster
	5.24.2 untergeordnete Fenster
	5.24.3 Canvas – die Leinwand
	5.24.4 Koordinaten der Canvas
	5.24.5 Koordinatentransformationen
	5.24.6 Linien und Linienzüge
	Die Canvas-ID

	5.24.7 Pfeilspitzen
	5.24.8 Gestrichelte Linien
	5.24.9 Splines (Kurvenlinien)
	5.24.10 Geschlossene Polygone
	5.24.11 Rechtecke und Ellipsen
	5.24.12 Kreise
	5.24.13 Text
	Schriftart, Auszeichnung und Schriftgröße


	5.25 GUI – Grafische Benutzungsoberflächen
	5.25.1 EVA und die Events
	Beispiel für einen Eventhandler

	5.25.2 Anordnung der GUI-Elemente
	5.25.3 Die drei Geometriemanager
	Pack
	Place
	Grid

	5.25.4 GUI-Widgets
	Taste: Button
	Beschriftung: Label
	Eingabefeld: Entry
	Schieberegler: Scale
	Rahmen: Frame
	Beschrifteter Rahmen: LabelFrame
	Schiebefenster: PanedWindow
	Ankreuzkästchen: Checkbutton
	Radiobutton
	Menubutton


	5.26 Webserver
	5.26.1 Zeichenkodierung
	5.26.2 Darstellung von Webseiten ohne Webserver

	5.27 Logische Aussagen
	5.27.1 Wahrheitswerte anderer Datentypen
	5.27.2 Vergleichsoperatoren
	5.27.3 Logische Aussagen über Gleitkommazahlen
	5.27.4 Boolesche Algebra
	Die Konjunktion: and
	Die Disjunktion: or
	Die Negation: not
	Die Kontravalenz: ^
	Prioritäten
	Umkehrung logischer Aussagen
	Boolesche Variablen

	5.27.5 Venn-Diagramme


	6 Datenspeicherung und Zahlensysteme
	6.1 Bits und Bytes
	6.1.1 Das Bit
	6.1.2 Das Byte
	6.1.3 Das Hexadezimalsystem

	6.2 Zeichenkodierung – von ASCII bis Unicode

	7 Anhang
	7.1 Häufige Fehlermeldungen
	7.2 Farben und Farbnamen (Auswahl)
	7.3 Der Windows-Paketmanager WinGet
	7.4 Abbildungsverzeichnis
	7.5 Links und Literaturhinweise
	7.6 Lizenz
	7.7 Download und Feedback


